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DYNAMICS
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Abstract. We consider the 3D quantum many-body dynamics describing a dilute bose

gas with strong confining in one direction. We study the corresponding BBGKY hierarchy

which contains a diverging coefficient as the strength of the confining potential tends to

∞. We find that this diverging coefficient is counterbalanced by the limiting structure of

the density matrices and establish the convergence of the BBGKY hierarchy. Moreover, we

prove that the limit is fully described by a 2D cubic NLS and obtain the exact 3D to 2D

coupling constant.
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1. Introduction

It is widely believed that the cubic nonlinear Schrödinger equation (NLS)

i∂tφ = Lφ+ |φ|2 φ in Rn+1,

where L is the Laplacian −4 or the Hermite operator −4+ ω2 |x|2 , describes the physical

phenomenon of Bose-Einstein condensation (BEC). This belief is one of the main motivations

for studying the cubic NLS. BEC is the phenomenon that particles of integer spin (bosons)
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occupy a macroscopic quantum state. This unusual state of matter was first predicted

theoretically by Einstein for non-interacting particles. The first experimental observation of

BEC in an interacting atomic gas did not occur until 1995 using laser cooling techniques

[4, 20]. E. A. Cornell, W. Ketterle, and C. E. Wieman were awarded the 2001 Nobel Prize in

physics for observing BEC. Many similar successful experiments [8, 36, 52] were performed

later.

Let t ∈ R be the time variable and rN = (r1, r2, ..., rN) ∈ RnN be the position vector of N

particles in Rn. Then BEC naively means that the N -body wave function ψN(t, rN) satisfies

ψN(t, rN) ∼
N∏
j=1

ϕ(t, rj)

up to a phase factor solely depending on t, for some one particle state ϕ. In other words,

every particle is in the same quantum state. Equivalently, there is the Penrose-Onsager

formulation [46] of BEC: if we define γ
(k)
N to be the k-particle marginal densities associated

with ψN by

(1.1) γ
(k)
N (t, rk; r

′
k) =

∫
ψN(t, rk, rN−k)ψN(t, r′k, rN−k)drN−k, rk, r

′
k ∈ Rnk

then, equivalently, BEC means

(1.2) γ
(k)
N (t, rk; r

′
k) ∼

k∏
j=1

ϕ(t, rj)ϕ̄(t, r′j).

Gross [33, 34] and Pitaevskii [47] proposed that the many-body effect should be model by

a strong on-site interaction and hence the one-particle state ϕ should be modeled by the a

cubic NLS. In a series of works [44, 42, 21, 23, 24, 25, 26, 27, 11, 17] , it has been proven

rigorously that, under suitable assumptions on the interaction potential, relation (1.2) holds

in 3D and the one-particle state ϕ satisfies the 3D cubic NLS.

It is then natural to believe that the 2D cubic NLS describes the 2D BEC as well. However,

there is no BEC in 2D unless the temperature is absolute zero (see p. 69 of [43] and the

references within). In other words, 2D BEC is physically impossible due to the third law of

thermodynamics. In a physically realistic setting, 2D NLS can only arise from a 3D BEC

with strong confining in one direction (which we take to be the z-direction). Such an effective

3D to 2D phenomenon has been experimentally observed [28, 53, 19, 35, 18]. (See [6] for

a review.) It is then natural to consider the derivation of the 2D NLS from a 3D N -body

quantum dynamic. Combining [1, 2, 17] suggests a route of getting the 2D NLS from 3D.

First, a special case of Theorem 2 in [17] establishes the 3D cubic NLS

(1.3) i∂tϕ = −4xϕ+
(
−∂2z + ω2z2

)
ϕ+ |ϕ|2 ϕ, (x, z) ∈ R2+1

from the 3D N -body quantum dynamic as a N →∞ limit. Then the result in [1, 2] shows

that the 2D cubic NLS arises from equation (1.3) as a ω →∞ limit. This path corresponds to

the iterated limit (limω→∞ limN→∞) of the N -body dynamic, thus the 2D cubic NLS coming

from such a path approximates the 3D N -body dynamic when ω is large and N is infinity.

In experiments, it is fully possible to have N and ω comparable to each other. In fact, N
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is about 104 and ω is about 103 in [28, 53, 35, 18]. In this paper, we derive rigorously the

2D cubic NLS as the double limit (limN,ω→∞) of a 3D quantum N -body dynamic directly,

without passing through any 3D cubic NLS. It is elementary mathematical analysis that

limω→∞ limN→∞ and limN,ω→∞ are topologically different and one does not imply each other.

