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Quasilinear Schrodinger Equation

(Following Kenig-Ponce-Vega)

Carlos E. Kenig

LECTURE 1

The energy method

In these lectures we will discuss the local in time well-posedness of the Cauchy problem

for quasi-linear Schrodinger equations, i.e. equations of the form

( . _ _
O = iay,(x, t;u, 4, Vau, V)02 u

T

+ b (z, t; u, w, V,u, Vxﬂ)(?;xkﬂ

1 by (x,t;u,u, Vyu, Vo) - Vou

(1.1) (QLCP) + by (0, t; u, U, Vau, Vi) - Vil zeR", tel0,T]

+ 1 (z, t u, w)u + co(x, tyu, u)u

+ [z, 1)

\ u}t:O = Yo
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2 C. E. KENIG, QUASILINEAR SCHRODINGER EQUATION

We will be assigning suitable “ellipticity” hypotheses on {a, by}, smoothness on all the
coefficients, “asymptotic-flatness” on the coefficients, and as we shall see a (necessary) “non-
trapping” condition on a Hamiltonian flow obtained from the coefficients and the data wy.
By “local well-posedness” in a space B, we mean that, given ug € B, f € X, there exists
T = T(ug, f), and a unique u € C([0,T]; B), such that u solves the equation (in a suitable
sense), u(0, —) = up, and the mapping (ug, f) € B x X — u € C([0,77]; B) is continuous. In

general, the space B will be a Sobolev space, like
wE)={ress [arieprifords <ol

or a “weighted Sobolev space” of the type H*(R") N L*(|z|Ndz), whose presence will be
explained later on. It turns out that the classical theory of pseudo-differential operators
(¥DO) is an appropriate and useful tool in this task, and we will review it and utilize it.

Equations of the type described above appear in several fields of physics, such as plasma
fluids, classical and quantum ferromagnetism, laser theory, etc., and also in complex ge-
ometry, where, for example, in Kéahler geometry they model “Schrédinger flows”. These
equations are also analogous to corresponding ones for hyperbolic equations, where the cor-
responding results were obtained much earlier, in the 70’s, by Kato and his collaborators
[Kat75] [HKMT76|.

The problem was extensively studied in the 90’s, in the case of constant coefficients (i.e.

(x,t) independent) and semilinear non-linearity, i.e.

Ou = iAu + F(u,u, Vyu, V)
(1.2) (SLCP) reR" te|0,T)

u‘t:o = Yo

Let us first discuss SLCP (1.2) in the case when there are no derivatives in the non-linearity,
i.e. when F(u,u,V,u,V,u) = G(u,u) with G(0,0) = 0. In this case, the energy method
applies, and gives local-wellposedness in H*(R"™) for s > n/2. Since the energy method will

be important to us in the sequel, let us work out this result.
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Thus, we assume G(0,0) = 0, G € C*(C x C), and we wish to show the local well-
posedness of the Cauchy problem
Ou = iAu+ G(u, )
(1.3)
u|t:0 =
in the Sobolev space H*(R") for s > n/2. To simplify the exposition, let us assume that G
is a polynomial, so that
G(u,u) = Z cipula”
0<j<M

0<k<N
(3:k)#(0,0)

We will recall a few facts about Sobolev spaces.

Fact 1.4. ||ul|pe(mn) < Clul

ms(rn) for s >n/2.

Fact 1.5. For s > n/2, H*(R") is an algebra under pointwise multiplication, i.e.
1S - gl < CINasllgll s

This is a consequence of Fact 1.4.

Fact 1.6. For s > n/2, if G(0,0) =0, G is smooth, s > n/2, then

|G (u, 0)|as < R(||u|z)

where R is an increasing function that depends on G, s, with R(0) = 0. For instance, in our

polynomial case, we have

IG(w, @)l < C{llull 7 + [lul

e}

Step 1. A priori estimates. Assume that we have a sufficiently regular solution u to (1.3).

Let Jou(€,t) = a(¢, ) (1 + |€]2)/2. We take (1.3) and rewrite it as

(1.7) ou = iAu+ G(u, u)

(1.8) ou = —iAu+ G(u, u)
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We now apply J* to both equations, multiply (1.7) by Jsu = J*u, multiply (1.8) by J®u,
integrate both equations in x, and add. We then have (with v = J*u)

) / o]? = i / Avs — Avu] + / TG, @) T + / TG @) J

Since i [[Avo — Avv] = 0, this term drops out. Using Fact 1.6, we obtain, with f(t) =

lu(= Ol = lo(=, DI,

d s _
0] <216 Dl

< CLlllz=™ + llullzzs Hlull e

< C{f(0) + fO) D2

We now define fi(t) = supg,; ||u(—,7)||%s. Then 3 rg, 0 < ry <t such that

fi(t) = f(ro) = /OTO F(r)dr+ £(0) < fluoll7s + CtA(E) + CLfi(E)”

1

5c» We obtain

where o = %

> 1. For any t <

fi(t) < 2luollgs + 20t A ()"

Let now Ty = first ¢ < 5i for which f1(75) > 4|uol

2. Since fi(t) is continuous,

Aluollfe = fi(To) < 2lluollFrs + 20Toa |uoll3s:
1 . o . L 1
and so Ty > Gt ug In other words, if Ty = min {20, Gt a7 }, then for 0 <t < 7Ty,

we have ||u(—,t)[|%. < 4|lugl|%., which is our a priori inequality.

Remark 1.9. Suppose we considered solutions to

O = —eA*u +iAu + G(u, @)
(1.10) e>0
ult:O = Yo
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Then, the same conclusion holds, with C' independent of e¢. In fact, we only need to under-

stand € [[A% -0+ A?0 - v]dz = 2¢ [ |Av]* > 0. But then
at/|v|2 = —2€/|Av|2+/JSG(U,E)Jsu—i-/JSG(u,ﬂ)Jsu

g/JSG(u,ﬂ)E—l—/JSG(u,ﬂ)JSu

and we proceed as before.

Step 2. Existence of solutions. For each € > 0, a solution u¢ on [0, T¢] to (1.10) is obtained

by “standard parabolic theory”. Specifically, let s > n/2, and define
XT,MOI{ v R™ x [O,T]HC, UGC([O,T];HS), U(O)IU(),

and llylle = sup [[o(8) - < Mo}
(0,77

We then have: for any ug € H?, ||ug||gs < My/2, there exists T, = O(¢), depending only on

My, s, n, G, and a unique solution u¢ in Xr, 5, to
Ou = —eA*u +iAu + G(u, )

(1.11)
u‘t:O = Yo

u(t)]

equation I'u® = uf, where

so that sup,cp s < My. This is proved by converting (1.11) into the integral

t
Tw(t) = e~ ug + / e~ O 1 Aw + G(w, w)]dt
0

and showing that, for appropriate T¢, I' is a contraction on X7, . The only estimate for
the semigroup {e~4”, ¢ > 0} that is needed is || Ae™* g|[ 12 < —2r | g 2.
Set M() = 8||U0|

ms. Obtain, as above, a solution u¢ to (1.11) on [0,7;]. One then uses

the a priori estimate in Remark 1.9, to conclude that, if T, < Ty = min {%, W},
HS
one has supyg 1, [|u(t)[|gs < 4fjuolms < Mo We can then iterate this local existence result,

in the interval [T¢,2T.], etc., to find now a solution to (1.11) in [0,75], 0 < € < 1, with

supyo,ry) 1w (8) | < 4luol|ars-
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Now consider 0 < € < € < 1, and let u, u¢ be the corresponding solutions to (1.11). Set
v =u —u, so that

/ !

(1.12) v = —(e — )A*uf — €A% +iAv + [G(us, 4°) — G(u®, u)]

Recall that supjy 7, [|u(t)|| 2~ < My, and similarly for u¢, and that |G (u, @) — G(u®, a)| <
Cap|u¢ — uf'|. We then multiply (1.12) by o, conjugate (1.12) and multiply by v, add, and

integrate in x, to obtain

O / [0 < 2(e — )| A% 2ol 22 + Cago[lv]| 72
so that, with s > 4,

sup [vllz. < Cle — €)||vllz2 + TChs sup vz

0<t<T 0<t<T
Selecting T' < Tj such that TCy, < 3 and using that [jv]|;2 < C, we have v — 0 in
C([0,T); L?) as ¢, € — 0, giving that u¢ — u in C([0,T]; L*) as ¢ — 0. The family u*
belongs to L>([0,T]; H®), and thus, by weak-* compactness, v € L*([0,7]; H*). By the

interpolation inequality

—1)/s

1
Vellolls

[0][ s < [Jo]]
we have u € L>([0,T); H*) N C([0,T]; H*™1).

Step 3. Uniqueness. We argue as in Step 2, with v = v —/, and € = ¢ = 0, where u and

v’ are solutions. We then obtain

sup [[vflze < TChy sup |[|v] 2
0<t<T o<t<T
which yields uniqueness, by taking 7' < 1/(2C)y,).

Step 4. u € C([0,T]; H*) depends continuously on ug. Here there is a standard argu-

ment, due to Bona-Smith [BS75]. One solves with data u) = ps * ug, where ¢ € S(R"),

[o =1, [2%(x)dz = 0V]a| # 0. We then show that «°, the solution corresponding to
u, converges in L>([0, Ty]; H®) to u as § — 0. To see this, we show

sup |[u® ()| et < C67H 1>0
[07TO]
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and then use interpolation and the fact that

o 1(u® = u®)(B)]| 2 < Cllud — ud||2 = o(6°)
0,To

This completes our outline of the energy method applied to SLCP.
Remark 1.13. For power non-linearities, G(u, %) = |u|*u, more refined results can be ob-
tained by means of mixed norm estimates (the so-called Strichartz estimates), by using

the contraction principle on suitable mixed norm spaces [CW90], or the X, spaces of J.

Bourgain [KPV96] [CDKSO01].

Now we briefly turn to the case of F'(u, @, V,u, V), and explain what the energy method

gives in this case. Suppose that for any v € H*(R"), s > § + 1,

2
Hs

3 / 00 F (u, 0, Vu, Voa)dSude| < C(1+ [ull5.) ul
Rn

laf<s

Then the above proof works (here p = p(F') € N). Thus, for these examples, the energy

method gives local well-posedness in H*%, s > 5 + 1.

Example 1.14. L.n=1, F=0,(lul*u).
2. n>1, F(u,u, V,u)
3. n>1, F general, (%xqu, 8amjﬁF, j=1,...,n are real.

These results are due to Tsutsumi-Fukuda [TF80], Klainerman [Kla82], Klainerman-
Ponce [KP83|, Shatah [Sha82]. The difficulty comes from trying to “recover” the “extra-
derivative” in the non-linear term. The remainder of the course will be devoted to developing
the machinery necessary for this, in the most general situation.

We now need to recall some classical facts about WDO.
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DO

Recall the following basic facts about the Fourier transform:

A

f(6) = / e (2) dr, [ € L'RY)

[ flloo < 110
Plancherel: HJ?HLQ = || fllz2

We recall that ~: S(R") — S(R"), and is invertible, with inverse f(z) = [ e*™#¢f(¢)d¢. If

L is a partial differential operator, of the form

Lf(z) = aa(2)0sf(z)

|| <m

and we let a(z, &) = 3, <, @a(2)(2mi)*, we have

Lf(z)= [ alx,&)f(&)e*™ ¢ d¢

R"

Thus, for a function a(z, &) (the symbol), we denote

Tf(a) = Wuf () = / al,€) (€)™ d

Note that this is, at this point, purely formal. We start with the “standard symbol class”
S a e S™if a € C°(R™ x R") and satisfies

10802 a(z, )] < Agp(1+ [€)m

for all a, 8. The A, g are called the seminorms of the symbol. It is easy to see that if a € S™,
V,:S—SandalsoV¥,:S8 — &'

Theorem 1.15. Suppose that a € S°. Then ¥, : L* — L* (with norm depending only on

finitely many seminorms of a, depending on the dimension).

See, for example, [Kg81] Ch. 2 Theorem 4.1 or [Ste93] Ch. VI, §2
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The symbolic calculus (Kohn-Nirenberg calculus)

Theorem 1.16. Suppose that a,b € S™  S™2. Then, there is a symbol ¢ € S™*™2 gych
that ¥V, = V¥, o U,. Moreover,

o \

i)~
c~Z 2 ea)(02D)

in the sense that ¢ — 3, (27”& (0¢a)(0gb) € S™Fm2=N VN > 0.
See, for example, [Kg81] Ch. 2, Theorem 1.7(1) or [Ste93] Ch. VI, §3.
Remark 1.17. Note that ¢ —ab € S™ ™27 and that each term 9¢adsb € S™m2lel

Remark 1.18. Consider ¥, ¥, — ¥, ¥, which is an operator with symbol in S™ ™2~ Ttg

symbol is —(27mi) 377, {g—g% - %%}, modulo symbols of order my + mq — 2.

Theorem 1.19. Let a € S™. Then there is a* € S™ such that ¥} = W, and VN > 0,

ol
w26~ 3 U Coapats,¢) € 57

lo|<N

(Vi =W, + order m — 1)
See for example, [Kg81] Ch. 2, Theorem 1.7(2) or [Ste93] Ch. VI, §6.2.

Remark 1.20. If we are given a sequence a; € S™, j = 0,1, ..., such that m; — —oo0 and

mg > my > - -+, then there is a symbol a € S™° with a ~ ag+a;+. .., i.e. a—Zfzo a; € S™k.
See [Kg81] Ch. 2, Lemma 3.2.

Remark 1.21. When we work with symbols of limited regularity (i.e. |a| + |5] < M(n)),

the above results still hold, but only for /N small, and finitely many seminorms.



10 C. E. KENIG, QUASILINEAR SCHRODINGER EQUATION
Problems for Lecture 1

Problem 1.1.
1. Show that ||u||p~ < C||u]

sy S >n/2.
2. As a corollary, show that H*(R"), s > n/2 forms an algebra.
3. Also show that, if f € C*(R), u € H*(R"), s >n/2, f(0) =0, then f(u) € H*(R").
Problem 1.2. Complete the proof of local well-posedness of
Ou = iAu + F(u,u)
u|t:O =ug € H®, s > %
sketched in the lecture. In particular, use the ‘artificial viscosity’ method, and the a priori

estimate, to prove existence and uniqueness, and the Bona-Smith method to prove continuous

dependence.

Problem 1.3. Give the proof of local well-posedness for
Owu = iAu + F(u,u, V,a)
u’tzo =uy € H*(R")

for s > 5 + 1.

Problem 1.4.
1. Prove the Cotlar-Stein Lemma: If {7} is a finite collection of bounded operators on
L*(R™), and there are v(j) such that v(j) >0, A= ;r:ioo v(j) < o0,
I T5| < (G = 5)°
LTI <~ = 5)*
Then T' = ) T} verifies | T|| < A.
2. Use the Cotlar-Stein Lemma to show ¥, : L? — L? when a € S°.

Problem 1.5. Prove the “composition formula” in the Kohn-Nirenberg calculus.

Problem 1.6. Given a sequence of symbols a; € 5™/, m; — —o0, my > my; > ---, find a

symbol a € S™°, with a — Z?:o a; € S™k.



LECTURE 2

Pseudo-differential operators and the Garding

inequality

We start out by continuing our review of WDO. Recall that
H®) = {785 [+ EPrIfe)d < o)
and Jof = (14 |€]2)*/2£(€), and hence o(J%) € S*, where o(¥,) = a.
Theorem 2.1. Ifaec S™, V,: H® — H*™™.

Proof. J>""W,J* = U,, b € S° by Theorem 1.16. Hence, by Theorem 1.15 it is L?
bounded, and the result follows. O

Notice that the theorem shows that operators of negative order “regularize”.

An application: We say that a(z,£) € S™ is elliptic if |a(z,&)| > AlE[™, |£] > R. Then,
there exists b € S™ and e € S™>° = NS™ such that ¥,W, + ¥, = I.

Proof. First, by adding ¢(£)(1 + |[£]2)™2 to a(x,€), with ¢ € C§°, we can assume, without
loss of generality, that the estimate from below, by (1+ |£]2)™/2, holds for all €. Let us define
the notation a; o as = a3 if ¥,, o ¥,, = ¥,.. We determine b ~ by + by + - - - as follows: Let

bo = a ', so that by o a = 1 + ey, where eg € S~!. By induction, if by, ...,b;_; are chosen

11
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such that

(b0+b1+"'+bj_1)0a:1+€j_1, Gj_les_j

we choose b; = —ej_1/a € ST, e; =bjoa—bja € ST, so that

(b0+---—|—bj)oa:1+ej, ejES_j_l

Corollary 2.2. ||f|

Hs—m S C”\Ilaf‘

s + || fllar, for any r < s—m.
The Garding inequality (Hormander [H6r66], Lax-Nirenberg [LN66))

Theorem 2.3 (The sharp Garding inequality). Let a € S™, with Re a(z,&) > 0 for |{] >
M. Then Re (Vof, f) 2 =C|fIP -
2

Remark 2.4. C depends only on finitely many seminorms of a.

Remark 2.5. The above inequality has an improvement, due to C. Fefferman-Phong [FP78],
where the error > —C/|| f HZmT_Q However, the above inequality still holds for Hilbert space
valued symbols a [LN66], but the Fefferman-Phong improvement does not hold in that
setting.

Inverses of YDO

Suppose that a € SV, and recall that ¥, : L?(R") — L?(R") with norm dominated by finitely

many seminorms M (n) of a in S°. Thus, assume that
sup ()" 19;0¢ a(z €)| < O for |a] + 18] < M(n)

Then, for C large, we have that [|[W,[/;2 < i, and thus I — ¥, : L? — L? is invertible, and

its inverse (I — W)t =14 U, 4 -+ 4 UL ..

Theorem 2.6 (Beals [Bea77] [Bea79]). Let Q = (I — ¥,)"!, then 3 b € S° such that
Q =Yy, and

N
1+ZJ(\IJ§+1) —bas N — oo in S°
k=0



LECTURE 2. PSEUDO-DIFFERENTIAL OPERATORS AND THE GARDING INEQUALITY 13

Moreover, seminorms of b can be estimated by powers of seminorms of a.

We now turn to a couple of less well-known results for WDO, which will be useful for our
study of Schrodinger equations. Our first one is the study of DO on weighted L? spaces.
For m € R, let Ay, (2) = (2)™™" = (1 + |z|>)~"/2.

Theorem 2.7. Given m € R, 3N = N(n, |m|) > 0 such that, if a € S°, then
W, : L*(R", A\, (2)dw) — L*(R™, A\, (7)dz)
with norm depending only on |m| and seminorms of a with |a| + |5] < N.

