Research Interests
Broadly speaking, my research interests are in geometric representation theory. In my current research, I am investigating
how MV polytopes and similar constructions unify various geometric/algebraic/combinatorial constructions related to affine Kac-Moody groups.
I am also interested in automorphic forms, especially automorphic forms on Kac-Moody groups. In particular,
I am interested in studying how the geometric/combinatorial constructions in representation theory can give rise to number theoretic formulas.
Here are a few keywords that make me perk up:
affine Kac-Moody groups (a.k.a loop groups), Mirkovi\'c Vilonen (MV) polytopes, MV cycles, affine Grassmannians, geometric Satake equivalence,
quantum affine algebras, crystals, canonical/global basis, PBW basis, MV basis, quasimaps, semiinfinite flag variety, preprojective algebras, Satake isomorphism,
Casselman-Shalika formula.
Papers
- Double MV Cycles and the Naito-Sagaki-Saito Crystal - submitted [arxiv link].
- Affine PBW Bases and MV Polytopes in Rank 2 - joint with Peter Tingley - to appear in Selecta Mathematica, N.S. [arxiv link].
|