Let us adopt the notation

ri = (xi, zi) ∈ R2+1

and investigate the procedure of laboratory experiments of BEC according to [28, 53, 19, 35,

18].

Step A. Confine a large number of bosons inside a trap with strong confining in the z-

direction. Cool it down so that the many-body system reaches its ground state. It is

expected that this ground state is a BEC state / factorized state. To formulate the problem

mathematically, we use the quadratic potential |·|2 to represent the trap and

Va (r) =
1

a3β
V
( r
aβ

)
, β > 0

to represent the interaction potential. We use the quadratic potential to represent the

trap because this simplified yet reasonably general model is expected to capture the salient

features of the actual trap: on the one hand the quadratic potential varies slowly, on the

other hand it tends to∞ as |x| → ∞. In the physics literature, Lieb, Seiringer and Yngvason

remarked in [44] that the confining potential is typically ∼ |x|2 in the available experiments.

The review [6] on [28, 53, 19, 35, 18] also mentioned that the trap is harmonic. We use Va (r)

to represent the interaction potential to match the Gross-Pitaevskii description [33, 34, 47]

that the many-body effect should be modeled by an on-site self interaction because Va is

an approximation of the identity as a → 0. This step then corresponds to the following

mathematical problem:

Problem 1. Show that, for large N and large ω � ω0, the ground state of the N-body

Hamiltonian

(1.4)
N∑
j=1

(
−4rj + ω2

0 |xj|
2 + ω2z2j

)
+

∑
16i<j6N

1

a3β−1
V

(
ri − rj
aβ

)
is a factorized state under proper assumptions on a and V .

Step B. Switch the trap in order to enable measurement or direct observation. It is assumed

that such a shift of the confining potential is instant and does not destroy the BEC obtained

from Step A. To be more precise about the word “switch”: in [19, 18], the trap in the

x-spatial directions are tuned very loose to generate a 2D Bose gas. For mathematical

convenience, we can assume ω0 becomes 0. The system is then time dependent. Therefore,

the factorized structure obtained in Step A must be preserved in time for the observation of

BEC. Mathematically, this step stands for the following problem.
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Problem 2. Take the BEC state obtained in Step A as initial datum, show that, for large

N and ω, the solution to the N−body Schrödinger equation

(1.5) i∂tψN,ω =
N∑
j=1

(
−1

2
4rj +

ω2

2
z2j

)
ψN,ω +

∑
16i<j6N

1

a3β−1
V

(
ri − rj
aβ

)
ψN,ω

is a BEC state / factorized state under the same assumptions of the interaction potential V

in Problem 1.

We first remark that neither of the problems listed above admits a factorized state solution.

It is also unrealistic to solve the equations in Problems 1 and 2 for large N . Moreover, both

problems are linear so that it is not clear how the 2D cubic NLS arises from either problem.

Therefore, in order to justify the statement that the 2D cubic NLS depicts the 3D to 2D

BEC, we have to show mathematically that, in an appropriate sense, for some 3D one particle

state ϕ fully described by the 2D cubic NLS

γ
(k)
N,ω(t, rk; r

′
k) ∼

k∏
j=1

ϕ(t, rj)ϕ̄(t, r′j) as N,ω →∞

where γ
(k)
N,ω are the k-marginal densities associated with ψN,ω.

For Problem 1 (Step A), a satisfying answer has been found by Schnee and Yngvason.

Let scat(W ) denote the 3D scattering length of the potential W . By [24, Lemma A.1], for

0 < β ≤ 1 and a� 1, we have

scat

(
a · 1

a3β
V
( r
aβ

))
∼

 a

∫
R3

V if 0 ≤ β < 1

a scat(V ) if β = 1

Consider φω0,Ng, the minimizer to the 2D NLS energy functional

(1.6) Eω0,Ng =

∫
R2

(
|∇φ(x)|2 + ω2

0 |x|
2 |φ(x)|2 + 4πNg|φ(x)|4

)
dx

subject to the constraint ‖φ‖L2(R2) = 1. The existence of this nonlinear ground state stems

from the presence of the confining potential ω2
0 |x|

2; otherwise the nonlinear term is defocusing

(as it is called in the NLS literature).

Given parameters ω0, ω,N, a, Schnee-Yngvason [49] define g = g(ω0, ω,N, a) and ρ̄ =

ρ̄(ω0, ω,N, a) by the two simultaneous equations (see (1.15) and (1.18) in [49])

g
def
=

∣∣∣∣− log(
ρ̄

ω
) +

1√
ωa
∫
R h

4
1

∣∣∣∣−1 , ρ̄ = N

∫
|φω0,Ng|

4.