Proof. By duality and interpolation, it suffices to prove this for m € 4N. Define now
Tf(x)= (14 |z*)™™W,((1+]|z]*)™f(x)). Tt suffices to show that T is L? bounded. We have
(ignoring factors of 27 from now on) (1 + |z[2)™ f(x))(€) = (I — A¢)™f(€), so that

eix.fa('f’ 5) £

1) = [ere - s = [0 a0t Fods

(L + [z[*)m
Once we obtain this formula, we can apply the Leibniz rule and the L? boundedness of S°

operators to obtain the result. O

Definition 2.8. Let {Q),},czn be the unit cubes with integer coordinates as corners, which

cover R™. For f € L _(R"™), we define

loc

I/l = sup [[fllz2q.)
PEZL™

17l = sup || fllr2q)
all Q
H(Q)=1

Remark 2.9. We clearly have ||f| < [|flli < C.|fll, and hence ¥V xy € R™, || f(— + zo)|| <
Cull fIl- Moreover, if m > n, then || f[| 120 @)de) < Crnll f1I-

Theorem 2.10. There exists N = N(n) such that if a € S°, we have ||, f|| < C|fll, with

C' depending only on seminorms of a with |a| + |3] < N.
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Proof. Let @), be any unit size cube, and z,, one of its corners. Let )y be the unit cube

with the origin as one of its corners, so that Q,, = z,, + Qo. Then
Vo f(x) = / ¢ a(x,€)f(€) d§ = / Valy + . €)e 0 f(€) dE

Let g(z) = ("0 f(€))"(2) = f(& + @), b(y,€) = aly + 25,€)- Then [lgll < Cullf] and

b € S° with bounds independent of z,,,. Moreover,

109l 2(@0) = [Wafll2(Qug)

Now, take m > n, and use the fact that, if y € Qq, then \,,(y) > C,, to see that

10s9l2(Q0) < Cull Wbl z2(rmaz) < Cllgll2aman) < Cligll < ClIS Il

which gives the proof. O]

Corollary 2.11. Let

A1 =D 1fllen

WEL™

Then ||Y. fII' < CIfI, by duality. Moreover, if f:R™ x [0,T] — C, and we define

I £llz = sup (|1l 22(Qu.xp0.1)
HEL™

1A = D 12 @uxom

WEL™

then [[Vofllz < CNfllz and [Vafll7 < cllfll7-

We now turn to our first application of YDO to Schrédinger equations. Consider the

problem

ou = iAu
(2.12)
ultzo = Uo
Is is easy to see that u(w,t) = [ e™eéPay(€) d¢ so that [|u(—,t)||ms = |luo||ms for any s.
Let

S()uy = ulz, £) = / e 0 () dig
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and note that S(—t)S(t)up = wuo, so that the equation is time reversible. Hence, if for
instance ug € L?, u(—,t), t # 0 cannot in general belong to H*, s > 0, i.e. there is no “gain

of regularity”. This is in contrast with the heat equation

ou = Au
(2.13)
u|t=0 = Uo
where 4(¢,t) = e "€ 0(¢) and u(—,t) € H*, Vs, Vt > 0, when uy € L?. Nevertheless, there
is a “local smoothing” effect for the Schrédinger equation, due to Constantin-Saut [CS88],
Sjolin [Sjo90], Vega [Veg88], Kenig-Ponce-Vega [KPV91a], Doi [D0i94|, among others,

that we are now going to describe.

Theorem 2.14. Let u solve

ou =1Au+ f
(2.15) in R" x [0, 7
u‘t:O = Yo

Assume that ug € L*(R™), f € L{L? = 0+OO (f |f(x,t)\2dx)1/2 dt. Then: Vm > 1,

sup lu(=, &)llz2 + 17" ull 2 u@yazary < Cr {lluollze + 11122 }
o<t<T

If J7V2f € L} (M- (x)dadt), the same estimate holds, i.e.

ooror lu(=, )2 + 172 ull L2(r (2) ) < Crr {HUOHL2 + HJil/QfHLQ()w_nl(r)drdt)}

The main tool in the proof that we are going to give of this theorem is a construction,

due to S. Doi [Doi94].

Lemma 2.16. Let X be radially decreasing, non-negative, with fooo A(r)dr < oo, A€ C®,; A
even, and |09\(z)| < Cu\(x). Then, there exists a real valued symbol p € S°, and a constant

co < 1, such that
1
26 V.ple, €) = codel)l¢] =

for all (x,&) € R™.
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Proof of Theorem 2.14. For our proof, we will choose A = A,,,, m > 1. Let now cg(z,§) =
exp[—0r(&)p(z, £)], which is another symbol in S°, and we will consider the equation verified
by v = V. u. Here 0z(¢) = 0(§/R), with 6 =1 for large £, # = 0 for small . In order to do
this, we need to calculate i[¥., A — AW, ]. Recall that the symbol of A = —|¢|?, and that,
if a is of order 2, ¢ is of order 0, then [V ¥, — U,V | = A; + Aj, where Ay has symbol of
order 0, and A; has symbol of order 1, equal to Z {%86—;] — %%}. In our case, this

equals

Z 26— a Z 260(8) 71— (2, &)cr(x, §)
< —cobr(E)An(@)|E|cr(x, &) + 5 OR(E)cr(x, €)

Let us denote by a(x, &) the symbol of Ay, and ag(z,§) a generic symbol of order 0. Next,
we claim that, for R large, ¥, is invertible, and its inverse, \If;; = \I/C; + U,, where s is of
order —1, and ¢, = exp(+0g(x)p(z,£)). Indeed, the calculus gives Ve, o = I+ Wy, where
er has order —1, and as an operator of order 0, its seminorms are bounded by negative
powers of R. (This follows from the following precise version of the composition result.
Suppose a,b € S, then ¥, U, = \IJC, where ¢(x,€) = a(z,£)b(z, &) + ZM 1 fol ry.0(x, &) do,
ryo(z,8) = [[e¥ "8 a(x £+9n) b($+y €) dy dn, and the seminorms of r., y are bounded
by products of the semi-norms of (9§ a, O, uniformly in 6 € [0,1]. See [Kg81]) Therefore,
by Theorem 2.6, [ + U, is invertible, and its inverse = U,, ¢ € S°, for R large. Thus,
\I/CR\I/CE\IIQ = I. Note also that, since eg is of order —1, the symbol ¢ = 1+ (symbol of order
—1). Clearly we have ¥_! = Uy We then have

8,511 =iAv + Alu + Aou + F
(2.17)

U‘t:o =Y

where vy = V. up, F = V., f. We rewrite Aju = Al\If_l\Ilc u = 1211\1/0 u+ AoV, u, where
A has symbol a;(z,€)cj(z,€), and Ay is of order 0. We also rewrite Agu = AgW 10, u =
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AoV, ,u, so that our equation becomes:

aﬂ} =1Av + Alv + Ao’U + F
(2.18)
v|t:0 =%

We will now prove the desired estimates for v, which in light of the invertibility of ¥,
and Theorem 2.7 gives the estimate. We consider the equation obtained by conjugating,
multiplying the first one by v, the second one by v, integrating both equations in z, and

adding. Note that R is now fixed forever. We then get, as in the first lecture:

at/]v|2:i/[Avv—Avv]—|—2Re//~llv-v+2Re/on-v+2Re /F-v
:2Re//~11v-v+2Re /A0U~v—|—2Re/F-v

Recall that Ay is of order 0, and hence |2Re [ Agv - | < C|jv||2,. Moreover, recall that the
symbol of A, is ay(z, €) exp(+6gp), and that

a1(,€) < —colr(E)Am(@)IE|cr(@, &) + g Or(§)cr(,€)
= —cofr(E)Am(2)[¢] exp(—0rp) + 5 Or(€) exp(—0Orp)
so that
a1(7,€) < —colr(E)Am(@)IE] + 5 OR(S)

Consider now the symbol b(z,£) = 2, (2) (€) — ¢;' which belongs to S'. Notice that
—b(z,&) — ay(z,§) > 0 for |{] > R. We can therefore apply the sharp Garding inequality
(Theorem 2.3) to conclude that Re (¥_4v,v) > Re(Av,v) — C||v||2,, and hence, using the

form of b:

Re(Av,v) < Clv]|7. — Re <\I/c70/\m(x)<£>v,v>

3t/|v|2§2/F-v

Next we note that the calculus shows that, since

and so

+ CHUH%Q — Re <\I}C70>\m(x)<§>’07 'U>

codm() (€) = e/ * M (@) V2 ()% et N (2) V2 (€) 2
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and ¢y * A (2)/2 (€)% is a real valued symbol in S'/2, we have
1 2 2
Re <\Ij%0)wn(x)<§)vav> - 5ch(l)/%\}r{?(x)@)l/?UHL? + O(HUHLQ)

Moreover, the first term equals %°||J1/21)||%2(/\m(w)d$), and so

C
0 [ 10+ G140y iy < Ol 42| [ 0

The first estimate now follows immediately by integration in ¢, for 7" small enough. For the

second one, just write
/F = /J—1/2FJ1/2U = /A;}“(x)J—l/QFAi,{Z(x)Jl/%
and use Cauchy-Schwarz, and integrate in ¢t. The theorem follows by iterating in 7. m

It remains to prove the lemma.

Proof of Lemma 2.16. Define f(t) = fot A(|r]) dr, and let

O(z) = (f(1),- -, f(wn))

so that f is smooth and bounded. Let

Ma) 0 ... 0
= L [0, 0 O] = | Mzl SRR VY
0 0 A(|a])
since \ is radially decreasing. Let p(z, &) = ®(z) - & € S°. Then
26 Vpl0,€) = 52V, 8(0) - ] = 20, (0 € = 20 L
(&) € 3]

Finally, we remark that similar arguments, using Theorem 2.10, its proof and Corollary 2.11,

and choosing A = 1 on @y, supp A C 8@, give:
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Theorem 2.19. Let u solve

o = 1Au + f
in R™ x [0, 7]
u‘t:o = U

Then:
lwollze + [[fll 22

sup [lu(®)llzz + |7 2ullz < C
= luollzz + 1772 £l

Problems for Lecture 2

Problem 2.1. A function ¢(z,y,§) is called a “compound symbol” if it satisfies
030708 c(x,y, )| < Cayy (1 [€])" 71
To each such ¢, we associate the operator ¥, given by

i fla) = / (., €)@ f(y) dyde

= lim [ c(z,y,&)y(ey, €)e* V) f(y)dy d¢

e—0t
v € C3(R™ x R™), v(0,0) = 1.
1. Show Y, is well defined, ¥ : S — S.
2. Show that 3 a € 5™ such that ¥, = ¥4, moreover
CL(.’IC,&) - Z 785 (%c(a:,y,f)‘y:x €S N
|a| <N

for all N > 0.
Problem 2.2. Use Problem 2.1 to study ¥}, a € S™.

a

Problem 2.3. The Garding inequality: Suppose a € S™, Re a(x,&) > C|¢|™ for || large.
Then Re (Vof, f) = CollfII}me = Cillf]

2, for any s € R.

Problem 2.4. Let u solve

u‘t:O = Uo
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1. Assume f =0, n = 1. Show that

1D %ull e 1z < Clluoll 2

(Use the Fourier transform).

2. Use the Fourier transform to show, for n > 1, that
Sup || Dy u| 12(Qu x (—o0,400)) < Clltio]| 22
3. Again use the Fourier transform to show, when uy = 0, and n = 1, that
| Dyl ez < O fllpyre
and when n > 1
SUP || Dattl| 22(Qu x (—oorto0)) < C D I I122(@u x(—o0r400))
«

Problem 2.5. Give the proof of Theorem 2.19, using YDO.



LECTURE 3

The semilinear Schrodinger equation

We are now going to sketch the proof of the fact that those estimates already give non-
trivial results for the semi-linear, constant coefficient Cauchy problem. We need one more

estimate:

oyu = iAu

u|t:0 = o

Lemma 3.1. For any s > 5 + 2, we have

1S @) uolliz =@, xfo.11) < Crlluollms

For any integer s > 2n + 2, we have,

1S @)uolliy (1@, xtorpy < Cr Y (L + [22)" 8ol 12

laf<s

21
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Proof. For the first inequality, we just need the estimate supy.,op |[|u(—, )|l s < Cllug]

and the Sobolev embedding theorem: For sy > n/2, we have (assuming sq is an integer):

“uH%OO(QMx[O,T}) < Csup [lu(—,1)| %{SO(QH)

(0,T]

T
<C; / =)oy + Oellu(— )2

<or [ {i-

i[so(Qy‘) + @/ |U(13, t)’Q dx

n

—i-at/ |8§°u(m,t)|2dx}dt

Qu

T
< CT/ / [ul?® + |[Opu|? + |0:0%0u|? + |0°ul® dx dt
0 2

But since dyu = iAu, the result follows. For the second part, we use the inequality ||w]||z:

Hs

<

C|l(1+|x]|*)"* 4 w]| 2, and the identity ;5(t)uo = S(t)(xjuo) — 2it.S(t)(0y,u0) together with

the above argument. To check the identity, apply (0; — iA) to both sides, and use the fact

that they are equal at ¢ = 0. [
We recall the estimates in Theorem 2.19 (at the H® level)
ou=1iAu+ f
u‘t:() =Uo
Then:
(3.2) sup [[u(t)|ns + ||]Js+1/2u|”T <C [[wol|ms + ||f||Lt1H;
ot luollzzs + 0752 £l
Let us consider the IVP
Ou = 1Au + P(u,u, Vu, V)
u|t:0 = Uo
Let us assume that P(21, 22, .., 22042) = D <, Ga2® With @ € N2+2 - We assume a,, # 0,

lag| = d, and consider d > 2.
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Theorem 3.3. Letd > 3. Then 3§ = 6(P) > 0 such thatVuy € H*(R™), s > so = n+2+3,

o < 0, we have local well-posedness in H*.

||U0|

Let

/]

1/2
i@ = ) </|3Zf|2(1 + [a] )Y/ dx)

Iv|<s

Theorem 3.4. Letd = 2. Then 3§ = §(P) such thatV uy € H*(R")NH*"T322(R") = G4,

s>so=3n+4+3, |uol

oo + ||uol| gentszniz <, we have local well-posedness in Gs.

Sketch of proof of Theorem 3.3. For simplicity, let

i _ ou Ou Ou
Plw, Vo, Vall) = 5 oo
J

Let us take so = n+4 + 3. For fixed ug € H™(R"), ||uo|

o < 0, 0 to be determined,

consider, for v fixed, a solution to the inhomogeneous linear problem

ov Ov Ov
Ay 2 9Y
u = ihu+ Or; Ox; Oz

u’t:O = Yo

forve Z§ = {v: R" x [0,T7] = C | A\j(v) <a, j=1,2,3} with T < 1, where

AL (v) = sup Ju(t)]

H%0
o<t<T

M) = > o]l
\ﬁ|=80+%

23 (V) = Vol e,y

We show that, for § small enough, ' = T'(9), a = a(9), if v € Z§, so does u, and v — P (v) = u
is a contraction in Z¢, so we find u such that u = ®(u) and our non-linear problem is solved.

By Duhamel’s formula (variation of the constants),

t
u=S(t)uy + / S(t —t")[0zv - O, - O] dl!
0
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We first estimate AJ(u). Note that if |3] = sy — 3, then

85(8:”1) Og V- Oy, v) = 85&,”1) “ OgV - gy U + Oy v - 858%.1) o

+ aﬂflv : axjv ) afarkv + R((a;:yv>1ﬁ|’7|ﬁso—1/2)

We plug this into the Duhamel formula, and we use the first estimate in (3.2) for R, the
second one for the main terms, to get:

A (0) < Clluglliso +C > N0205,0 - 0p,v - g0l + -+ + CI TR 1y 12
|Bl=s0—1/2
< Cluol

|Bl=so+1/2 "

I
+ CT sup ||v]|3+0
[0,7]

wo+C > sup 000l 2@ Y IVl @i

< Clluollm; +CT sup ()10 + CA3 (0)(A5)*(v)

Note: To handle |[J'?R||;1 12, we note that so =n +4 + 3, [3] = so — 3 = n + 4, and

R=3" Conpdd 7 (0,0)00 " (0,0)05 (0,0)
ay<p
|| >1

18]

where 0, refers to 0,,, 0,,, or O,,. Note that, if |3 —~| >

3

5 since [B—7|+ |y —al+]|a| = |4],
we have |y| < 21 |a| < B and hence JY207~%(9,v) € L, since |f| — 2 — 3 =2 1 1~ n

A similar remark applies to 0%(9,v). Thus, for these terms, we use
17Y2(0777(9uv)) - 837 (Duv) - 05 () [ 12
< 2077 (0a0) 221107 (050)05 (00) [ 1
+ 110777 050) | 2217207 (850) - 05 (900) [ 1

If on the other hand, |5 — 7| < @, since we must have either |y — a| < 2l or |a| <
proceed in the same way.

5]
DR we
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A is estimated similarly, while for A, we use the maximal function estimate, and

Minkowskii’s integral inequality, to obtain
N () < Clluoll ey + OTVAT (0)?

(We have also used that H*, s > n/2, is an algebra, and that ||JY2(f-g)|lz2 < || f|lz|l7Y2g]| 12+
gl || T2 f|12). Gathering terms, we get, with A”(u) = max;_1 53 AT (u) that

M(u) < 06+ CA (v)?

and

M (uy —ug) < M(vp — o)A (01)2 + AT ()]
From this the desired result follows. To see why we need the small norm, notice that in the
estimate for Al (u; —uy), we will get a term of the form (AL (vy)? + A2 (v2)?) AL (v — vg), with
no factor of 7' in front. To have a contraction, we need A (v;) = Vvilli2 (Lo (@, x[o,77)) small,

which on v = S(t)ug forces small data. O

To understand the result for d = 2 (Theorem 3.4), let us take
P(u, @, Vu, V) = |Vul|?

for instance, and let’s go to the estimate corresponding to AL in the previous proof. We get
now (3| = so — 3) [|020,v - 80|, which is controlled by [|828,v||7 - I,(| V|| L (q, x(0,17)) SO
that we need to control the L' norm of the maximal function. This leads us to the weights.
This might seem at first an artifice of the proof. Here it is useful to recall that when one
obtains the solution by the contraction principle, the mapping uy — u is not only continuous,

but in fact real analytic. We now have the following result: consider when n =1,

Oyu = iaiu + ud,u
(3.5)
u‘tzo = Uo
Theorem 3.6 (Molinet-Saut-Tzvetkov [MISTO01]). Fiz s € R. Then there does not exist
a T > 0 such that (3.5) admits a unique local solution in [0,T] such that the mapping

u‘tzo — u(t) is C? differentiable at 0 from H*(R) to H*(R).
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Proof. Consider

Opu = i0%u + udyu
(3.7)
u‘t:o =yug, v<<1, ug€ H(R)

If u(vy,z,t) is a local solution and the flow map is C? at the origin,

aQu ! / / / /
G0t = =2 / St — #)[S(E)uoS(¥) D], dt
0

The assumption of C? regularity gives

One then shows directly that this fails for any s. (One chooses @y(¢) = a~"2x, (€) +

t
/ S(t = )[S( oS ()yuo] dt|| < Clug%e
0

Hs

a VENTS g, (€) where 0 < @ << 1, N >> 1, I; = [2,qa], I, = [N, N + aJ, and uses

/0 t St — ) [S(t)uS(t)yue) dt’

ettlp(&)+p(E—€1)—p(&)] _ 1
p(&1) +p(§ = &) —p(&)
where p(£) = £2). -

— C/ ei(z§+tp(5))£ﬂo(£1)fto(§ —&) dé d&;
R2

How does one remove the smallness? Let us go back to the equation that we studied,

and rewrite it in the following way:

ou .
i iAU + O U0z, 0O, U — [0, U0y Uy — O, U0y, U] O
NG - S/
small near t =0
u|t:0 = Yo

Consider the new linear equation
atw = Aw + [ﬁmluoﬁxju()]azkw + f
w‘t:O = Wo

Suppose that we could prove, for suitably good ug, the same estimates as before. Then we

would be done. This actually works (Kenig, Ponce, Vega [KPV97]). We are thus lead to
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studying linear problems of the form
ou = 1Au + l;l(x) -Vu + 52(33) -Vu+c(z)u+ co(x)u + f
(3.8)
u‘t:O = Uo

and to prove under suitable assumptions on by, by, ¢, ¢, the estimate

me + 12 f

[| ol
s+ |7 2ul|r < Cp

sup [[u(t)]
[t|<T

lwollzs +117° fllzy L2

27

I will next make some remarks about (3.8) when by =0, c; =0, ¢y = 0. The first point is

that there exists a very revealing necessary condition for the estimate

(3.9) sup [[u(t)]|> < Cr{lluollz> + [[fllzy.22}

1 <T

for solutions to
O = iAu+ by(z) - Vu+ f

u‘t:O = Uo

This was discovered by Takeuchi [Tak80]. It is the following: We must have, for allw € S"!,

(z,t) e R" xR

t
(3.10) ‘Im/ bi(z + sw) -wds| < C
0

[ will now present a proof of this, due to Mizohata [Miz81]. Let us first explain the condition

when n = 1. In this case, the equation becomes
O = i02u + by (2)0pu + f

u‘tzo = Yo

Let now v(x,t) = p(z)u, where p will be chosen. Since p(z)0*u = 9%(p(x)u) — 2p'(z)0yu —

p"(z)u, if we choose p(z) in such a way that p(z)bi(x) — 2ip'(z) = 0, (namely, p(z)

exp (—% [ bi(y) dy)), then our equation for v becomes

O = i0%v + c(x)v + p(x) f
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where c(z) = —ip”(z)/p(z). Thus, if ¢; < |p(z)] < C}, this equation is L? wellposed, and the

condition is equivalent with [Im fot bi(y) dy‘ < M. Note for example, that if b; is constant,