They argue that this definition for g makes the 2D NLS Hamiltonian (1.6) relevant to the

analysis of the limiting behavior of the ground state of (1.4) describing a dilute interacting

Bose gas in a 3D trap that is strongly confining in the z-direction. (See also [54] for the case

with rotation)

The Gross-Pitaevskii limit means Ng ∼ 1. We have liberty to fix the value of ω0 by

scaling, so we take ω0 = 1. Then the minimizer φω0,Ng is fixed and hence ρ̄ ∼ N .



2D NLS FROM 3D QUANTUM MANY-BODY DYNAMIC 5

In this paper, we consider Problem 2 (Step B) and offer a rigorous derivation of the 2D

cubic NLS from the 3D quantum many-body dynamic. For the scaling of the interaction

potential, we consider the case (called Region I in [49]) in which the term (
√
ωa)−1 dominates

in the definition of g. Then

1 ∼ Ng ∼ Na
√
ω ⇐⇒ a ∼ 1

N
√
ω

This then implies that
1√
ωa
∼ N � log

N

ω
∼ log

ρ̄

ω

so that our assumption that the term (
√
ωa)−1 dominates in the definition of g is self-

consistent.

We will take for mathematical convenience a = (N
√
ω)−1 for Problem 2 (Step B). The

Hamiltonian (1.4) then becomes

(1.7) HN,ω =
N∑
j=1

(
−4rj + ω2z2j

)
+

1

N
√
ω

∑
16i<j6N

(
N
√
ω
)3β

V
((
N
√
ω
)β

(ri − rj)
)

Let h(z) = π−1e−z
2/2 so that h is the normalized ground state eigenfunction of −∂2z + z2,

i.e. it solves (−1 − ∂2z + z2)h = 0. Then the normalized ground state eigenfunction hω(z)

of −∂2z + ω2z2 is given by hω(z) = ω1/4h(ω1/2z), i.e. it solves (−ω − ∂2z + ω2z2)hω = 0. In

particular, h1 = h.

We consider initial data that is asymptotically (as N → ∞, ω → ∞) factorized in the

x-direction and in the ground state in the z-direction; in particular we could take

ψN,ω(0, rN) =
N∏
j=1

φ0(xj)hω(zj) , ‖φ0‖L2(R2) = 1.

Let

(1.8) ψN,ω(t, ·) = eitHN,ωψN,ω(0, ·)

denote the evolution of this initial data according to the Hamiltonian (1.7). We prove that

in a certain sense, as N →∞, ω →∞,

(1.9) ψN,ω(t, rN) ∼
N∏
j=1

φ(t, xj)hω(zj)

where φ(t) solves a 2D cubic NLS with initial data φ0(x). To make this statement more

precise, we introduce the rescaled solution

(1.10) ψ̃N,ω(t, rN)
def
=

1

ωN/4
ψN,ω(t,xN ,

zN√
ω

)

and the rescaled Hamiltonian

(1.11) H̃N,ω =
N∑
j=1

(−∆xj + ω(−∂2zj + z2j )) +
1

N

∑
1≤i<j≤N

VN,ω(ri − rj)
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where

(1.12) VN,ω(r) = N3β
(√

ω
)3β−1

V

((
N
√
ω
)β
x,

(N
√
ω)

β

√
ω

z

)
,

Then

(H̃N,ωψ̃N,ω)(t,xN , zN) =
1

ωN/4
(HN,ωψN,ω)(t,xN ,

zN√
ω

)

and hence when ψN,ω(t) is given by (1.8) and ψ̃N,ω is defined by (1.10), we have

ψ̃N,ω(t, rN) = eitH̃N,ω ψ̃(0, rN)

The informal statement of convergence given by (1.9) becomes the informal statement

(1.13) ψ̃(t, rN) ∼
N∏
j=1

φ(t, xj)h(zj)

where φ(t) solves 2D NLS with initial data φ0(x). In fact, the convergence we prove is stated

in terms of the associated density operators with kernels

(1.14) γ̃N,ω(t, rN , r
′
N) = ψ̃(t, rN)ψ̃(t, r′N)

The version of (1.13) that we prove is the convergence

γ̃
(k)
N,ω(t, rk, r

′
k)→

k∏
j=1

φ(xj)h(zj)φ(x′j)h(z′j)

in trace class, for each k ≥ 0.