Im b; = 0 is necessary (and sufficient) for L? well-posedness.
To now show the necessity of (3.10), we write u(x,t) = eV@Hy(x,t;€), and apply
L =08, —iA —b; -V to obtain:

e VL") = {0,V + | V| o+
+ {00 + AWy + 2VV - Vo — iy VU0} — i{Av +iby - Vo}

We first choose ¥ as a solution of 9, ¥ + |V¥|? = 0, so we take U(x, ;&) = x - & — t|¢[
Observe that A¥ = 0, so the equation becomes

eV L(e™Mv) = {0 + 2VV - Vo — iby - VW) — i{ Av +iby - Vo)
We now choose v as a solution of (transport equation)
Byv + 2V - Vo — iby - VI = 0

'U’t:O = vp(x)

or

so that
v(x,t;€) = exp {2/ by (x — 2€s) -fds} vo(x — 2£t)
0

We will show that, if (3.10) is violated, then (3.9) fails to hold. First, note that

/Otgl(x—l—ws) cwds = /Otl;l(x—ws) (—w)ds

t t
/ bl(x—l—ws)-wds:—/ bi(z' — ws) - (—w)ds
0 0

where 2’ = x + tw, and for p > 0

v t/p
/bl(x—ws)-wds:/ bi(x — wps)pw ds
0 0
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Because of these properties, if (3.10) fails, we can find ¢ty > 0, w® € S"~1, and z; € R" such
that

to .
Re z/ by(xp — 2w°s) - w” ds > log 2Cr
0

where C7r is the constant in (3.9). Put now o = x1 — 2w, to/p = t,. We can use the third

equation to get

to
v(wy,t,; pw’) = exp {@/ by(z; — 2u°s) - W ds] vo (o)
0

to
v(x,t,; pw’) = exp {z/ by (z — 2u°s) - W’ ds] vo(z — 2w°)
0

We will now choose vy with small support, near x = x, satisfying [ |vg|*dz = 1. Hence
[v(—, tp; pw°)||z2 > 3C7, since vo(z — 2w%) has small support around z = z;. Moreover,

[Av + iby - Vo), v = v(x,t; pw°) is uniformly bounded for p — oo, t < t, which implies that

/tp
0

Moreover, e~V L(e™v) = —i{Av + ib; - Vv, and eu|,_, = @08y, so that (3.9) would

i[Av + iby - VU] (=, 5, puw®)

L2d5—>0 as p— o0

give 3Cr < Cr{l+ 0(1)} as p — oo, a contradiction.
We now turn to the positive results on (3.8). Here, we follow Kenig, Ponce, Vega

[KPV97] [KPV9S]

Theorem 3.11. Consider

By = iAu + by (z) - Vu + by(z) - Vi + ¢1(2)u + co(x)a+ f

u‘t:O = Yo

Assume that b;, ¢; € CN(R"), N = N(n).
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1. Assume that |Im by ()] < CAp(z) =
VT >0 we have

W, for some m > 1. Then 3! u such that

sup [Ju(t)][z2 + ”J1/2u||L2(R"><[O,T];Amdacdt)
o<t<T

luoll2 + 11 fllzy 2
T

|uol| 2 + HJ_1/2f|’L2(Rnx[o,T},A;f(x)dzdt)

2. If Im by(z) = > pezn Cupu(@), with supp o, C Q7 |lpulley <1, 30, o] < A, then

we have:

[uollzz + [ fll Ly 22
sup_[lu(t)]|z2 + |7 ?ullr < Cr ’

Pt luoll 2 + 1742 f

This theorem allows us to extend Theorem 3.3, Theorem 3.4 to data of arbitrary size.

Remark 3.12. The condition (3.10) is an L' condition and another way to view the need
for the weights is to mediate between (3.10) and L? conditions on u. This is only needed in

“bilinear settings”.

In the next lecture, we will discuss generalizations of Theorem 3.11 (1).

Problems for Lecture 3

Problem 3.1. Use oscillatory integrals and 77" arguments to show: Let u solve, for n =1
o = iAu
u} —o = Uo

Then

L. || sup, [u(z, )] s,y < CllDa" o] 2z

1
Hs(R), S > 3

2. |Isupy<q [u(@, O]l 2.y < Cslluol

3. Nullpare < ClluollL2
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Problem 3.2. Prove Theorem 3.3 for non-polynomial non-linearities. Do the same for
Theorem 3.4.

Problem 3.3. Carry out the proof of the Molinet-Saut-Tzvetkov example, outlined in the
lecture.

Problem 3.4. Prove Theorem 3.11 using the sharp Garding inequality, when by = 0. Use

the pseudo-differential proofs of the local smoothing effect as a model.






LECTURE 4

The linear Schrodinger equation with variable

coefficients, Part 1

In order to study the Cauchy problem in the quasi-linear setting, we need to understand
linear problems where the top order coefficients are also variable. In order to begin our study
of such problems, we need to introduce some new terminology. Let a(z, ) be a second order,
real valued symbol in S?. The Hamiltonian vector field, associated to a, on R x R", H, is

given by

n

Ha(¢) = Z [8§ja(x7 g)aﬂcﬁb - axja(x’ g)afjgb]

j=1
and the bi-characteristic flow, denoted by (X (s; xo, &), Z(s; o, &o)) is its flow, i.e. the solution

of the Hamilton-Jacobi equations

d =
%Xj (S, Zo, fo) = 8§ja(X, :)

d
&= (5100, 60) = ~0uy0(X, D)

for j = 1,...,n, and with data (X(0;z,&),Z(0;x0,&)) = (x0,&). ODE theory implies
that the bi-characteristic flow always exists and is unique, in a maximal interval, s € (=4, ),

with & = 0(z9,&), depending continuously on (zg,&;). Note that when a(¢) = —[£|* (the

case of the Laplacian), we have that

(X (5520,0), 2(5520,&0)) = (w0 + 25, &)
33
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and it exists for all s.
Suppose now that a(x,&) = — Y a;i(2)&;&k, where the matrix A(x) = (a;,(z)) is elliptic
and real valued, i.e.
ATHEP < agi(@)€8 < MEPP VEER”
Then, since
H(9) 0, 0) = 10X (5 20, 0). Zls 20,&)

we have, with a(z,§) = — ) ajp(x)&;&k, that H,(a) = 0, and hence we see that

S=

A2 &) < |2(s5 20, &) P < A &o)?

This immediately gives that 6 = 400, i.e. the bi-characteristic flow exists for all times. Since

a(x,§) is homogeneous of degree 2 in £, uniqueness for ODE gives:
X (s;20,7&0) = X (87370, &0)

E(s; 20, 1€0) = rE(sr; 7o, &0)
The role of the Hamiltonian vector field in our context can be understood from the following
consequence of the calculus of ¥DO: The symbol of [V, ¥, — ¥, VU,] = H,(¢) modulo lower
order symbols.
In order to explain the relevance of this to our context, we first recall a result of Ichinose

[Ich84|, which generalized the Takeuchi-Mizohata condition: Consider the Cauchy problem
Ot = 10y, (2)y,u + by (2) - Vu + f

u‘t:O = Uo

where (ay;(z)) is elliptic, and “asymptotically flat” (i.e. |ag; — dg;| < @%, n > 0, as

x — 00). Then, a necessary condition for the estimate

sup [[u(®)llz2 < Cr {Jluollzs + 11 fllyaz }
o<t<T

to hold is:

sup < +00
zroER™

&esn—1
toeR

/ T By (X (5520, €0)) - Z(5; 20, €0) ds
0
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This is a direct generalization of the Takeuchi-Mizohata condition. Notice that, by ellipticity,
if & € 8™ 1 |2(s;m0,&)| =~ 1. Thus, a very bad situation would arise if for a fixed (¢, &),
X (s;1q,&) was contained, V s, in a fixed compact K. One would then choose 51 € C§°, but
identically constant in K, and trouble would arise as t; — oo for the boundedness of this
integral. This leads us to a non-trapping condition: For each (z¢,&,) € R" x R"\{0}, the
set {X(s;20,&)} is unbounded in R™. The non-trapping condition, in fact, is also closely
connected to the “local smoothing” estimate. In fact, the role of this property in the study
of local smoothing effects first appeared in the works of Kapitanski-Safarov[KS96], Craig-
Kappeler-Strauss [CKS95], and Doi [D0i94]|[Doi96], from the early to mid 90’s. They
showed that, under appropriate smoothness assumptions, ellipticity and asymptotic flatness
assumptions, if the non-trapping condition holds, solutions to
Oyt = 10y, A (7) 0y, u
(4.1)
u‘t:O = o

verify the estimate ||J"/2ul| 2®nx (o7 3 (2)azd) < Crllto|z2, m > 1. Moreover, Doi [Doi00]
showed that, under the same conditions, if the above estimate holds, the non-trapping as-
sumption must hold.

In our work on quasi-linear equations, we need to study equations whose coefficients
depend also on ¢t. Moreover, we need to introduce an “artificial viscosity” term eAZ2, and
establish a family of uniform estimates. We thus need to study the following family of linear

Cauchy problems:

O = —eA*u + iay,(z, t)ailwku + ibu(, t)agll’ka

by (1) - Vau + ba(z, 1) - Vi

+ 1 (x, t)u + co(z, t)u + f(x,t)

L u‘t:O = Uo

where a;(z,t) are real valued, and the other coefficients may be complex. In order to clarify

the presentation, we will first deal with by (z,¢) = 0, and then treat the general case. We
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thus study, for 0 < e < 1:

O = —eA*u + day,(z, t)@gwku

+ by (x,t) - Vou+ bo(,t) - Vo

+ 1 (x, t)u + co(z, t)u + f(x,t)

U| = Ug
( t=0

Our hypotheses on the coefficients are:

(Hy,) Ellipticity. (aw(x,t)) is real valued, and with h(x, &) = ai(z,0)§E, we have h(x, &) >
VIEN% v > 0.

(Hy,) Regularity. There exists N = N(n), and C' > 0 so that a, l;l, 52, c1, o € CN(R™ xR)
with norm bounded by C. Moreover, there exists C; > 0, so that the corresponding norms,
at t = 0, as functions of x in C¥(R"), are bounded by C}.

(Hs;) Asymptotic flatness. There exists C' > 0, Cy > 0 such that, for any (z,t) € R" x R,

we have

C
|anlk(x,t)| + ]@alk(x,tﬂ + |8xj8xralk(:z:,t)] + laxjﬁtalk(m,tﬂ S T2

()

Ch
‘anlk(l" 0)‘ < W

(Hy,;) Growth of 1st order coefficients. There exists C, C; > 0 such that, for (z,t) € R" xR,

, C
|3t1m bl(x,t)| S W
C

|Tm gl(x,0)| < —

(z)?
(Hs,;) Non-trapping. The symbol h(z, &) = an(z,0)§E, gives rise to a “non-trapping” bi-
characteristic flow, with non-trapping character controlled by C;. (We will explain this

quantitative dependence very soon).
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Theorem 4.3. There exist N = N(n), To > 0, Ty depending only on C, Cy, (Hs;), and
A > 0, depending only on ~y, Cy and (Hs,), so that, for any T € [0,Ty], € € [0,1], we have,
for any u a solution of (4.2):

T 1/2
sup [Ju(t)lz2 + ( / / Nl T2 i dt)
o<t<T 0

luollr> + 1 fll .2
|uollz2 + ||‘]71/2f||L2(Rn><[O,T]7)\;1(:c)dxdt)
We will see that Ay here can be replaced by A,,, m > 1. We will sketch the proof of the

first inequality, the second one being similar. One of our main tools will be the following

lemma due to S. Doi [D0i96].

Lemma 4.4. Let h be as above. Then, there ewists a real valued symbol p € S°, with
seminorms for |a|+ |3] < M(N) bounded in terms of “the non-trapping character of h”, C,

and v, by a constant C§, and a constant B, 1 > B > 0, with the same dependence, such that

g <.T>2 B’ ( ’ ) x

We will quantify the “non-trapping” character of i in terms of the constants C and B

in the above lemma.

Remark 4.5. The fact that the constant A in Theorem 4.3 depends only on the coefficients

at t = 0 will be a crucial point in the application of this result to the non-linear problem.

We will take Doi’s lemma for granted, and use it to prove Theorem 4.3. At the end, we
will prove the lemma. We proceed in several steps.

Step 1. Reduction to a system. We look at (4.2) and its complex conjugate, to obtain,

s o u > / . Uo
with @ = S f=1"_1], W= , the system
u f U
00 = —eA’TiG + [iH + B+ C|@ + f
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L 0 by-V by-V By B
where  H = , L=ay(x,t)d:,, B= - Z S e
0o —L b2 -V b1 -V Boy Ba
= C1 Co
Cy C1

Step 2. Diagonalization of the 1st order terms. We first note that, given (Hy;), (Ha,), £

is elliptic, with ellipticity constant /2, for 0 < ¢t < T, T sufficiently small, depending on C"

ay(x, )&E = an(x,0)&6&k + [am(x, 1) — a2, 0)]6&, > vI€[* — CTIE
because of our bounds on 0;aj;;. This type of argument is used frequently. We write

By 0 0 DB
B = Bdiag + Banti - +
0 DBy By 0

and our goal in this step is to eliminate Ba,;. To do this, we will set A = I — S, where

0 s
S = . ,and S is of order —1, and write our system in the new variable 2’ = A, for

S21 0
appropriately chosen S, so that B, is eliminated, and A is invertible. Estimates on z" are
then equivalent to estimates on w. Let h(x,t,&) = au(x, )&, so that, for each t, L =W _,.
Choose @ € CP(R"), ®(y) = 1 for |y| < 1, (y) = 0 for |y| > 2, Or(&) = [1 — P({/R)],
and let h(z,t,€) = —h~(x,t,€) - Op(€). Let £ = W5, so that h € S~2, uniformly in ¢, and
ZL =17 -+ \Ijru ry € S_l, uniformly in t. We now define S12 = —%?:Blzé, S91 = —F%’L'BQPCN,
0 s
S = . , A =1—5. Notice that the entries of S are of order —1, and we can choose
S21 0
R so large that A™! is a 0-th order WDO, for each ¢, and so that A has operator norm in

H'Y?((x)%dz), L*(R") between (2

3,2), and so does A=Y, Let us first consider

. L 0 . L 0 . L 0 0 —S12 . 0 519 L 0
7 A—Ai =1 +1
0 —-L 0 —-L 0 —-L —S921 0 S21 0 0 —-L
0 —i,CSlQ — i812£

i£821 + i821£ 0
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Now,
1

1 ~ ~
—i£812 — i812£ = —§£312£ — 5312££ = —B12 + order 0

and similarly
i(5521 -+ Szlﬁ) = —Bgl + order 0
Thus, i(AH — HA) = —Baui + C, C of order 0. Observe also that
ABdiag - ([ - S)-Bdiag - Bdiag - SBdiag - BdiagA + Bdiags - SBdiag

= Baiag + {(BuaiagS — S Bdiag) A ' JA = BaiagA + CA

order 0

where C'is of order 0, uniformly in ¢. Also, AB.n; = Banti — S Banti = Banti + CA, C of order
0, and AC = (ACA YA = CA, where C is again of order 0. It remains to study AA2I, and
Adyi. The latter one equals ;AW — (O;A\) W = O;Aw — (O, A) A~ AW, and (9;A)A~ is of order
0, uniformly in ¢. For,

S12 0 812A2

A%[ = A2] -
S91 0 821A2 0

ANT = AT —

and s15A2 = A2s;5 + Ryo, where Ry is of order 2. Thus, eAA2] = eA2A] + eR, where the
entries of R are of order 2. Writing R = (RA~')A = RA, where the entries of R are of order

2, we obtain

0,7 = —eA’IZ+ €RZ+ iHZ + Bgug? + CZ+ F
Z|t:0 =0

where A f = F , ANy = zg, R is of order 2, C is of order 0, uniformly in .
Step 3. Construction of a “gauged” system. Recall that our “non-trapping” assumption

is on h(z,&) = ap(z,0)§&, and that the symbol of L is —h(z,t,&) = —ay(x,t)§&,. Let

p € S° be the symbol associated to h, through Doi’s Lemma, so that,

Bl¢| 1
Hyp > -1 —
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and recall that, the symbol of [V ¥, — ¥, ¥ .| = —H,(c), modulo lower order terms. Note
that, if hy(z,&) = h(x,t,§),

0¢; 0x;  Ox; 0§
oh Op Oh Op

8@- @(L‘j (’)xj (‘35]

+ ) {aw(e,t) — an(z, 0)} (fsz)

o¢;
- Z {—(Mk z,t) 88 a(, O)} flgkaéj

so that, by our asymptotic flatness assumption (Hs;), for small 7j, (depending on C,C}),

we have, t < Tj,

We now define, for M large, R large to be chosen, r1(z, &) = exp((—Mp(z,£)0r(§)), ro(z, &) =
exp(+Mp(x,&)0r(£)), so that ¥,,, ¥,, depend only on M, h(z,§), R. Note that ¥, V,, =
I'+Tp ; U, W, =1+ Tge , where T are of order —1, with SY seminorms small in R.
Thus, for R large, ¥,,, V,, are invertible and their inverses are operators of order 0. This
fixes R, depending only on h(z,§), M, and controls the norm of ¥, , W~ 1in various spaces,

only in terms of those quantities. Note that, modulo Oth order operators, the symbol of
Z.[\IIHE - ‘C\Ilﬁ] = i[\Ijrl\Ij_ht - \Ij—ht\llﬁ] = _i[qjﬁ Uy, — \Ijht\IITl]

is Hp,r1 = —MHy,(pfr)ri. A similar computation gives that the symbol of i[-V,,

LV,,] = —MHy,(pfg)r2, modulo Oth order operators. Let now ¥ =
T2

define @ = ¥z, We will write the system for @. The constant M, and hence R, will be



LECTURE 4. VARIABLE COEFFICIENT LINEAR SCHRODINGER, I 41

eventually chosen depending only on (.

, (Y, O L 0 L 0 v, 0
i[WH — HV] =1 —
0 v, 0 —L 0 —L 0 v,
—MVY 0 .
— Hp, (0rp) U+, Corder0
0 My, (Orp)
—-MY 0
_ Hpy, (Orp) U+ C¥, C order 0
0 _M\I]Hht (Orp)
Next,
v, B 0 B11Y, 0
VU Biag = o = s + Oth order
0 V.., Bay 0 BV,

= Baiag¥ +C¥, C order 0
VO = (PO 1w

Since V¥ is t independent, W0, = 9,¥, so it only remains to study VR, R of order 2, and
UA%]. We just write VR = (PRU )V, and note that

) U, A2 0 AT, 0
0 U, A? 0 A,

E of order 3. All in all, we obtain, (grouping the order 2 and order 3 terms together)

(0,0 = — eA%IG+ ¢Ed + iHa + Byingd
\P 0 —
VS &+ Ca+G
0 Vh,, 0np)
\ O_Z|t:0 - 620

B 0 —
where E is of order 3, uniformly in ¢, C' is of order 0, Bgiag = H , Biy =0, -V,
0 By

By = El-v, G= \Ilﬁ, dy = Yy, and where M and hence R are still to be chosen, depending
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only on C;. (Proof to be continued in Lecture 5).

Problems for Lecture 4

Problem 4.1. Prove that, under ellipticity, the Hamiltonian flow exists for all s.

Problem 4.2. Prove that, under ellipticity and asymptotic flatness, the non-trapping con-
dition implies the following “uniform non-trapping”: Let K C R"xR"\{0} be a compact set.
Then, given p > 0, 3 so = so(K, ) such that | X (s;z0,&)| > p, V |s| > |sol], ¥V (20, &) € K.
Problem 4.3. Combine Step 2 in the proof of Theorem 4.3 with the technique used for the
proof of Problem 3.4, to give a proof of Theorem 3.11.

Problem 4.4. Use the problem before, and the techniques in Lecture 3, to remove the

smallness assumption in Theorems 3.3 and 3.4.
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We continue with our proof of Theorem 4.3.

Step 4. Energy estimates for the “gauged” system. We will now choose M large, de-

pending on (1, so that & verifies the estimates in Theorem 4.3. This will, in turn, imply

Theorem 4.3. We define (@, @ = [ ‘a1 31 + a2, and set out to compute

@, d) = —e(A*I1a,d) — e(a, A’ Id) + e(Ead,d) + e(d, Eq)
+ (1Hd, a) + (@, i1Ha) 4 (Baiagd, @) + (&, BaiagQ)

o M< \Itht(GRp) 0 &»’ 0—2
0 \IIHh,t (OrpP)

M <(5Z, quht(9RP) 0 O_Z>
0 \IJHht(9R;D)
+(Ca, @) + (@, Ca) + (G, a) + (@,G)

= —2eRe (A2]&, @) + 2¢Re (B, &) + i[(H&, &) — (&, HE)]

v
+ 2Re(Byiag@, @) — 2MRe < Hy, (0rp)
0 \Itht (6rp)
+2Re (Cd, d) + 2Re (G, d)

43
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We start analyzing terms:

Term I. —2eRe (A?Id, d) = —2¢||Ad|3,.

Term II.

e|Re(Ed, @) = e|Re(J*2T32Ed, d)| = e|Re(J**Ea, J*?d)| < Ce||d||%ss
since J™*2FE is of order 3/2. We now invoke the interpolation inequality
=112 =112 ]‘ = =112 =
100572 < mollallz + — a2 < nollAd|7. + —la]| 2
To Mo

where 19 > 0 is arbitrary. If we now choose 1y = 1y(C, n) so small that Cny < 1, we obtain
that the sum of Terms I and II is smaller than —e||Ad||7, + Ce||@||7..
Term III. Next,

L 0 L— L 0

Since H = , H—H* = . Recall that £ = V_,,, hy(z,§) =
0 —L 0 LY —L

h(z,t,&) = ap(x,t)E:&. Thus, by the calculus, since h; is real valued, the symbol of £* is

—ap(z, 1) — 0 Z O¢; 0, lap(z,1)x&] + order 0

J=1

and hence, if Z;(m,t,g) = 22:1 e, Oy, la (2, ) E1&1], |3tl~)(:p,t,§)| < C’%, and |l~)(:v,0,f)| <
01%, and CN norms of b(z,t,£), b(x,0,£) have similar bounds, because of (Hs;), (Ha,).
We have then

in—mem:< - &@>+wa@
0 U

where C' is of order 0, and, since the symbol b is real valued,

v 0 . . vy 0. . 2
a,d ) =Re a,a )+ (Ca,a), C order 0
0 0
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Term I'V. We next consider the terms

v 0 . . L
Re a,d ) + 2Re(Baiagd, @)

0 v;
L 0
—9MRe < Hi, (0rp) a, o7>
0 \I]Hht(QRP)
v :+2B 0
=Re( | * 77" a,a
0 ‘1/5 + 2322
—2MW 0
+ Re < Hht (ORP) &, &>
0 _2M\I/Hht(9RP)

= Re /[‘IJ_E + 2311 — 2M\IJHht (ng)](Oél) 61

+ Re /[‘1’5 + 2By — 2M Vg, (9p)](cr2) @

Now,

Hy, (0rp) = Or(§) Hp, (p) + pHp, (0r)

and Hy,(0r) = —0;;h(x,t,£)0¢,0r, so that |Hy, (0r)p| < C, for R > 1. Also, By = b -
V. By = by -V, so that By = Uz ., By = Vs e Consider Re (iby(z,t) - £) =
—Im (by(z,t) - €). Now |Im by (x,0,8)| < 5—;2, and |9,Im by (z,t,€)| < & implies that, for

0<t<Ty Ty =To(C), we have

[Im by (,1,8)| < —

(z)?
A similar estimate holds for b. Recall also from Doi’s lemma and our previous remark that,
for 0 <t < Ty,

B le| 2
2 ()2 B

Hy,p >
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Then, we have

Re [—b(z, t,€) + 2iby (z,t) - € — 2M Hy,, (0gp)]

6C ¢l | 4M
< A6, T
- (#)* B

Or(&) +2MC — MBQQR(S)

(z)
Now, choose M so that M B > 6C; + 1. Now, choose R, depending on M, so that U, in the

construction of the gauged system are invertible. We then have, for |{| > R, that

Re[—i)(l’,t,f) + 2zgl($;t> : £ — QMHht(QRp)] <2MC — <|§_>|2

and so, by the sharp Garding inequality, we have
Re/[‘l’_g + 2B = 2M Uy, pplar - an < Cllaa]|7: — Re (Wgapzan, an)

Thus, our sum of terms is bounded by
Uiey /i 0
clalz. - Re< €/ a, 52>
Yie) /2

But \IJ@)/@C)Z = U*

e/ © Yz + €, C of order 0, and

<‘I’Ts>1/2/<w> o Wigyrzyia) f, f> - ”Jlmf”%?(dx/@v)

Gathering all the terms, we obtain

d, . . - . - 5 -
20 8) + el Ad]7. + 172617 210 2y < CllGI7 +21(G, @)

To obtain the first bound in Theorem 4.3, we use |(G, @)| < ||G||12||@| 2 while for the second

one, we use

(G, a@)| <TG 2 ((@y2a) - 1172 12 (2 1)
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Let us complete the proof of the first estimate: Fix T' < Tj, and, for ¢ < T, consider

mﬁ«/wmw /HWQMM/

~ IO+ [ [ Sl + A+ 1770 |

t
<1aO)s + [ [Clals + 206l
0
< [|G@(0)||7> + CT sup ||dl|7: +21Glly2 sup [d]lr:
o<t<T o<t<T
IfCT < %, we are done.

Remark 5.1. Note that the above proof carries over, almost verbatim, if (Hj ;) is replaced by
(Hs,;)": Let A(z) = ap(x,0). Then, A(z) = Ag(x) +nA;i(x), where Ay verifies (Hy ;) — (Hs,),
and |A;(x)| < 5—;2, IVA;(z)| < <]j—>12, where 0 < n < 1y, for 1y small enough depending on

the constants in Doi’s Lemma for Ay, on ', and on B;.

Remark 5.2. The first order terms by (z,t) - Vau, by(z,t) - Vi can be replaced by ¥DO B;
of order 1, depending in a C! fashion on ¢, and whose symbols by (xz,t,£), by(x,t,§) verify
estimates like those in (Hsy;), and Re by(x, ¢, &) verifies estimates like those in (Hyy).

Remark 5.1 follows because the p in Doi’s Lemma that works for Ay, for small 79, will
work for A, and the proof is then identical. Remark 5.2 follows by using the same proof.

To complete our proof, we sketch the proof of Doi’s Lemma. Thus, h(z,§) = ag/(x,0)EkE
is assumed to verify (H;;) (ellipticity), (Ho;) (regularity), (Hs;) (asymptotic flatness), and
(Hs,), the non-trapping condition for the associated Hamiltonian vector field, i.e. the solu-

tions of
4

£Xj(8; Zo, 50) == 8§jh(X, E)
d

%Ej(s; Lo, 50) = _aa:jh<X7 E)

X<O;l’07fo) = Zo

=(050,&0) = &o
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have the property that |X(s;x,&)| — 00 as s — o0, V xg, & # 0. Recall also the

homogeneity properties

X (8520, 7&) = X (rso; o, &o)
E(s;20,7&0) = 1E(rs; 20, &0)

We have to find p(x,¢) € S°, real valued, such that

B¢]

Hyp > =

V(z,€) €e R" x R"
The first reduction is the following: Assume 3 ¢ such that
020¢ (2, €)] < Cap(x) (€)™

and

Hyqg > B[] — By, YV a,§

Then we can construct a p as we desire: let K > 1 be such that |¢(z,&)| < K(x). Define now
f(t) =2K? J ds. so that f'(|q|) > 2, for all (z,£) € R™ x R™. Let ¢(t) € C*°(R) be such

<8>27
that ¢(t) = 0if t <1 and ¢(t) = 1 1ft >2,¢(t) > 0. Let ¢ (t) = d(L), ¢_(t) = o4 (—1),
¢o=1—¢, —p_. Define ¥y, U, € S° by ¥, = qbo( ) qbi( ) By our construction

of f, 18202 f(lg(x,&)])| < Cop(€)71el on supp U, U supp ¥_, given the estimates on q. We

now put

p:é§w+UMD+MW+—@J€@

and check that, for e small, it has the desired estimates: In fact, on support of ¥q (i.e.

lq| < €(x)), for € small enough,

AN _Hwg  w Veh(n.) g lEL
(i) =T~ e 2R R

Fix such ¢, then

A=)+ £/(la) Hallal) (04 = v-)
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Note that ¢f = —¢/, — ¢ and

Hy(|g){Vy — V_} = (sign q)Hp(g){Vy —V_} = Hp(g{¥, +¥_}
so that

H(p) = H (75 ) Yo+ S (a Hn(a) {0 + -}

# (a4 2= ) Lo (&) = o (&) ()

Note that ¢/, —¢” > 0, and on supp ¢/, (<i) U supp ¢ (<i) we have

Flal) + 26— 19 5 g

()

and

Hh(i> > Bl‘iﬂ — B,
x

Thus, we get a lower bound of

€l
(x)

Bi[¢]

Byt Ty

{V, +T_} - B,

which gives the desired bound.
We now turn to the construction of ¢: Recall h(z,§) = ap ()& = (A(2)E, ), where
A(x) = (ag(x)) and that

Hth - Z a&jh<x7 g)aac]gb - aacjh<x7 g)aﬁjqb

For M large to be chosen, let v € C*®(R), ¢ = 0 for t < M? (t) =1 for t > (M + 1)
' > 0. Let

(@, €) = (&) (2 Hy(|zl*) = —4(&) " (|2]*){A(2)¢, )
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By calculation, we have

Hugr =(€) ™' (|« ) Hn|f?)?
46 () [SIA@IER +8 D" 20, aum(@)azn()eon

Jk,lm

Y map@)an( >5’“§g"fp

7.k, lm.p

Because of our assumptions on A(z), one can fix M sufficiently large so that

[
(€

Next we will use the following fact about the non-trapping condition, in the presence of

Hyqy > cp(|2) = z,£ e R”

asymptotic flatness:

Lemma 5.3. Let K C R" x R"\{0} be a compact set. Then, given pn > 0, 3 sg = so(K, 1)
such that | X (s;xo, )| = p, ¥V [s| = [so], V (20,&0) € K.

Now choose ¢1 € C§°(R™), ¢1 =1 on |z] < M + 1. For £ # 0, let

— _/OOO O1(X (s52,8))(Z(s;x,€)) ds

Note that by the lemma, for each (z¢,&) € R™ x R"\{0}, there is a neighborhood U of
(x0,&) € R™ x R"\{0}, such that V(x,&) € U, the integral defining ¢ is taken over a fixed
compact interval of s, and hence ¢y is smooth. Furthermore, by homogeneity of the flow,

and a change of variables,

(o) = €7 [T X s € ) ds

Choose now ¢p € C®(R"), ¢ = 0 for [£] < 1, ¢ = 1 for || > 2. Let g3(x,&) =
¢1(2)P2(§)q2(, §), for (z,§) € R™. Then g3 € 59, and

Hpgs(x,§) = [ > aji(@)&0n, b1 (2 )] $2(&)a2(, €)
+ 1 (2) Huo () ga(, ) + dr(2)*ha(€)(€)
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We now let ¢(x,€) = Nqi(2, &) + gs(, &), for N large. Then [090/q(x, &) < Capla) (€)™,
and Hpq(x,&) > €| — d, V x,& € R™. This finishes the proof of Doi’s Lemma.

Finally, we turn to the general case, i.e.

O = —eN>u + iay,(x, )02, u+ iby(z, )02 U+ bi(x,t) - Vu+ bo(x,t) - Vi

T|Tp LT
+ i (x, t)hu + co(z, t)u + f(x,t)
u‘t:O = Yo

where the ay; are real valued, and all the other coefficients may be complex. Our assumptions

are:
(H1q) Ellipticity. There exists v > 0, so that aj(x, 00§ — [bik(z, 0)&E| > v[€]%. (Thus,
a(,0)§&, > /€)%, and

Wz, €) = /[am(z,0)§]% — b (2, 0)&E[?

verifies h(z, &) > v|€[?).
(Ha41) Regularity. ag, by, l;l, 52, c1, g, verify (Hay).
(Hs 1) Asymptotic flatness. Both ay, by verify the “asymptotic flatness” assumption (Hs)).

(Hygq) Growth of the 1st order coefficients.

C C
0,01 (2, )] < @)? |02 (2, )] < @)y
Cl T Cl
b1(2,0)] < )2 |ba(,0)] < @2

(Hs ) Approximate non-trapping. The function h(z,§), defined in (H;g), which is real

valued, homogeneous of degree 2, and elliptic, is “approximately non-trapping”, i.e. we
can write h(z,§&) = a(x,&) + nay(z, &), 0 < n < ny, where a(z,§) is real, homogeneous of
degree 2, with d%a(x,£) € CHYR"™ x R"), |3] < N(n), with norm bounded by Cj, and
a(z, &) € CVN(R™ x R"\{|¢| < 1}), with norm bounded by C;, and with a; verifying similar

properties and estimates, and in addition

2
lay (7, €)] + |Vaai(z,€)| < 01%
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and the Hamiltonian flow H,, is non-trapping for each (x¢,&p), {o # 0, where 7 is small
enough, depending only on 7, C;, and the non-trapping character of a (in terms of the
bounds in the analog of Doi’s lemma for H,)

We then have:

Theorem 5.4. There exist N = N(n), Ty > 0, with Ty depending on C, Cy, (Hs 4) and
A >0, depending only on ,Cy and (Hs z), so that, for any T € [0,Tp], € € [0, 1], we have,

T 1/2
sup u(®)] 22 + ( [/ <x>-2|J1/2u|2dxdt)
o<t<T 0

[uollz> + [ fllzy.2

for any solution u

l|uol| L2 + \|J_1/2f|\L2(<x>2dxdt)

The explicit dependence on (Hs g ) is through the constants in Doi’s Lemma for H,. Next

time we will sketch the proof of Theorem 5.4.

Problems for Lecture 5

Problem 5.1. Prove the commutator estimate

17°(fg9) = [ TPgllre < Cllgllree | T° | 22

for 0 < s < 1.

Problem 5.2. Formulate the analog of Theorem 4.3, with data in H*, s > 0. Carry out
the proof, also showing that the interval of existence can be taken to be independent of s,
for s > 0.

Problem 5.3. Verify Remark 5.1, 5.2.

Problem 5.4. Check that Doi’s Lemma still works for h(z,§) real valued, elliptic, ho-
mogeneous of degree 2 in &, with 9%h(z, &) € CHH(R™ x R"), |a] < N(n), and aﬁﬁgh €
CNM(R™ x R™\[£] < 1). In fact, show then that if H}, is non-trapping, and § € C=, § =0
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for [£] < 1,0 =1 for || > 2, we can construct p € S° so that

Blg 1
Hypp > 2050 _ =
Oh = (x)y? B

(We also need to assume that h is “asymptotically flat”.)
Problem 5.5. Prove that if n =1, (H;,;) — (H4;) imply (Hs,).

53






LECTURE 6

The quasilinear Schrodinger equation

We first start out by sketching the new ideas that are needed for the proof of Theorem 5.4,
and at the same time explain the ellipticity condition (H; g ). The key extra ingredient is a
“symmetrization argument” analogous to the one introduced by A.P. Calderén in his work

on symmetrizable hyperbolic systems [Cal60]. We first write our equation as a system in

= w. This now becomes

U
OuB = —eA2 T4 + (iHy + B+ C)i + f
W,y = o
L Lp _
where now Hy = , where Lp = by(z,1)02, ., L5 = bu(z,1)07, . The first
Ly L

step is to diagonalize Hy. It is in this step that the ellipticity hypothesis (H;q) appears.
The symbol of Hj is the matrix

—ap (2, 0)&&  —bu(x, 1)&&
bia(z,0)&&  an(z, §)E&

M =

whose eigenvalues are the roots of (A + ay.(z,1)&&) (N — am(x, £)Ex&) + |br(z, 1)E:&|* or
A — a2, )6:8]7 + |bru(z, )6&1° = 0, ie. the eigenvalues are Ai(z,t,§) = +h(w,t,¢),

which explains our ellipticity hypothesis, since A\, (z,¢,&) > ~v|¢[?, and Ay is real valued,
55
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homogeneous of degree 2. A computation shows that, if we define

1 bri(x, )&k A+ a(z, 1)ExE

S=_—n
YEP\ —N, — ap (2, )& —bu(x,t)&&

then we have

2 a .
Note also that det S = %, and since Ay > v|€|?, an(z,t)E:& > v[€]?, one has det S >

4. Moreover, S is homogeneous of degree 0, and thus defines a Oth order invertible YDO.
(We must multiply S by 0g(§), R large, but this is a technical detail). We then rewrite our

system in 2'= S, which now gives

where Fj is of order 3. The strengthened decay assumptions (Hs o) guarantee that the entries
of B (the order 1 part) still have decay. Moreover, A, is real valued, elliptic, homogeneous
of degree 2, but now pseudo-differential, but the proof proceeds exactly as before, using the
analog of Doi’s lemma for pseudo-differential operators h. (This was actually carried out by

Chihara [Chi02b].) The proof then proceeds as before.
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We now finish the course by turning to the application to quasi-linear problems. We are

thus going to study equations of the form

¢

. . _ —\ A2
Owu = ia (v, t;u, U, Vyu, Vou)d;,, u

+ iblk(l’, ta u, ﬁ, kuv vl’a)aglmka
+ b (x,t;u, 0, Vyou, Vi) - Vau
(6.1) (QLCP) + bo(, tyu, G, Vou, Vi) - Vail zeR” te[0,T]

+ oz, tu, w)u + co(x, t;u, w)u

+ f(z,t)

\ u}t:O = Yo

We saw already that when a;, = A, by, =0, 51 =0, 52 =0, f =0, this is locally well-posed
in H*(R"), s > n/2, and that when a; = A, by = 0, b; are independent of (x,t), and
b; = O(|u)?), we have local well-posedness in H*(R™), s large, and when b; = O(|u|), we
have local well-posedness in H*(R™) N L?(|z|*"dx), s large, N large, by Picard iteration, and
thus, the flow map is real analytic. We also saw that (Molinet-Saut-Tzvetkov [MSTO01]) for
n =1, Ou = i0?u + ud,u, the flow map is not C? for any H*, and hence we cannot have
solvability by Picard iteration. We also have seen that for b; = 0, 52 =0, =c =0,
and ay; elliptic, independent of ¢, u, @, Vyu, Vi, and b; = b, (x) € C§°, the “non-trapping”
condition is “necessary” (Ichinose [Ich84]). Moreover, Doi proved its necessity for the “local
smoothing” effect [Doi00]. In the context of non-linear problems, its relevance can be seen,
because, one of the worst forms of its failure, i.e. periodic orbits, yields ill-posedness. In fact,
Chihara [Chi02a] has shown that for semi-linear problems
Ayu = iAu+ div G(u)
rzeT" te]0,T]
u’ g = Uo

where G % 0, and G= (Gy,...,G,), G; holomorphic, we have ill-posedness in any Sobolev
space H*(T").
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The first general results on quasilinear problems were obtained in n = 1. In this case

(QLCP) takes the form

[ Oyu = ia(x, t;u, @, Vau, Vai)0*u

+ib(x, tu, U, Veu, V1) 021

+ by (z, t;u, u, Vyou, V,u)0pu

+ bo(x, t;u, @, Vyu, V)0t reR, te|0,T]
+ 1 (z, tu, w)u + co(w, t; u, u)a

+ f(z,t)

\ u’t:() = Uo

For coefficients independent of (z,t), such problems were studied by Poppenberg [Pop01],
who showed that, under ellipticity: (H1). a is real valued, and for |(z1, 29, 23, 24)| < R, there
exists A(R) > 0 such that

G(Zl, 22, 23724) - ’b(217227z37z4)‘ Z )\<R)

and if %(0,0,0,0) = %(0,0,0,0) = 0, and by, by vanish quadratically at (0,0,0,0), then
the above problem is locally well-posed in H*(R) = Ny>oH*(R), using the Nash-Moser
iteration scheme. In [LP02], Lim and Ponce showed, in the (x,t) dependent setting, that,
under Poppenberg’s hypothesis, one has local well-posedness in H*°(R), sq large, and if by,

by vanish linearly or % # 0, or % # 0, this holds in H*(R) N L*(|z|™dz). To clarify the

ellipticity condition (H1), note that when b = 0, this is the usual condition, and in general

it says that 9*u “dominates” 9%u. This is certainly needed. For example, the problem

g

is the backward heat equation in disguise, and hence, it is ill-posed on any Sobolev space.
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We now turn to our positive results on (QLCP), for n > 1. The coefficients a;, are real
valued, all others may be complex valued. We let Z' = (z1, 22, 21, 25) = (u, 4, V,u, V@), Our
assumptions are
(H1) Ellipticity. Given R > 0, there exist yg > 0 such that (ay(z, 0; 2)&, &) —| (b (x, 0; 2)€, &) | >
vrl€|?, for all £ € R™, |Z] < R.
(H2) Regularity. For any N € N, R > 0, the coefficients a, by, 51, 52, c1, 2 € CN(R™ x
x |Z] < R).
(H3) Asymptotic flatness. There exists C' > 0 such that ¥ (v,) € R" x R, |0, an(z,t;0)| +
|Dyaur(z,t;0)] + |0z, Or, (2, t; :0)] + 010 aur(, t; 0)] <7 2, and similarly for by..
(H4) Growth of the first order coefficients. There exists C, C; > 0 such that, for (z,t) €
R™ x R,

B2, 0:0)] < 5—;2
O (4,0 < %

(H5) Approximate non-trapping. Fix an initial data ug € H"(R"), r > £ +2, r large. Define

hl (33', f) = Qg (.%, 07 Ug, 17/07 V:ru()a vxﬁ0>£l£k
h2($7 é) = blk(xa 07 Ug, ﬁ/O? Vm”Oa vxIaO)glgk
)= h(,€) — |hf2(x, )

Note that by (H1), h(z,€) > v|€|%, v = Y(||uol|z-) and that h is positive, homogeneous

of degree 2. Suppose that there exists 0 < n < 1 such that h(z,€) = a(x,§) + nay(z,§),
where a(z, £) is real, homogeneous of degree 2, with d%a(x,¢) € CLHR™ x R"), |3] < N(n),

a(z, &) € CNM(R™ x R™\{|¢| < 1}), where N(n) is as in Theorem 5.4, with a; verifying

CleP

similar estimates, and |ai(z,§)| + [Vear(2,8)| < =5,

and the Hamiltonian H, is non-
trapping, and 1 < 19, where 7y is as in Theorem 5.4.

Then we have

Theorem 6.2. Under (H1) — (Hb), given ug € H*(R"), (x)?0%uy € L*(R"), |a| < s,
and [ € L>®(R; H*(R")), (2)?02f € L®(R;L*(R")), |a| < s1, where s1 > 2+ 7, s >
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max{s; +4, N(n) +n+ 3}, where N = N(n) is as in Theorem 5.4, then there exists Ty > 0,
depending only on (H1) — (Hb), and on

A = [luol

et Y @05 uolle + Lf (Dlleems + Y I10)°05 fllugess

| <s1 | <s1

so that (QLCP) is locally well-posed in (0,Ty), in the obvious space.
Before sketching the proof of the theorem, we will make some remarks.

Remark 6.3. When n = 1, it is not difficult to show that ellipticity implies non-trapping,
and hence (H5) is not needed.

Remark 6.4. Forn > 1,if hg(z,§) = \/(alk(x7 0;0)&6)2 — |bu(, 0; 0)&,E|? is non-trapping,
then we obtain local well-posedness for small data, since (H5) is automatic. This holds for

instance, if hg(z, §) = hg(§) is independent of x.

Remark 6.5. The proof actually gives the “local-smoothing” estimate for the solution,

namely J5T2u € LA(R" x [0, Ty], (x)~2 dzdt)
Remark 6.6. () can be replaced by (z)'*¢, e > 0.

Remark 6.7 (Koch-Tataru [KT]). The solution map is not C?, and hence the result cannot
be proved by Picard iteration.

The key step in the proof is the a prior: linear estimate, provided by Theorem 5.4. Let
us now sketch the proof of the theorem, when s and s; are assumed to be even integers,
f=0,5>%+7, 5> max{s; +4,N(n)+n+3}. We first consider the non-linear parabolic
IVP

Ou = —eA*u + L(u)u
(IVP), e€(0,1)
u(z,0) = up(x)



LECTURE 6. THE QUASILINEAR SCHRODINGER EQUATION 61
where
L(u)(v) = iay(x, t;u, 0, Vou, V,u)02 v

o
+ iby(x, t; u, w, Vau, Vxﬂ)ﬁilxk@
+ gl(x, tyu, u, Vyu, Vi) Vo
+ gg(l’, tyu, u, Vyu, V)V
+ c1(x, tyu, w)v + co(z, t;u, w)o
Let A = JJuol| = [uol
My > 0,
Xrme ={v:R"x[0,T] = C, ve C([0,T]; H°), (z)*0%v € C([0,T], L?),

He D < |{z)20%uy|| 2, where s > s;. We also consider, for T' > 0,

o < 51, 0(0) = vo, [Jvflr < Mo }
where ||v]lr = supg,er [|[v(—,t)[|. One then uses standard parabolic theory, using Picard
iteration, to show: If [Jugf] < 222, 3 T. = O(e), and a unique solution v* to (IVP), in X7, a,-

We in fact consider the integral equation version of (IVP)., namely
t
o(t) = e~y +/ e~ AL (y)o) dit!
0

and define .
[(w)(t) = e~ v, +/ e~ AL (w)w] dit’
We then show that for appropriate T, = 0(63, I' is a contraction on X, p7,. For this one
only needs to use the estimate ||[Ae=2g][;2 < <=7z l9ll 22, and to deal with the weights,
the identities
2, AT (w) = A?(z,Tw) — 2A0,, T'w

w = a0, (W) — 2a5,0,,w

2
x’f‘alk)a 1Tk

vk
:prgl Vw=b - V(z,w) — by ,w
2yby - Vo = byV (T,0) — by,
T. = O(e) depends on My, (H1) — (H4). We next fix My = 204\, where A is the constant
in Theorem 5.4, for linear operators satisfying (Hj g) — (Hs ), with a fixed C; and a fixed
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“non-trapping” character, which will depend only on ug, s, s;, (H1) — (H5). With such
choices made, we will next show that there exist 7' > 0, independent of ¢, and a solution to
(IVP). in (0,7), such that ||u||z is uniformly bounded for e € (0,1). The key claim is the

following;:

Claim 6.8. If u. is a solution to (IVP),, then in an interval (0, T), and for which ||u||r < Mo,
we have that there exists T € (0,T), independent of €, so that, for a fixed increasing function

R, which depends only on (H1) — (H4), s, s1, n, we have
(6.9) lullz < AN+ TR(Mo)]

Assume (6.9), and choose T in addition, so small that A[X + TR(M,)] < Mo = 5AN
Then, we can apply the existence theorem for (IVP) in the interval (0,7.), and reapply it
in [T, 2T,], since [|u(T,)[] < Mo < Mo We then get [Ju*(27:)|| < 22, and we can continue
k times as long as kT, < T. We then obtain a solution u¢, with [Ju|l; < |Jullkr 7. < Mo,
where k is such that kT, < T < (k+ 1)T..

In order to establish (6.9), we first show that if ||u‘||l; < My = 20A\, the coefficients of
the linear equations verified by J?™u = (I — A)™u, 2m = s, and |z|?J?*™u, 2m; = s, can
be written so that the constants C,~ appearing in (H; 51) — (Hs ) depend only on wy, s, s1,
n, (H1) — (H5) (and hence determine A), and the constants C' in (Hy ) — (Hs4), and the
“right-hand sides” f, depend only on My, (H1) — (H5), s, s1, n. In order to show this, we

first make a

Remark 6.10. There exists an increasing function ) depending only on the coefficients,

such that, if w € Xpp,, T > 0, is a solution to (IVP),,

sup Z ()05 Oyw|| 2 < Q(Mo)
[0.7] || <s1—4

This is clear because dyw = —eA?w + L(w)w. We now write the equation obtained after

applying J*™ to the equation in (IVP),, after some calculations: (2m = s)

0 JJ* "y = —e A2y + @'Egm(u)ﬁmu + fom(z, t; (8fu)|5‘§2m_1; (aﬁa)mgm_l)
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where

Lom(w)v =iay(x, t;u, @, Vyu, Vou)02 v

T T

+ ibye (0, t; u, @, Vau, Vai)02 | 0

T T

+ bom,1,5 (7, 15 (05 1) |aj<2, (05 U)|aj<2) ROy, v

+ bom,2,i (7, 15 (05 1) |aj<2; (05 1) |a<2) ROy, 0

J
+ c1om(z, 5 (80u) 15<3, (010) 151<3) Rom,1 v

+ Coom(z, 5 (B0u) 15<3, (B10) 15<3) Rom 2T

where R, Rj, Rom1, Romo are fixed Oth order WDO. The principal part of Lo, (u) is in-
dependent of m. The coefficients bop, 15, bam,2,; depend on m as a multiplicative constant,
and on the original coefficients ay, by, l;l, 52, and their first derivatives. They verify the
asymptotic flatness, and the required decay property in (Hsg), (Hyg) by inspection, using
the remark, and (H1) — (H4).

It is then clear that Lo, (u) verifies the desired property. Moreover, since ||uf|z < M,

it is easy to show that

Sup || fam (2, t; (924) | 51<2m 1, (020) 1g1<am—1) || 22 < P(Mo)
o<t<T

for some fixed increasing function P of M. Moreover, z;J?™u verifies similar equations.
One can then apply the first estimate in Theorem 5.4, to obtain (6.9). Once a solution to
(IVP). is constructed in (O,T ) with [|uf||l7 < My, Mo, T independent of €, by considering
the equation verified by u¢ —u¢, and using similar arguments, we obtain the existence of the
limit as € — 0, and its uniqueness in C'([0,T]; H*~") N {u : (z)20%u € C([0,T], L?)}. The
solution u, in addition, belongs to L>([0,T], H*). To show that u € C([0,T]; H*) and the

continuous dependence, one uses the “Bona-Smith regularization” argument.
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Problems for Lecture 6

Problem 6.1. Carry out in detail the proof of Theorem 5.4. The key idea is to introduce the
symmetrizer S as in Lecture 6, and then to look at the system verified by ﬁl = WgWy, 0,
By = Wy, @, where Oop = 1 — dor, dor € C°, supp o C { [€] < 4R }, ¢op = 1 on
{ |¢] < 2R }. One chooses R large, and uses the fact that if T = 0z(£)S™!, VWU, 10 =
o, W + L_1Wg,, W, where L_; is of order —1, with S° seminorms for its symbol small as
R — +o00. Thus, I + L_; is invertible, with inverse N a Oth order YDO. We have also

NV gy, 0 = Wy, 0. We also use Problem 5.4.

Problem 6.2. Show that (H, ) in Theorem 5.4 can be replaced by

(Hy ) [0 by (2, 1)] < 7S5, [Tm by (,0)] < &, and

CleP
2

O, €62, 06| < 5

and

1€*
(z)?

Problem 6.3. Formulate and prove variants of Theorems 4.3, 5.4, where the asymptotic

I (b1, (2, 0)€Exiba (2, 0)6)| < C

flatness and decay of first order term conditions are of the type used in Theorem 3.11 (2).

Problem 6.4. Verify the details of the proof of the Theorem in Lecture 6. Verify that
Remark 6.5 holds.

Problem 6.5. Use Problem 6.3 above to prove that, when %akl(x, 0;0,...,0) =0, %bkl(x, 0;...,0)=

0 and 51, b, vanish quadratically at zZ = 0, the analog of the Theorem in Lecture 6 holds,

without the use of weighted Sobolev spaces.



LECTURE 7

Solutions to selected problems (An appendix by Justin
Holmer)

7.1. Solutions to Lecture 1 problems

Problem 1a.

1/2 1/2
Jull~ < c [ lae |d§<c(/|u 1+|5|28d5) (/<1+|§|>-28ds)

Problem 1b. We shall show that (where Dsf F(6) = |EI5F(€))

I1D*(f9)llc2 < Cllflaellgll e

Let F and G be defined by F(&) = |f(£)|, G(€) = |§(€)|- Note that

[Pl = (/ (L lel I (’5)'2%) " ( Jax |§|)25|f(€)|2d€) "

65
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9 1/2
df)

) 1/2
2s r A
g(/5 € /“1+€2F<51)G<52>d51d52 df)

by (1a), and similarly for G. By Plancherel,

1D*(f)llz2 = ( /5 B /5 | i) da

9 1/2
< LGP P&)G(&) dé dsy| de
/f /?a%*éﬁ
9 1/2
+ L F&)|&)PG (&) dé gy | dE
/f é%ééﬁ

<||D°F - G|z + || F - D°G| 2

S D Fll2(|Gllzee + [ Fll oo [ D°G | 2

Problem 1c. First, consider the case s = k an integer. The chain rule is (for o a nonzero
multiindex, |a| < k, and ag, ... o; multi-indices)
)= S CafO WM u--- 0%
al+-toj=a
1<j<k

Then
0°fW)ll2 < Y Carglf P W)l 10w - 0% 2

al+-taj=a

1<j<k

We then use that
1f9 (W)l e < Rj(fJul| o)

where

R;(r) = sup | f9(y)|

ly|<r

and also derive a mulitilinear generalization of the estimate in (1b):

0% uy -+ - 0% |2 < Cllual|gn - - - |Jwg || e
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This gives that

k
|6°F(w)llze < Y CiRi(lull ) lullj =: R(lullme)

j=1

where R(r) is an increasing function with R(0) = 0. Also,

[ (w)l[z2 < CRo([[ula)

Note that Ry(0) = 0 since f(0) = 0. To handle the case of fractional s, use the Leibniz
rule and chain rule for fractional derivatives. The following 1-D statements appear in the

appendix of [KPV93b].

Theorem 7.1 (Leibniz rule 1). Leto € (0,1), 01,05 € [0,0] witho = o1+05. Let p,p1,ps €

(1,00) be such that
_ = — + J—
p P P2
Then

1D°(fg) = fD%g = gD? fllr < cl[ D fll o | D7 g | Lr2
Theorem 7.2 (Leibniz rule 2). Let o € (0,1) and p € (1,00). Then
1D7(fg) — fD%g = gD fll, < cliglloc[I D fll,

Theorem 7.3 (Chain rule 1). Let o € (0,1) and p,p1,p2 € (1,00), such that
1 1 1

b P1 D2
Then

1D E(f)|e < cllF' () Lo | D7 f | e
Theorem 7.4 (Chain rule 2). Ifp € (1,00), r > 1, and h € L}’ (R). Then

ID7F(f)Rllp < el F' ()l 1D (F) M (BP) 7],

where M s the Hardy-Littlewood maximal operator.
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Problem 2. I will give an elaboration of the Bona-Smith method, which appears as Step 4

in the notes, however I will instead work with the equation
oyu = i@gu + u0,u

in order to underscore the wide range of applicability of the method. First, we apply 9% for

k> 3:
(7.5) 0,(0%u) = i0%(0Fu) + ud¥+'u + lower order terms

(we shall drop the lower order terms in the remainder of the exposition). Pairing with 9%,

integrating in x, and taking the real part gives

(7.6) 8t/\8§u]2 = 2Re i/u@f“‘@ = —Re z/@mu (OFu)?

If [[ug|[ g+ < R, we can integrate in time to obtain 7' = T'(R) > 0 for which sup 7y [|[u(t)[| g+ <
2||ugl| g+ is a priori bounded. Thus existence and uniqueness of a solution on [0,7] for
this equation follows by the techniques of Step 1-3 in Lecture 1. Now we use the Bona-
Smith method to show that the “data to solution” map is continuous as a map from H* to
C([0,T]; H*). Set ud = s * ug, where ¢ € S(R"), [¢ =1, [2%p(x)dx = 0 for |a| # 0.
(Get ¢ by taking p(£) = 1 on [£] < 1, ¢(£) = 0 on |¢] > 2.) Then let u® be the solution
corresponding to ug.

Step A. For [ > 0, supyg gy [[u’(t)||gs+1 < 2R67'. This is obtained from (7.5), (7.6) with &
replaced by k + [ and also noting that ||ud]| e+t < 67 uol| -

Step B. supyg 1 (w0 —w)(#)||z2 < 2l|ud — uol|z2 < §%h(0), where h(§) — 0 and |h(5)| < R.

From the equation,
O (u — u) = i0*(u’ — u) + i’ 0,u’ — iud,u
_:92(,6 6 5, P
=105 (v’ —u) +i(u’ —u)0,u’ + iud,(u® — u)
Pair with u® — u, integrate in x, take the real part, integrate in time to obtain:

I(u® = w)(O)IZz < llug — wollze + 10 5L + 10sull e oo )l — ulle 12
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and integration by parts. Thus, by suitable choice of T'= T(R) > 0,
1w —w) ()22 < 2[lug — uoll 22

Now observe

|£(6€) — 1] < 0[¢] sup [(Dep) (n)]
[0.5¢]

However, because 0:p(0) = 0, we also have
[9ep(n)] < 81€] sup |9z ()]
[0,5¢]
Continuing, we have V integer k,

|(3€) — 1] < 0%|¢]* sup [(9£2) ()]
0.¢]

and thus

1/2

1/2
</\¢(5£) -1 \ﬁo(ﬁ)\zdf) < 6" (/sup !5§¢(n)\2!§\2klﬁo(£)!2dé)
£ 10,6¢]

(. S

0

with lims_o 2(6) = 0 by dominated convergence.

69

where, to estimate the last nonlinear term, we used that 0, (u® — u) (u® — u) = 39, (u® — u)?

Step C. For r < k, supj g (w0 —u) ()| g < R%é’“"h(&)%. This follows from Step B by

interpolation:
k—r r
lu® =l < Ju’ = ull £ [’ = ull
Step D. supjyp l(u —w) ()|l e < 2||ud — uol|gx- By (7.5) for u and u°,

0,08 (u — u) = i0%0" (v’ — w) + " — iudt

= i020% (u® — ) +i(u’ — )P a + iud T (U — u)
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and thus

105 (u® —w)(B)]|72 < 1105 (ug — uo)||72
+ T’ — ull o2 105 0l || oo oo 105 (0 — )| oo 2

+ Tl 00l L 195 (u” = w)lIZ

We further estimate the first nonlinear piece using Step A and C (with » = 0 in this case)

to obtain
105 (u® = w) ()|l 2 < 2|0k (ug — wo) 2 + TRS*h(d)

Step E. If both [Ju|z» < R and [Jugo||x < R, then supyg 7 [[(u) — ud)(t)||gr < 2[jurg —
Uso || g+, where T'= T'(R). This follows by the above techniques.

We can now complete the argument. Let ¢ > 0, and suppose ujo and ugy are such that
|utol|gr < R, |Jugol|ge < R and |luig — ugol[gx < 5. Then obtain 6 = (w19, uzo) such that
Jufy — wiol| g+ < 55 and |[ugy — ugo | g+ < 5. Let T = T(R) (independent of 6) be such that

the claims in Steps A-E hold; then the results of Steps A-E give that

sup [|(u' — u)(t)][rx < €
[0,7]

Problem 3. The following proof seems only to apply to k& > 5 + 2. In the presentation, I

shall restrict to the case s = k integer and to n = 1 (1-D), and to monomial nonlinearity, i.e.
F(u, @, 0,u) = u*a” (0,u)"
Then the equation takes the form

Oopu = i0%u + u*u’ (0,u)”
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Apply 0%, k > 3, and separate terms in the Leibniz expansion of F
k—1
0,(0ku) = i02(05u) + > C;08 (u*u®)d%(0,1)" + u®u’ 0} (D,1)
j=0
k—1
= i02(0%u) + Y C;0E T [(a = Du ™ (O,u)a” + (8 — Duta’ (0,1)]0(0,1)

5=0
+ ua’ 0% (0,u)

(7.7) = i02(0Fu) + 1+ 11

We further separate term II as:

I =quea’(@u) " o a+uen’ Y G (0,u) 0k a0

v>2
21,5021

=1I; + 11,

Pair (7.7) with 0%u, integrate, and take the real part. For term I

k-1

> CjRe/ag’jlj[(a — Du Y 0u)d® + (8 — Dua’~10,u)0% (9,u) 0w

=0
< Clloy " (a — Dut " (Qpu)a” + (8 — Dua’0,w0)(0,u) || 2|0y | 2
< O(|luH (o) | s + [u @ (0wl 1) | (D) || gy
and use that H*~! is an algebra. For term II;,
Re / yua® (9,u) oM ok u

Use that 9%+t udku = 30,(0Fu)?, and integrate by parts. For term I,

Re/ Z wu (9,u) I g - 2 adka

v>2
.71>1 ]V>1
j1+"'+]u:k3

<D Mt (ea) | 02 - 02 | 2 | O 2
<D lut@d (@) | |02 ()] - - - [02 ;)] 2 | D%l 2
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Since (j1 — 1)+ -+ (j, — 1) =k —v < k — 2, use that H*~2 is an algebra.

Problem 4a. (Taken from [Ste93]). Use that ||T*|| = ||T|| to show that | T*T| = ||T||*
This shows that, for B self-adjoint, ||B?|| = || B||?, and we can thus deduce (by induction for
m = 2% then an interpolation-type argument for arbitrary m) that

|17 T || = |7

m copies

Now let T' = Z;V:_N T;, and note that

T T T = Y T, T T,
m copies JiseeesJm
klv"' 7k'm

Grouping terms as (77 Ty, ) - - - (15 Tx,, ),

1
T3 Ty -+ 5 T | < 70 = K1)+ (i — bom)”

Grouping terms as 77 (T, T7,) - (Th,,_, T; ) Tk,

m—1
|75, T, -+~ T, T |l < A(0)y (ki = G2) -+ Y (K1 = i) *7(0)
and taking the geometric mean
|75 T, -+ 15 Ty | < ¥(0)7 (1 = Ka)y(ky = j2) - - Y(Km—1 = i) V(G — Fim)
Thus

TP < Z Y(0)y(r = k) (k1 = g2) -+ (k1 = i)Y (G — km) < (2N + 1)7(0) 4>

which gives

2m—1

IT|| < [(2N + 1)7(0)] 25 A%

Letting m — oo, we get

17| < A
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Problem 4b. (Taken from [Ste93]). By Plancherel, it suffices to prove L? boundedness of

the operator defined by
Tf(a) = [ e*Sale, 7€) de
3

Let ¢(x) be a smooth function supported in @y = { z € R” ‘ |z;| < 1,57 =1,...,n } such
that, for each =z,

Y br—i)=1

iczn
To construct such a ¢, take a ¢o(x) such that ¢o(x) = 1 on %QO with supp ¢o(x) C Q.
Then, for each x, >, ,» ¢o(x — i) is > 1 since integer translates of %QO cover R", and is a
finite sum with < 3™ terms for each x. Set

do(z)
Zz’eZ" (bO (x - Z)

ol) =
Let

Ty (2) = élo — ) /£ TG — f)ale,€) F(€) dE
The adjoint T}, is

T3(6) = o6 3) [ ola — e Salw, (o) do
Thus,
T,75,0(@) = [ K)oy

where

K(.y) = /5 DG S(E — AE — 7)oy — ¥ alz, €)aly,E) de
By integration by parts,
Cn(1+ |z —y)) No(x —i)ply —i) if [j—j<1

0 if |j — '] > 2

K (2, y)] <

and hence

K (2,y)] < Cn(L+ i = )TN+ | = 5V o(z — i)oly — i)



74 C. E. KENIG, QUASILINEAR SCHRODINGER EQUATION
We thus have

1T T flle < CQAJi = DTN+ 15 = 5DVl ze

A similar calculation shows that
1T T flle < O+ i =i )N+ 15— 5" DN flle2

We then apply Cotlar-Stein.

Problem 5. (Taken from [Ste93]). Note: Actually, to give the following formulas meaning
as absolutely convergent integrals and to carry out the following computation rigorously,
we need to truncate the symbols a(z,§), b(x, &) by replacing them with v(ex, e)a(z, ) and
v(ex, €§)b(x, &) where v(0,0) = 1 and v € C{°(R" x R™). The estimate that we will obtain
will be independent of € and then we can pass to the limit ¢ — 0 at the end.

First assume that b(x, ) has compact z-support. We have

T/ (y) = /5 by, ) F(€) de

and therefore

Tof(n) = / /5 by, €) F(€) de dy = /g b — €.6)/(€) de
Also
T,Tyf (x) = / = a(z, m)Tof (n) dn

n

Substituting, we get

T.Tyf(z) = /5 e / e a(z,m)b(n — &,&) dn | f(€)dé
77 2

(.

~
call this ¢(z,&)

We have
c(z, &) :/ewna(%@rn)f;(n,&) dn
n
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Now use the Taylor expansion for a(x, & + n) around a(x, §):

(e tn)= Y e OL + Ryl &n)

] <N -1
and thus
_i\lal . , N
c(x, &)= Y 3?@(16,6)< 3 /(in)“b(n,ﬁ) dn+/e’””RN(x,£,?7)b(77,€) dn

la|<N-1

iyl . A
p3 (ci)' a?a(x’f)agb(%@+/€Z$'"RN($,§,n)b(n,€)dn

la|<N-1

For the remainder, we have the estimate

1
< (63 t N
|Rn(z,&,m)] < =] lo%]voggl |0ga(x, &+ tn)]|n]

< Cy sup (1 + € +tn|)™ Nn|¥
0<t<1

en(L+ )™ N ml™ if €] > 2]n|
en|n™ if |€] < 2|n| at least if m; — N <0

By integration by parts, and the assumption that b(x, &) has compact x support,

b(n, €)1 < ear(L+ )™ (1 + |¢])™

and so

en(1+[g)™ =N (1 + g™ if [€] > 2[n|

e Ry (w, &, m)b(n, €) dn| <
/77 N cN(1+!£\)m2/ (L+[n)~Mdn if [¢] < 2|n]

Im|> 15!
To handle the non-compact case, we realize that it suffices to establish the formula in the
neighborhood of an arbitary, but fixed, point zo. Let p(x) =1 for |z —xo| < 1, and p(x) =0
for |z — x| > 2. Let b(x,&) = p(x)b(z,&) + (1 — p(x))b(z, &) = bi(x,§) + ba(z,£). We then
obtain symbols ¢ (x, &) such that T,, = T, o T, and T,, = T, o Tp,, where ¢i(x,§) has the

correct expansion and

er(a,€) = / / DO, ) (1 — p(y))b(y, £) dndy
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which, we shall show belongs to 5™, at least if |z — x| < 3. Suppose |z — zo| < 3.
ca(,€) = //6“”"(”)!1: — 7 AT alz, n)(1 — py))bly. €) dn dy

// DOy €)M AN a(z, )
(1= 8 [l =351~ pl))b(y.€)] dndly

Since |z — x| < 3, |y — o] = 5, |z —y[ <c(1+ |z —y[)™2

a1 < [ [ = 6PNt = gPy W )™ dndy < Cw1+ )

Problem 6. We are given symbols a;(z, &) such that |8§“8?aj(:v,§)| < Cop(€)mi=IPL Let
us treat only the 1D case to simplify notation. Replace C, g; with

Coa,p,j = sup  Cu g
0<a/ <o, 0< /<

Let p(§) = 1 for |[¢] > 2 and ¢(&) = 0 for |{] < 1. Fix a particular pair (a, 3). We shall
explain how to obtain an increasing sequence H; tending to oo such that, if R; > H; for

large 7, then a(z, &) defined by

0=50(£)ate0

satisfies

agagﬁ [&(l’,f) - ZCL([E, g)

Indeed, with this definition, we have

020, [a(x,s> —iaxm)] —ot |- (1 (Ré)) 9+ Y o () ome

J=0
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ot 5 o(§oino- 50l (9)

j=k+1 J j=k+1 =0

8;‘8?7”%- (x,€)

o (5)|eerormaee

Il
(]2
)=
—
QA @
N~
—
QZU|m
~

Q
~R

j=k+1 0=0
Let
N
By=) (0) sup €70 o (6)]
o=0
Then

< Y BsCasilO)™  Xiezr,

j=k+1

< Y ByCap Ry

j=k+1

020, Z ( )am £)

Jj=k+1

Thus we see it suffices to take H; such that
Caﬂ,jer'nj_mjﬂ < 277

Let (aq, 4;) be an enumeration of the pairs in ZQZO. For each [, obtain H; ; as above, with the
additional requirement that H;,, ; > H;;, V[, j. Then take the diagonal, i.e. set R; = Hj ;,

and define a(x, &) as above.

7.2. Solutions to Lecture 2 problems

Problems 1b. (Taken from [Ste93], p. 258-259)

i / / e, y,€) () dyde

- /y/q7 " e(x,y, ) f(y)dydn
- [ et [ [ de] dya
- /ge””‘f {//c(m,y,n)ei("g)'(xy) dydnl F(¢) dg
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Thus, we should set

(7.8) a(z, &) = / / c(x, y,n)e @) dydn

yJn

Assume first that ¢(x,y, ) has compact y-support. Then we have

a(r,§) = /em'"@(% n,m+ &) dn

n

where ¢(z,m,n + &) denotes the Fourier transform of ¢(z,y,n + &) in the y-variable. By

Taylor’s formula,

drnn+8= > 53??3(% 7,60 + Ry (2,1,)

la] <N -1

Plugging the first piece into (7.8), we get

/ Z é(a,m, Ondn = —Qaa (2,9,6)],_,

|| <N— 1 ¢ ! la|<N—-1

We next estimate the remainder:

[Bn (1,8 < 75— o > sup |0ge(x,n, &+ tn)|In|™

o= O<t<

ClpM (L + [n)=M (@ + )™= if [¢] = 2In|

ClnlN (L4 n))=™ if [£] < 2|n)|

for M large. Plugging this into (7.8) gives the desired estimate, completing the proof in
the case where c(x,y, &) has compact y-support. For the case where ¢(z,y, ) does not have

compact y-support, use the method explained in the solution to Problem 1.5.

Problem 2. (Taken from [Ste93], p. 259). We first compute V.

/\Iff dx_/f /ewfa(xg)()dxdg

Tigle) = / a0y g (y) dy

and so
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and therefore
Wig(x) = / / ey, E)g(y) dy dé
yJE

Set c(z,y,&) = a(y, &), and we get by (1b) that 3 a*(z, ) such that

;—lal
Cl*(.CC, )_ Z 78?8?@(1’7£> ESmiN

la|<N-1

Problem 3. (Taken from [Tay96]).

Step 1. Replace a(z, &) by (1+ |€])7™2a(z,€)(1 + |£])~™/? so that we may assume w.l.o.g.
that m = 0.

Step 2. Suppose Re a(z,§) > C. Set

b(x,&) = (Re a(x,€) — 3C)'/? € S°
Then
U, = 2(U, + U) - LCI+ E
where E has symbol in S™!, by the Kohn-Nirenberg calculus. This gives

[yul7 = Re (Pou, u) — 5C ullz + (Bu, u)

which gives
Re (¥ u,u) > %C’||u||2L2 — (Eu,u)

When then estimate

1 C
(Bu,u) < =|[|Eullz + ellullfz < —llullf-1 + ellullz:

Now we use an interpolation inequality to bound ||ul|%,_, in terms of a large constant times

|ul|3. and a small constant times |Jul|%,.

Problem 4a.

D;/Qeitaguo _ /eim§|§|1/2€—it§2a0(§) de
3
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Change variables to n = —¢&? (actually, we should consider £ > 0 and ¢ < 0 separately, but

the proof is written assuming £ > 0), to obtain
Di/2eit<’9§u0 — C/eitneiw(_n)1/2ﬁ0<<_7])1/2)(_77)_1/4 dT}
n

Apply the L? norm to both sides, and apply Plancherel in ¢. Then change variables back to
&= (=n)"2

Problem 4b. (The following solution is drawn from [KPV91a], where a more general
result appears as Theorem 4.1.) We will consider only the case n = 2, but the proof for

general n > 2 is similar. Divide the frequency space £ = (&, &) into four overlapping conical

regions: & > 3[¢], & < —LJ¢l, i =1,2.
Dgl/zu: // ‘6’l/Zeim&eimfze—it\fF{LO(51752)dgldgé
§1,62

It suffices to deduce the bound for each region separately. We shall consider only the case

& > 3/¢| (the other three are similar). Hence, we need to show that

1 D22 (2, )| £2(@x (—o0+00)) < €l[to]| 22

where
wlw1) //51,52 e et 7Zt|€|2|§‘1/2 o (&1, &2) d&rdés
&1>1¢
Make the change of variables (&1, &) — (£3+E2, &). The Jacobian is 2&;, so letting r = £2+£2,

we have
1/4

—itr T14/T— 52 ’L$2§2 2
w(z,t) / / e r—§2 Uo(\/1 — &5,&) do dr

Applying Plancherel in t,

el = |

2

) ) 1/4
/ 6zx2€2€m1\/r £ ,r—g (Q /r 62, 62) de
62

&2
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If Q= (01,01 +1) x (09,09 + 1), then

(2, 1) 172 (—ooto0))
2

o141 oo+1 1/4
_ / / / / iza€a i1/ — 52 - ( 52 , 52) d&s| dxo drdry
z1=01 Jr=0 Jzo=02 r—= 52
o1+1 7"1/4 2
< / / / iw1y/r— 52 to(y/7 — €2,&) | déydrdxy (by Plancherel in )
z1=01 Jr=0J & r—= 52

dfg dr (since r'/2 < 2|&| in this cone)

527 52)

/ro €2 |§1

= / / Qo (&1, &) €y déy (changing variables back)
§1,62

Problem 4c. First show

+oo
(7.9) / D% f(o Y| < C|flluee
t'=—o00

L

To prove this, multiply the expression by ug(z), integrate in z, apply Holder, and use Problem
(4a). Next show

+o0
(710) HDI/ ei(tft’)agf(r’ t/> dtl
t

'=—00

< COlflleees

L L?

To prove this, write

/ / {Dz / (=100 f )dt] g, ) dadt

zJt t/

:/ [/ DY "% f(x, 1) dt/} {/D;me—“a%g(x,t) dt| dx
T t/ t

apply Cauchy-Schwarz, and (7.9). By writing x o, (t') = 1 — 2X(=00,0)(t') + sgn (t = 1),

— 1
and using that sgn ¢/(7) = pv —, deduce the identity, (for g(z,t) = Z;VZI gj(x)h;(t), with
T
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g; € C5°, h; € Cg°, i.e. the tensor product space)

t
/ e =% g (2, ¢') dit!

+oo
- 1 1$£+t7)g<57 )d dr / i(t—t")02 dt’
i%ﬂ*//h . g dsdrt [Tt

—2/ =% g (2, ¢') dit!

(We assumed that g was in the tensor product space so that we could transfer the principal
value from the 7 integral to the £ integral, i.e. pull the lim._ g+ out of the £ integral by
dominated convergence). The above work handles the last two terms on the right-hand side

of this expression. To complete the proof, we show

/ / itr mg!ilf_i;) dcdr

This is done by first applying Plancherel in ¢ to obtain

[ [l s < | [0 o
L2 T

T — &2
K(z,7) = /66”657_562 d¢

We now explain how to show that |K(z,7)| < C (some details omitted). If 7 <0,

< Ol fllzae

LeeL?

Let

iz(—T1)1/2 5
(7.11) K(:C,T):/e ( )/51_£2d£
Use
28 1 1

11— 1-¢ 1+¢
which shows that (7.11) is a difference of two phase shifted sgn functions. If 7 > 0, then

izTl/2 5

For [¢] > 1 (use a smooth cut-off), use

(7.13) & !

1
1+ & £1+¢8y)
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Since the second piece is (away from 0) in L', when (7.13) is substituted into (7.12), it gives
the difference of a sgn function and another bounded function. We can now complete the
proof. By Minkowskii’s integral inequality and Plancherel in 7, (where ~represents Fourier

transform in ¢ variable only)

9 1/2 /2
d <C F(y, Qd) dy = C| fll 1112
([ T) [([iiwnrar) ™ a =i,

We now proceed to the n > 2 case. First show

(/K@—ymﬁ@nnw

(7.14) <Y 1 ll2(@ux(=s0ro0))

L2(R™) o

/ 13910/2671'15’Af(a;7 t/) dt’
t/

To show this, take ug € L*(R"), and compute

// DY2e WA f(x ) dt' ug(z) dx
x Jt

:/ f(z,t") D;/Zeitlﬁuo(x) dx dt/
x Jt

< N Fll22(Qax (o000 1 DY €™ g | 2@ x (—o0,400))

< 1l 22(@ax (—oo0rto0y ol 2
The next step is to show that if () is a dyadic cube,

(7.15)

/Dxei(t—t’)Af(x,t/) dt'
t/

<D Il (@ux (—ooroo)
) o

L2(Qx (—00,+00)
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To show this, let g(z,t) € L*(Q x (=00, +00)) and compute:

//{/ D, et =Af (g t) dt'} gz, t)dx dt
z Jt t
://D;ﬂe—ituf(x,t’) dt’ /Di«me—img(x,t) dt dx
x Jt t
/Di/Qe_“/Af(m,t') dt’ /D;/Qe_img(x,t) dt
¢ r2(rey 11/t

< N Fl22(@ax (—ortoo) D N91122(@ux (—o0rto0))

L2(R")

< A ll22(@ux (—oortoon |91 22(Qx (—o0,400))

Take the sup over all @ in (7.15). The remainder of the proof is taken from [KPV93al.
Again, we appeal to the fact

t
/ ei(t—t’)Af(x t/> dt'
+oo
= i el(@E+tT) f(€7 ) / i(t—t")A A
S //r €[2]>¢ T—¢P dedr o fle. £)df

—2/ A (g ) dt!

It remains to treat the term

it _ix-€ g £
//e e —T_‘azf(g,T)dde

o, 1) // iw€e mﬁgf ) de ar

u(z,t) Zua(x, t)

Let fo = fxq., and set

so that

We shall need the following lemma
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Lemma 7.16 ([KPV93al). If

_&
€l? =1

1/2
sup (/ IT(gerg)Ide) <ecr </ |g|2dw>
aEZ™ rQa TQB

with ¢ independent of r.

Th(¢) = h(€)

then ¥V r > 0,
1/2

For the proof, see [KPV93a]. By the triangle inequality and Plancherel in ¢,

1/2
sup (/ /|u(:c,t)\2dtdx)
a Qa Jt

) 1/2
< sup o s §|£|6 5 é T) d¢| drdx
) 1/2
(7.17) < Z / Sclzlp/ o / mgﬁgﬁg@_? d¢| dx| dr
8 T «a €W

Assume 7 > 0, and we shall examine the piece

w [ [ weSHIET) s

€7 —
Change variables as 7'/2 = ¢ and then change variables as y = a7

2
/ ’L’ynnfﬂ( 1/2 T) d77
neRn” |"7|2

172 and this becomes

dy

21
T?2 sup
@ yeTl/2Qa

Let G(n) = fa(r'/*n,7), so that g(z) = 7 "/2f3(x7= "2 1) where ~ denotes the Fourier

transform in the ¢ variable only. Therefore, g = gx,1/2¢ 9 and the above is

72 sup T (gxr1/20,)] dy
yeT/2Q, 7

/ g de

and by the lemma, this is bounded by
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and by Plancherel this is
T / [fs(r 20, 7) P diy
U
and changing variables back we have

/€ Fsle, TP de

Plugging into (7.17), we have

(7.17) < Xﬁj (/T/§|f6(§a7)|2dfd7') "

and we complete the argument using Plancherel. The case where 7 < 0 corresponds to the

multiplier which is easier to handle since there is no singularity.

_n
In|2+1°

Problem 5. Let ) be the cube centered at the origin. Since

9]l z2(x0,17) < cllg]| L2(Am (@)dex[o,1))
we have, by the proof given in the lecture notes,

dt

/F-Ud.il?

/ JV2E . g2y dx

x

T
[l 12 + eall T 20l 2oy < llvollZz +2/0

T T
/ /F-@dx dtz/
0 x 0

1720l [l T~ F |l

We estimate:

dt

IN

C1 2 —
< Sl + ST 2R
(&1
and then convert back to u, f to obtain the estimate
1 _
ez + el 7 2ull Lz guomy < ClluollZy + S 1T *ully + CIT~ 217

Let xg be the center of the cube ),. Since u solves
o = iAu+ f

u|t=0 = Uo
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if we set w(z) = u(x + z0), g(z) = f(x + x0), wo(r) = up(x + o), then w solves
ow =1iAw + g
w’t:O = Wo

Hence we have the estimate

C1 _
[wlZer2 + eall 72wl 72 gupoy) < Cllwollzs + 5|||J1/2w|||2T + CllJ g7

which, when converted back to w is
[ullZee 2 + el T 2ull 2o xion < Clluollzs + —IIIJ”2 I7 -+ CllT~2 £117

Take the sup over « to obtain the result.

7.3. Solutions to Lecture 3 problems

Problem 1la. By dualizing, we see the given estimate is equivalent to
— —itH?
/Dx Vet %g(a, t)dt|| < Cllgll s,
t L2

(7.18) ‘

To prove (7.18), write:

2

//D 1/4¢ ”aﬁg:vt dt/D /4 o—is02 g(z,s)dsdx
< //g(xat)/Dxl/Qei(tS)B%g(x, s)dsdx dt
x Jt s

/Dzl/2ei(ts)8§g($’ s) ds

< ||g||Li/3L%

LAL®

so it suffices to show

(7.19) 126900 (1 5) ds

< CHgHLi/?’L%
LgLge

Let

ix€ it | ¢~ - i€ i 58 |-
K(at) = / £ |6 1/2 g — (sgn )] V2 / ¢St g2 g
13 I3

87
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We shall show, by the Van der Corput Lemma, that

(7.20) |K ()| < c|z|~Y/?
Lemma 7.21 (Van der Corput). If ¢ € C*(R) is real valued, ¢" > 1 on (a,b), then

b
/amzs d{' |/\|1/2 <|¢ |+/|¢ |dx)

For a proof see [Ste93], pp. 332-334. We want to show

/ei(£+t£2)|§|1/2 d¢

is bounded (independent of t). First, put ¢y (&) + 11 () = 1, where ¢y(§) = 1 for || < 1 and

supp ¥ C [—2,2]. Clearly
[ e e 6 ag

is bounded, and it remains to show

(7.22) / SEHE €12y (6) de

is bounded. Let ¢(§) = &+ t&% Then ¢,(§) = 1+ 2t€. If |¢(€)] > 1, then we can prove
(7.22) is bounded using integration by parts. If [¢,(¢)| < 3, then 2t£ ~ —1, and we write

(7.22) = t'/2 / ey, (€|t ~Y2 de

and apply the Van der Corput lemma with ¢(§) = § + &2, We now complete the proof.

/D 1/2 i(t— S)d‘g(l‘ S)d

= [ [[eter e e 5y
:/s/yK(x_%S—t)g(y,s)dyds

o [l ( | 900591 s ) dy

By (7.20),

'/Dajl/Qei(t—s)agg(x’S)’ds <
13
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Apply the L2 norm to both sides and use the theorem on fractional integration, see [Ste70],

pp. 119-121.

Problem 1b. We will need the following lemma.

Lemma 7.23 (Prop 2.6 in [KPV91b]). Let (&) € C®(R), supp ¥(£) C [2F12M 1k €
N. Then, for |t| <2

+o0o
(7.24) ‘ / &€ P (€) dE| < cHy(x)
where
2k if lz] <1
Hy(x) = { 222|742 if 1 < |z| < 2
(1+23)7" if |z > 2"

where ¢ in (7.24) is independent of t, k.

Proof. The bound of 2* is immediate for all z, since supp ¢ C [2F71,28F1]. In the case
|z| < 1, we can do no better. Suppose |z| > 1, and assume 0 < ¢ < 2 to simplify the
exposition. Let ¢, (&) = t&2 + z€, and note that ¢/ (£) = 2t€ + x and ¢(¢) = 2t. Let

Qz{fésupp¢’|2t§+ﬂf|§%}

and choose p(£) € C* supported in 2 such that ¢(§) = 1 when |2t 4+ x| < |§—| If £ € Q,
then

2] 3|

2 — < 2t§] < ——
(7.25) > <2e <

and thus |z| < 287 so we are in the second region in the definition of Hj(z). Also, (7.25)

implies 27%72|z| < ¢/(£) < 27%"2|z|, and therefore, by the van der Corput lemma,

\ [ e Optepute) de| < a2
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Now suppose £ € supp (1 —¢()), so that [¢.(£)| > |§—| Note that x may still lie in either the
second region or the third region in the definition of Hy(z). Applying integration by parts

twice,

[eesa— plenuierae = - [ 90, a |12

) .(6) ] “

from which we can deduce the necessary bound. O]

Now we turn to the solution of Problem 1b, using this lemma. Let 14 (§), k =0,1,2,... be

smooth functions, < 1, such that,

—+00

sSupp ?/)k(f) - [Qk_lan]a k= 172a SRR supp 1/]0(5) - [_272]7 Z¢k(€) =1 \V/£ € R+

k=0

We claim that to prove

(7.26)

S C||U0| Hs

52
eztam uo ‘

LEL3e 1)

for s > %, it suffices to prove, for each £k = 0,1, ... that

(7.27) ‘ < 252 ||v)| 2

/ e (€0 (€) de

3

L%Ltog[—1,1]
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Indeed, suppose (7.27). Then (letting E,:v(g) = Xok-1<jgj<2t+1(§)0()),

/eiwgeit§2d0(§> dg
¢

LELE 1

> /é €7 iy (€]) Bruuo (€)d€
k

L%L?Z[—l,l]
< Z H / eixfeit§2¢k(|€ ’)m(f)df by triangle inequality
P PG

< ZQk/2||EkUO||L2 by (7.27)
k

1/2
< Ce (Z 2k(1+6)|]Eku0H%2> where € = 2s — 1, by Cauchy-Schwarz
K

< ce|luol|

which is (7.26). To prove (7.27), it suffices to prove, by duality, that (with m(f) =
Ur(§)0(8)),

< 2°2lgl| 21

zHte[—1,1]

t=1
(7.28) ‘ / "% Fyg(x, t) di
¢

=—1

L3

By a T*T argument, to prove (7.28) it suffices to prove

1
(7.29) / % E g(x, 5) ds
s=—1

< Mgl p2r;

Tte[-1,1]

L%L?é[—m]

Let
Ky(w,t) = / e Yy (€) dE
£

By the lemma, |Ky(x,t)| < cHg(z). We have

1 1
/ % g (w, s) ds = / / Ki(z —y,t = 5)g(y, s) dy ds
s=—1 s=—1Jy

and hence

1
/ =% gz, s) ds
s=—1

1
< [H-w [ lotw.s)ldsdy
L1 Y s=—1
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( / Hily dy) lollzz,
L2L

x te —1,1]

and therefore
1

‘/ =% g(x, s) ds
-1

and one can verify that [ Hy(y)dy < c2*.

Problem 1c. By dualizing, we can show that the given estimate is equivalent to

/eit’6§f<x7t/) dt
t/

<
12 = CHfHLf/i”L%

(7.30) ’

‘/eit/agf(x7t/) dt’
t/ L2

:/I/te“aif(x,t) dt/seisaa%f(x, s) ds dx
_ / /t Fl,0) / 992 (2. 5) ds da dt

i(t—s)02
< Wl /e =9 {1 5) ds

S

To prove (7.30), write

2

L}Lee

and thus it suffices to show that

‘/ei(ts)aif(x,s) ds

< Il s,

LiLg
We have -
1 .2
(€)= e
SO

/’(t 5)8 f(z,s ds—// 1/2 = fy,s)dyds

Apply the theorem on fractional integration.

Problem 3. We have

u‘wzo(t) =0 axu‘fyzo(t) =0 82u‘7:0(t) =0



LECTURE 7. SOLUTIONS TO PROBLEMS (BY JUSTIN HOLMER) 93

Applying 0, to the integral equation, we get
t
Au(t) = eiug(z) ~|—/ =% [0 ud,u + ud,d,u) dt!
0

which gives

Oyul__o(t) = e"ug(x)  D,0,u| _(t) = Bue" P ug(x)

v=0

Applying 92 to the equation gives

~

t
Ou(t) = /0 =)0 [O2udyu + 20,ud,0pu + ud>dyu) dt’

which gives
t
aﬁ%u}fyzo _ 2/ €i(t_t/)82 |: it 82u a ezt 85u0:| dt’
0

Let F' : H® — H® be the solution map. Let G : R — H® be the map G(y) = vyuy. Let
H : R — H? be the composition map H(y) = F o G(). Then H'(y) € L(R; H®) is given by

H'(7)(t) = DF(yuo)(tuo)
——
€L(HS;H?)
and H"(v) € L(R x R; H®) is given by
H"(y)(t1,t2) = D?F(yuo) (truo, tauo)
——
€L(H* x H; H?)

Setting v =0, t; =1, t, = 1, we get
¢
83U‘W:0 = 2/ =tz [eitl@iuoﬁzeimﬁuo dt' = H"(0)(1,1) = D*F(0)(ug, uo)
0

and by hypothesis,
1D F(0)(uo, uo)|| < Cluolf?

Y] 1

By writing x (. (t') = sgn (t') +sgn (t — '), using sgn #/(7) = pv -, one can deduce the

eth_ zt£2
/ =% (g ¢) df’ —// iw® O je ) dr, de
7—52

standard formula
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If h(x,t) = 0.[S(t)uo)?, then (T is the Fourier transform in z only)

h(,t) = f/eit(gél)zﬂo(ﬁ — &) g (&) dé
3
and so (" is the Fourier transform in both x and t)

her) = ¢ /£ S((E — 1) + € — T)iol€ — &)iinl6r) déy

and when plugged in we get

eitlei+(€—61)°—€] _ q
G+E-&)P—&
We now follow the suggested method in the lecture notes for showing this is a contradiction.
Set 4o(&) = a2, (§)+a 2Ny, (§), where I; = [fa,a], I, = [N, N+a], where o << 1
and N >> 1. By Plancherel and the formula

/ t ei“—t’ﬁiax[S(t)uO]?dt':/ / e ey (&1 )it (€ — &) déy d§
0 §J&

t 2
Sy 11\92 41 92 41 92
/ (=102 |:€zt % gD 81,%] dt’
0

Hs
etiti(6=6) 1 |

+o00
= /5:_00 ‘/&(1 + 1€1)°§ 0 (&1) G0 (§ — fl)m d& | d€
N+32
(7:31) > [ ool de
{=N+a
where

2ité1(E—€1) _
a6 61) = / (1+ J€)*€an (6 )it (€ — &) L e,

&1 2it€1(€_€1)
IfN—I—ozS{SN—k?’?a,then

&1

-G <a = NS N+a

IN

a = N<E-& < N+a

| e
IN

|9

<

Iy

In either case, & (€ — &) ~ Na, and we shall require that Na << 1 so that
e2ité1(§—&1) _ 1

e —a) "
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Also

N+370‘ o -3 2
7.32 7.31) > L&) déy + &) de| d
(7.32) wanz [ ] eean [ e as
Now

/ Q(ga 61) dél ~ NsNa_l/ZOé_l/QN_Sit dfl ~ ZtN
f1=5 &1=%

and similarly

&%
/g §(€.6) déy ~ itN

1=§—a

and thus
(7.32) >~ at*N?

Take o, N such that aN << 1 and aN?t? >> 1. We compute
luol[7s ~ 1

thus obtaining a contradiction.

Problem 4. Consider Case (1), i.e. [Im by (z)| < CAp(x). We are considering the equation
O = iAu + by (z) - Vu+ 1 (z)u + co(z)i + f

The proof proceeds along lines similar to the proof of Theorem 2.14, except that we set
earr(,€) = exp [~ MOg(€)p(x,€)], where M is to be chosen large in terms of Im by (z). Let

v ="V, u Now iV, A—AV has symbol

CM,R CM,R CAI,R]

< —coMOr(E)Am(2)[€lcrr,r(w, &) + Mg 0r(€)crr(w, €)
Also,
U, n([Re by(2) +ilm by(z)] - V) — ([Re bi(z) +ilm by (2)] - V)T, ,
= i[W,,, ,(Im by(z) - V) — (Im by(z) - V)W, .| + skew-adjoint (mod order 0)

This operator has symbol (mod order 0)

~[Im by(2) - EJearn (@, §) = —Or(§)[Im by (x) - EJear r(x, €) — (1 = Or(£)) [Im by () - EJear r(x, €)
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Examine the piece with symbol

- %MQR(f))\m(x)\ﬂcM,R(ﬂ?af) — 0p(&)[Tm by (x) - Elearn(, €)

= Or(&)emr(z, E)[E] <_C§OM)"”($) ~biz)- %)

<0

by taking M sufficiently large. Hence this term < C||v||z2 by the sharp Garding inequality.

7.4. Solutions to Lecture 4 problems
Problem 1. It was shown in the lecture notes that £(t) satisfies
A72&* < JE@))? < A&l

The ellipticity condition
AP < T apgsn < AP
gk

with & = (0,...,0, '1}1,0,...0), implies \™! < a;;(z) <A (nosum)Vz,Vj=1,...,n Italso
Jt
implies, with ¢ = (0, ...,0, ,tlh, 0,...,0, k%h, 0,...,0), j # k, that AN"! < ajp+agj+aj;+ap <
j
4\ (no sum)V z,V 5,k =1,...,n, and hence

\ajk + akj| S 4\

We have
By = Y lau(e) + ag;(2)]€

k
and thus

|25 < exléol
The only way for a solution to fail to be globally defined is for it to “blow-up” by leaving

every compact set as t — ty for some time .

Problem 2. The following solution is based on the more general results appearing as

Lemma 1.3 and Lemma 3.2 in [Doi96]. We shall assume that a;x is symmetric. Let A3 =
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A2 inf (e ek [E° > 0, and A3 = A sup, oc i [€]* < 00. (Thus, Ay, Ag are determined by K
and the ellipticity constant \.) By ellipticity, for each (xg,&) € K, we have that the flow
(X (t; w0, &0), Z(t; 0, &o)) satisfies

A < 2t w0, &) < A3

Let G ={ (2,€) | (x,&) € R™ X [\, A\a] }, so that (X (¢;x0,&), Z(t; 0, &) € G for all t. We
shall construct ¢(z, &) such that, for (z,&) € G, we have

(7.33) Hpq > 1, and |¢| < C(1 + |z|)

This ¢ will be constructed in two parts, ¢; and g2, and we begin with the construction of ¢;.
Let 6(x) =0 for x < M?, 0(z) =1 for x > (M +1)?, §'(x) > 0, 6(x) > 0, where M is to be
chosen large (in terms of asymptotic flatness, etc.). Let
qi(2,€) = (| |*) Hyla|*
Then
Hyqy = 0'(|2*) (Halx|*)* + 0(|2|*) Hj ||

We compute (with ajr = a;x(2)):

Hh|$|2 = 4ajkmjfk
and

H}2L|'T|2 = 8almalk£m£k + 8alm(azlajk)xj£m£k - 4(aazlamp)ajlxj£mgp =1 + I1 + I11

We have that T = 8|AL[* > 8A72[¢|?, since

& _1
€l ]

and by the asymptotic flatness and ellipticity assumptions, that for |x| > M, with M chosen

|Ag| > AE - apéi&e > N7¢|

sufficiently large (chosen in terms of Cy, \),

ITI| + [III] < A72(¢)?
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and hence we get, for |x| > M,
Hylz|* = A2l

Therefore, for (z,€) € G, we have

0 forl|z|<M+1
Hpqr 2

A for x| > M +1
Moreover, if (z,€) € G, then
Hylo|* = daje& < Aail|2][€] < 8A[z||€] < 8|z ]

(the fact the |a;i| < 2\ was explained in Problem 1), and thus |¢;(z, )| < C|z|.

Now we construct ¢o. Let Gy = { (2,€) | || < M +1,A < €] < A2 }, so that Gy is
compact. For each (z9,&) € G, there is a neighborhood Uiz, ¢,) and a time (4 ¢,) such
that V (2,§) € Uy, the flow (X(t,2,€),=2(t, x,§)) with initial position (z,§) satisfies
| X (t(zo.0), ¢, &) > M + 2. (Here, we used that the flow map is continuous, and the non-
trapping assumption). Since G5 is compact, there is a finite cover Uy, . ..Uy, and associated

escape times %1, ...%;. Let o be a partition of unity subordinate to this cover. Let

k t]
(734) q2<x,§) - Z/ Oaj(X(xvé-? —t)7E(JI7§, _t))dt
j=1"1=
We have

Hygqa(z,8) = d

- @ (X(z,€,s),2(x,&, 5))
d
ds

s=0

k t
Z/ Oéj(X(JT,g,S—t),E(QT,f,S—t)) dt
s=0 ]:1 t=0

s=0

k t; d
:Z/0_£04J(X(m,§,s—t),5(:€,f,5—t))dt
j=1""=

k k
(735> :Zaj(xvf)_zaj()((xv& _tj)vE(x7§7_tj))

=1
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If (z,€) € Gy, then Z?Zl aj(z,&) = 1. Also, if (z,€) € Ga, we have
(X (2,8 =), E(,&,—t;)) =0 Vj=1,...k

Indeed, if # 0, then (X (z,§, —t;),Z(x, &, —t;)) € U;, and by flowing forward by ¢;, we would
arrive at (z,€), a point in Gy, contradicting the definition of ¢;, U;. Hence, for (z,¢) € G,

1 for |z < M+1
Hpqo 2

—1 for|z| > M+1

We see from (7.34) that |g(x,&)| < 25:1 t; <C.
Set ¢ = 2)\2q1 + qo, so that g satisfies (7.33). Then, for all (z,&) € K, we have

@1 (X (20, €0, ), (2o, €0, 1))

1 S (th)(X($0>€07t)aE($07£07t)) = Eq

which, when integrated, gives
t < q(X (20,80, 1), E(o, &0, t)) — q(x0, o)
This gives, for (zg,&) € K, that
t+ q(zo,&0) < q(X (2o, &0, 1), E(0, &0, 1)) < C(1 + [ X (20, &0, 1))

Letting R = inf (4, ¢))ex ¢(20, &), we have

t+ R<C(1+[X(x0,80,t)])  V (w0,&) € K
Problem 3. We will be working with the system

du= —eAu+ilAu+ by (z)- Vu+ by(z) - Vi

+ 1 (z)u + ca(x)u + f

u
which, with @ = , gives the system

- &
> o
o b
L=
S“US“l
a4
=
<
lSJI
A%
&h
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Put
1:(7 -1
g ~ 0 —E’l(bg . V)AR
Li(by - V)AL 0

A=1-5,and 2= Aw (A is of order 0). R will be chosen large to make it invertible in the

appropriate spaces. We now calculate the equation solved by Z.

. AQ 0 . . A 0 . 51 -V 52 -V . C1
0Z7=AS —¢ w1 w+ |5 - W+
0 A? 0 —A by -V b -V Ca
Term 1.
A2 0| A% 0 .
—elA W= —¢ 7+ eRZ
0 A? 0 A?
where R; is order 2.
Term II.
A0 | | A0 |
iA w=1 Z
0 —-A 0 —A
i . .
—%z’A(bg V)Agl — %7;(62 . V)A;A 0
A0 0 —(by -V
—i 4| - 2 VINn| sy g
0 -A —(b2- V)Xjgi2r 0
where R, is of order 0.
Term III.
-V 0 | . |beVoo0 |,
A - w = - Z+ RsZ
0 by - V 0 by - V
where Rj is of order 0.
Term IV.
A P @ = Ry

Co

&1

-V)AR'A

g
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where R, is of order 0.

Term V.
A Ji =g
f
Thus, the equation that z solves is
B A2 0. A o (bh-A 0 |
07 = —¢ Z+1 7+ - 7+ eRZ+ RZ7+ g
0 A? 0 —A 0 b -A

grouping order 0 operators as

R: R2+R3+R4+ =y
by - VXjel<r 0

Take R large so that A is invertible in the space L?, i.e.
[AW][ 2 ~ ([ 2
Also, since S is of order —1, by taking R large we have
| T2 M| 28 x0T am () dzt) ~ [T 2B 2280 [0 TAm ()t

and

|72 Al ~ |72

Let me elaborate on the last statement. We need to show that for R large,
1
1772877 20 < ol
We have JY/25 Y2 = JH(J325 T2, where J5'v = xj¢>r|€|710(€) and thus we have
1 1
725727 < EIIIJ?’/QSJ_WUIIIT < glvllz

where, for the first inequality, we have used Cor 2.11, where the bound depends on S°
seminorms of J5', which are clearly < %. Problem 3.4 gives (in Case (1))
120l[z2 + 1191l L1 22

sup [|Z(t)]1z2 + 172 2o xpo,rpam oty < O 4§ 12
O<t<T 12022 + ||/ gHLQ(R"X[O,T];)\Inl(x) dadt)
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and, in case (2),

) o 120l 22 + 1191l L1 22
sup [|Z(t) (|2 + |77 2llr < Cr g 120
0<t<T 12022 + I/~ *gll7

We must also check

(7.36) NGl zazz < £z ez
(7.37) HJ71/2§”L2(R"><[O,T];/\;I(x)da:dt) < HJ71/2f”LZ(R”x[O,T};A;l(ac)dxdt)
(7.38) 172Gl < 072 £l

The proof of (7.38) is
172N Fll = N 2ATL A (T2 )l < CILTV fl
(7.37) follows similarly from Theorem 2.7, and (7.36) is just Theorem 1.15 directly.

Problem 4. We have thus now proved Theorem 3.11, and the goal is to use this to prove:

Theorem 7.39 (Extension of Theorem 3.3). Let d > 3. Then ¥ ug € H*(R"), s > 59 =

n—+6+ %, we have local well-posedness in H® of
Oyu = iAu + P(u,u, Vu, V,u)
We shall restrict to the equation

(7.40) Oy = 1Au + Oyu - Oyt - Oyl



LECTURE 7. SOLUTIONS TO PROBLEMS (BY JUSTIN HOLMER) 103
where 9, = 9,, for some k. Take sy = n+ 6+ 3. Consider the space Z¢ = { v : R" x
[O,T],)\JT(U) <a,7=1,2,3,4}, T <1, where

M (v) = sup [[o(t)] o

0<t<T

M)y = Y [odv]lr
|Bl=s0+3

A (0) = 1020]l 2z (@, x(0.17)
1B1<3

Ay (0) = 10V ]2 (1@, x 0,1

If v|,_, = uo, then set
. t . ’
u="Tv=e"uy + / 2 v - 0w - Dpu(t') dt!
0

so that u solves the linear inhomogeneous problem

O = 1AU + 0, - O,v - Oy
(7.41)

u‘t:O = Yo

We shall prove that T' is a contraction on Z! so that 3 u such that T'u = u, which will be a

solution to our nonlinear problem. Apply J'/295 to (7.41), |3] = so — 3. This gives

O, (JY20Pu) = iA(JY20Pu) 4+ JY2[0,v - Opv - 0,0°0]

S G TV0.(00) - 0,(0F0) - 0.(05))

B1+B2+83=0
|Bil<so—3

= iA(JY20Pu) + JV20uq - Dyug - 0,0%0] + JV2(9p0 - Opv — Dyuig - Dptig) 0,00

S G TV0.(000) - 0,(0F) - 0,(05)

B1+B2+83=0
|Bil<so—3
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where, in the last step, we have introduced a first order linear term J'/2[0,uq - Opug - 0,0%0].

Apply Theorem 3.11 (2), which gives the bound
17207 u]l 2 + 17070l < || TY20Fuol| 2

+CZHJ”2 00071 0)] - JV2[05 (02 0)] - T2 [0:(070)] | 3.2

+ 1050 - D0 — Dpug - D) D, 000 |5

The new part of the proof is to estimate [|(O,v - O,v — Dpuug - Opug) 000y The trick is to
use that

t
/ O(0pv - 0pv) ds = 0¥ - Opv — Opug + OzUg
0

We thus get

(02 + v — Dy - D) 020 |1

t
Z / 0y (Opv - Opv) ds
" 0
1/2 1/2
2 2
<T (Z Hatax?}“Loo(QMx[O,T])) (Z Ha’EUHLw(Q#X[O,T])) Slip ||axafv||L2(QuX[07T])
B B

< TAL()A3 (V)AL (v)

IN

) Sup ||8$85v||L2(QuX[07T])
Leo(@Qux[0T]) ) #

After summing over all 3 such that |3| = so — =, we have

AL(w) + Az (u) < Clluollmeo + TAL(v)A3 (V)A; (v) + TAT (v)°

Estimate
Az (u) < A7 (u) + TAf (v)°
using the stategy of Lemma 3.1. For AT (u), use the equation directly, i.e. write

Vu = iAVu + 0,Vv - 0,v - 0,v

and conclude

At (1) < A5(u) + A5 (0)A] (v)?
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by Sobolev imbedding. This shows that for appropriately chosen @ and T, T : ZI' — ZT.

Similarly, show I" is a contraction on Z! to complete the proof.

7.5. Solutions to Lecture 5 problems

Problem 1. We shall use Littlewood-Paley theory: Let n € CY(R"\{0}) and 0 < v < 1 be
such that

& cilep=i if gl <1

(7.42) ‘W"( ‘S i€l €] 0<j<N
. Gle i el <1

and also

(7.43) o<y 2P <e €40

Let Cj,:f(f) = n(27%¢) f(€). The expression

(S 1) ”

is called the discrete Littlewood-Paley function. We have

Theorem 7.44 (Littlewood-Paley). Suppose 1 < p < co. Then

it~ (1) |

If fi 1s a sequence of functions, then

[San],<c|(Zime)"”|

For a proof, see [Duo01]. We shall now apply this to the problem. Select n(§) > 0,
suppn € { £ € R" | L < [¢] <2}, such that >, n(27%) = 1, £ # 0. Define
Quf(€) = (2O f(©). Let (€)= Lon { £ € R" | { < [¢] <4}, i(€) = 0, supp 7} C
{¢ e R" | £ < |¢| <8}, and define Qi f(€) = (27"¢) f(€). Let p(&) = X, 5n(27€), so
that p(¢) = 1 for [¢| < &, supp p C { € € R" | [¢] < 1}, and define P.f(&) = p(27%¢)f ().
Note that Ppf = > . 3@Q;f. Let p(§) > 0, p(§) = L on { £ € R" | [§] < 100 }, and
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supp p C { £ € R™ | |£] < 200 }, and define P, accordingly. Note that Q) and Qy fall into

the Littlewood-Paley framework outlined above. We record some elementary facts.

Fact 7.45. QxfPrg = Qr(QufPrg).
Fact 7.46. For |j| <2, QxfQr_;9 = Pu(QufQr_jg).

Fact 7.47. Let ¢ € S(R"), o = 27%p(27%2). Then sup, |(¢r * f)(x)| < CM f(z), where

M is the Hardy-Littlewood maximal function.

We next record some important consequences of the boundedness of the Hardy-Littlewood

maximal function and Littlewood-Paley theory.

Lemma 7.48. If1 < p < oo, then

Isup Qu I < Coll 71
Isup Qe I < Gyl 1,

I sup|Bflll, < Gyl

Proof. These three statements follow from Fact 7.47. O]

Lemma 7.49. If 1 < p < oo, then

~ I<pi <o

> Qu(QiefQrg)|| < Clifllpllgllp,  for
k » 1 <py <o
~ 1<p <o

> Qu(QefPrg)|| < Clflpllgllp,  for
k P L<py <00

1 1 _
where o + 0 = 1.
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Proof. We carry out the proof of the first inequality (the second is very similar). Since the

roles of f and g are symmetric, we may assume that 1 < p; < oo and 1 < py < oo. Then

> Qu(@rfQxy)
K

1/2
<ec QrfQrgl* by Theorem 7.44
> g y
k
p

p

1/2
< C<Z|Qkf|2> sup | Qig]
k

p

IN

SUp |Qr9l

1/2
c (Z rwﬁ)
k

|| fllp: lgllp, by Theorem 7.44 for f and Lemma 7.48 for g

p2
p1

IN

Lemma 7.50. If1<p<oo,1<p <00, 1<py < o0, then

< £ lpullgll,
p

> Pu(QifQrg)
K

Proof. We shall only carry out the proof in the case 1 < p; < 00, 1 < ps < co. The case
p1 = o0 or py = oo is a little more fancy (see the appendix to [KPV93b]). Test against
he Ll ||h| = 1.

Z / Pr(QrfQrg)h = Z / QrfQrgPrh
k k
1/2

1/2
S/ SRR | sup Pkl [ |Qugl?
K k k
1/2
(Z ‘Qkf‘2> I Sup | Pl ||,y (Z |Qk9‘2>
K p

| £l IRl lgllp, by Theorem 7.44 for f and g, Lemma 7.48 for h

1/2

IA

IN

]
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Let n'(&) = [€]7n(&), n*(§) = [£1°p(&), (&) = [£I°B(&), n*(§) = €I*n (&), 7" (§) = |&l*n(€).
Accordingly define the operators Q;, Q3, Qi, 1 ~i, and note that they fall into the

Littlewood-Paley framework outlined above. Expand

T(fg) = T (Qu(QufPrg) + Y T (Qu(PefQrg) + Y T (Pu(QrfQi—j9))
k k

k,l5]<2

- Il —+ IIl -+ IIIl
We shall show that I; and III; pose no difficulty. In fact,
L= QU@L [ Py)
k

and thus ||I;||z2 is appropriately bounded by Lemma 7.49. Note that here is the reason that

the L norm can only be put on g, and not on J*f. Also,
L =Y QHQLIf - Qk—j9)
k
and thus, by Lemma 7.49 it is appropriately bounded. Expand

FIg =Y QuQufT Peg) + Y Qu(Pef ' Qug) + > Pu(Quf T Qrjg)
! B

k,151<2

=1, + 11, 4+ 111,
We shall show that I, and Il also pose no difficulty. In fact,
L= OuQLIf - Qlg)
k
and therefore, ||I5]|z2 is appropriately bounded by Lemma 7.49. Also,

U= Y  27B(Qp)°f - Qi9)

k,l51<2

and therefore, ||IIly||z2 is appropriately bounded by Lemma 7.50. It remains to control

IT; —Ils.

T (On(Pef Q) = / /g N (R HE + Ol g OF€)3(C) dC e
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Qr(PLf T*Qrg) = / /5 < eI R + O))p27 ) (27¢) F(€)§(¢) dC de

and thus

(751)  T(QuPefQug)) — Qu(Pef J*Qug) = / /5 S Im(2 e 2RO F3) dc e

where
mig,¢) = EL =1l G o Bl e
€| 5
=7(£,0)
Now

|§+C| ¢I° / 1§ + ¢+ () - €
<
and thus 7(£, () € Cg°(R™ x R™) [add

cutoffs in ¢ and ¢ to the definition of 7(§, ()], and therefore there is a function r(u,v) €

S(R™ x R™) such that
7(¢,¢) = / / e (p, v) dudy
[T8%

T (Qr(PefQr9)) — Qr(Pef T*Qrg)
/ / (i, v / /f DR + O ONEl (€274 0a(C) dC e

Since [¢] < 1 and £ < |¢| < 2, we have [t + (] > 1

4 1

Inserting into (7.51),

where
€]
€]®

One can check that 7, n,, for fixed p, v, verify (7.42), (7.43) (with constants independent

nu() = e p) = n(C) =e"n(C)

of u, v). Letting @, x, Qv be the associated operators, we have

T(Qr(PrfQrg)) — Qu(Pef J*Qrg) = // (s V) Qr(QuiJ* f - Qureg) dp dv
1,V

II, — Il = // Ma [ Qu AN Qukg)] dudv

and hence
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By Fact 5, we have

I =Tl < [ [ 1) 1Azl didy < Y flelglo
v

Problem 2. Assumptions: We need (H;;) — (Hs;) as stated in the lecture, except that in
H,,; we need to replace N(n) by max(N(n),s). The constants are vy (ellipticity), C, Cy, B
(Doi’s Lemma).

Statement: Let Ty > 0 be as given by Theorem 4.3. V s > 0, if we make the above

assumptions, then 3 A > 0, K > 0 with dependencies

Ty = To(C, C1, B)
A= A(v,C1, B, s)

K =K(v,C,Cy,B,s)

such that
(7.52)
1112 s
srl 3
sup [lu(t) |3+ +2u”%2(R"><[O,T};)\2(x)d:z:dt) < Ae"Mlug||H.+C T
0,7] 17> fII3

L2(R™x [0,T];A5 * (z)dadt)

We shall only prove the result for s = 2m, m € N, and the proof will be by induction on m.

By Theorem 4.3, we have the bound (7.52) for m = 0. Apply A™ to the equation:
DA™ = —e AU+ A" (iag Oy, O, 1)+ A™ (b1 0, w)+A" (bo Ory W)+ A™ (C1u) +A™ (o) + A™ f
We now rearrange terms to put the equation in the form (with w = A™u)

ow = — eA%w —+ z‘alk@xl@ka -+ ‘Ifgl’w + b27k81ku7

+ Vo w+ Vaw + A" f + fi
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where f; will contain terms that we have already bounded. Expand, and group terms as

iAm[aklE)xkﬁzlu] = iaklagckc?xlAmu
,(8xakl)8§m_18xk8xl
I+ (=A)m
i(@ﬁakl)ﬁgm‘Qﬁxkam + é?gaklé?im“?(?xk@xl
I+ (=A)m
> (02 ap) 00, Onyu

[r|<2m—4

[+ (=4)"u

_l_

[+ (=4)"]u

=1+1I+II+1V

where 07 represents a term of the type 07" - - - 97" with |o| = r with coefficient depending on
m. (IL, III, and IV are actually sums of terms of the specified form). Note that term II is a
first order YDO applied to A™u and thus should be included in ¥;. Moreover, the symbol

b satisfies the conditions

- C
|0/ Imb (2, )] < #;‘
and
7 Cil¢
|Im by (z,0)] < oy
of (Hyy) since 0,;a; satisfies the conditions
C

and
o
(z)?

from (Hs;). Term III is a zeroth order ¥DO applied to A™u, and thus should be included

|0 g (,0)] <

in U,,. Term IV is put into f;. A similar analysis can be applied to A™ (b 0., u) and

A™(by 0y, w). Let w = A™u. We then proceed as in the lecture, first converting to a

g

system, introducing w = , then diagonalizing by introducing the order —1 operator S

g

!

and changing variables to 2 = A = (I — S)w, and finally constructing the gauged system

in the variable &@. Note that M in the symbol, (and hence R) will depend on s = 2m, since
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multiplicative factors of s = 2m appeared in the first order terms by. However, the time
interval has been restricted to [0, 7] independent of s. As in the lecture notes, we get the

bound (with G corresponding to A™ f and G corresponding to fi),

O+ e [ 1AGIE + [ 17
< IO + [ [KIGEIE: + 166z + 16 )2 a(s)] 2] s

< [la(0)lZ; +K/ l6(s)I1Zz ds + (IGley, 22 + 1G1 2, r2) sup (1] 2

[0) 0]

Thus, with f fo |l d(s) 'ds, we have f/(t) < ¢ + cof(t). Gronwall’s inequality implies

f'(t) < cre®', and therefore we get

sup [|@]172 < e*T(la(0)|172 + sup (| 2 (|Gl Ly 22 + |Gl gy 22))
[0,T0] [0, 7o)

which converts to the bound

sup 1A u(®)]7; < Ae™ AT uw(O)7; + ClIF 1Ly, 12 + ClANL, 12

Since f; consists of derivatives of total order < m — 2, we can bound this term in terms of

| ||? L3 L2 and ||A™ 1u||Loo 12 which have already been estimated, giving the bound

sup 1A u(®)17s < Ae™ [u(0)[fzm + CUIFIIL, 12

Problem 4. Suppose h is as stated in the problem, with ellipticity

ATHER < R(z, &) < M€
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and asymptotic flatness assumptions:

sup |0¢,h(2,€)] < C
£l=1

Ch
sup |0y, 0, h(z,§)| < 7—5
|£|:1| w0 h(z, ) BE

Cy
sup |0y, h(z, )| < —
|£|:1| (z,6)] BE

sup |06, 0¢, h(, §)| < Ch
The first step is to show that it suffices to construct a smooth function ¢(z, ) such that
Hong(2,§) = Bil§| = By, Vi, ¢
1050 a(,€)] < Cap(x)(€)™" for Ja| + 8] < N(n)

Proceeding as in the notes, we define f, ¢, ¢g, ¢+, ¥y, ¥4, and define
q

p= @‘I’o + [f(lgl) + 2] (0, —¥_) € S°
We have, for || > 2,
q \ _ Hong  4(9,h)z;
i () = -

Now

Hong > Bil§| — By
19, hl < sup [0 h(, m)l[¢] < Cl¢
n|=1
and using that, on supp ¥y, we have |¢q| < e(z), we have

Heh( q ) > Bi|§| — By  Chre(w)|¢||z] > B1|5| — B,

() {z) (@) = ()
for € small in terms of C;. Just as in the notes, we obtain (after a few steps)
B .
Hopp > e B,
{z)

We now discuss the modifications necessary in the construction of ¢. As in the notes, set

g = (&) (|2 Hi(|2])
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(where 9 (t) = 0 for t < M? (t) =1 for t > (M + 1), and ¢'(t) > 0) and we set out to
bound

Hy(q1) = (€)' (|o*) [Hn (|2 [*)]* + (&) " (|2 ) Hn(Ha(|2[*)) > (€)™ (|2 *) Hy(Ha(|2[*))
from below. Now
Hy(|z[*) = 20, h;
HyHy(|z]?) = 20¢, "0y, Og; hiv + 206, hOg, h — 20y, h(0g, O, h)x
Now 20¢, hde, h = 2|V¢h|?, and

€ _ %h(z,£)
€ g

by homogeneity and ellipticity. From the asymptotic flatness bounds

[Veh| > Veh - Or[h(z, )] = 2h(x, ')r = > 2)71¢|

2 Cul€*(x)
20,11 - O, Og;h - x5 < (sup [Du b, n)|) €] (sup D, O, bz, n)|) (z) < —~5—

[n|=1 [n|=1 (z)?

and similarly,

Chl€?
285kh . Ox,ﬁgjh . SL’J’ S <LL’>
and thus:
2 —92 2 Ol|§|2 —2 2
Hy, Hy(|z|%) > 8A7¢] > A7

(x)

for (z) large (which dictates the choice of M), giving that

Hy(q1) 2 A729(|2]?) ¢

We need, as before, the lemma

Lemma 7.53. Let K C R" x R"\{0} be a compact set. Then, given > 0, 3 so = so(K, 1)
such that | X (s, x, &)| > u, ¥Y|s| > |sol, Y(x0,&) € K.

With ¢1(x) =1 on |z| < M +1, ¢1(x) =0 for |x| > M + 2, set

—+00

q2($,€) == ¢1<X(8,LE,£))<E<S,;€,£)> ds

0
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The homogeneity of the flow properties still hold, since h(x, &) is homogeneous of degree 2,

and therefore

oo
we.&) =l [ X @ma E(s,z ,é‘»
With 65(€) = 0 for €] < 1, da(€) = 1 for [¢] = 2,
q3(z,§) = ¢1(2)P2(&) q2(, §)
_¢1(33)¢2(5) e S
= A [ o (s ‘5|>><|§| S(oi, 1)) ds
Now we have to compute
Higo(,€) = +°°Hh (5,2, €)){E(s, 2, €)) ds
+o0 d _
/0 (X (5,,€)) (E (s, 2,)] ds
¢1($

Alsolet K = {(x,&) | |z| < M+1,|¢| = 1}. Then we get sq as in the lemma (for p = M +2),
and so

|Q3<ZL’, £)| < )‘SU

Complete the proof as in the notes by setting ¢ = Nq; + gs.

Problem 5. If n = 1, then (Hy;) implies A7262 < €2 < A\?¢2, and since £(s) is continuous,

it never changes sign. Thus
>0 = £(s)>0and M1 <€ <A\

<0 = £&(s)<0and A <& <A '
Also, (Hy;) is A1 < a(z)€? < A%, and since € # 0, A™! < a(x) < A. The first flow
equation is # = 2a(z)¢. In the case & > 0, we get 2A728, < & < 202y, 50 2A72&ps + 1 <
z(s) < 2X%¢s + xo. If s — 400, then z(s) — 400, and if s — —oo, then z(s) — —oco. The

case &y < 0 is similar.
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