We define

(1.15) v(β) = max

(
1− β

2β
,

5
4
β − 1

12

1− 5
2
β
,

1
2
β + 5

6

1− β
,
β + 1

3

1− 2β

)
(see Fig. 1)

Our main theorem is the following:

Theorem 1.1 (main theorem). Assume the pair interaction V is a nonnegative Schwartz

class function. Let {γ̃(k)N,ω(t, rk; r
′
k) } be the family of marginal densities associated with the 3D

rescaled Hamiltonian evolution ψ̃N,ω(t) = eitH̃N,ω ψ̃N,ω(0) for some β ∈ (0, 2/5), (see (1.1),

(1.11), (1.14)). Suppose the initial datum ψ̃N,ω(0) satisfies the following:

(a) ψ̃N,ω(0) is normalized, that is, ‖ψ̃N,ω(0)‖L2 = 1,

(b) ψ̃N,ω(0) is asymptotically factorized in the sense that

lim
N,ω→∞

Tr
∣∣∣γ̃(1)N,ω(0, x1, z1;x

′
1, z
′
1)− φ0(x1)φ0(x

′
1)h(z1)h(z′1)

∣∣∣ = 0,

for some one particle state φ0 ∈ H1 (R2) ,

(c) Away from the z-directional ground state energy, ψ̃N,ω(0) has finite energy per particle:

sup
ω,N

1

N
〈ψ̃N,ω(0), (H̃N,ω −Nω)ψ̃N,ω(0)〉 6 C,
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Then ∀k > 1, t > 0, and ε > 0, we have the convergence in trace norm (propagation of

chaos) that

lim
N,ω→∞

N>ωv(β)+ε

Tr

∣∣∣∣∣γ̃(k)N,ω(t,xk, zk;x
′
k, z
′
k)−

k∏
j=1

φ(t, xj)φ(t, x′j)h1(zj)h1(z
′
j)

∣∣∣∣∣ = 0,

where v(β) is given by (1.15) and φ(t, x) solves the 2D cubic NLS with coupling constant

b0
(∫
|h1(z)|4 dz

)
that is

(1.16) i∂tφ = −4xφ+ b0

(∫
|h1(z)|4 dz

)
|φ|2 φ in R2+1

with initial condition φ (0, x) = φ0(x) and b0 =
∫
V (r) dr.

Theorem 1.1 is equivalent to the following theorem.

Theorem 1.2 (main theorem). Assume the pair interaction V is a nonnegative Schwartz

class function. Let {γ̃(k)N,ω(t, rk; r
′
k) } be the family of marginal densities associated with the 3D

rescaled Hamiltonian evolution ψ̃N,ω(t) = eitH̃N,ω ψ̃N,ω(0) for some β ∈ (0, 2/5), (see (1.1),

(1.11), (1.14)). Suppose the initial datum ψ̃N,ω(0) is normalized, asymptotically factorized

and satisfies the energy condition that

(c′) there is a C > 0 such that

(1.17) 〈ψ̃N,ω(0), (H̃N,ω −Nω)kψ̃N,ω(0)〉 6 CkNk, ∀k > 1,

Then ∀k > 1, t > 0, and ε > 0, we have the convergence in trace norm (propagation of

chaos) that

lim
N,ω→∞

N>ωv(β)+ε

Tr

∣∣∣∣∣γ̃(k)N,ω(t,xk, zk;x
′
k, z
′
k)−

k∏
j=1

φ(t, xj)φ(t, x′j)h1(zj)h1(z
′
j)

∣∣∣∣∣ = 0,

where v(β) is given by (1.15) and φ(t, x) solves the 2D cubic NLS (1.16).

We remark that assumptions (a), (b), and (c) in Theorem 1.1 are reasonable assumptions

on the initial datum coming from Step A. In fact, if we assume further that φ0 minimizes

the 2D Gross-Pitaevskii functional (1.6), then (a), (b) and (c) are the conclusion of [49,

Theorem 1.1, 1.3]. The limit in Theorem 1.1, which is taken as N,ω → ∞ within the

subregion N > ωv(β)+ε is optimal in the sense that if N 6 ω
1
2β
− 1

2 , then the limit of VN,ω
defined by (1.12) is not a delta function.

The equivalence of Theorems 1.1 and 1.2 for asymptotically factorized initial data is well-

known. In the main part of this paper, we prove Theorem 1.2 in full detail. For completeness,

we discuss briefly how to deduce Theorem 1.1 from Theorem 1.2 in Appendix B.

The main tool used to prove Theorem 1.2 is the analysis of the BBGKY hierarchy of{
γ̃
(k)
N,ω

}N
k=1

as N,ω → ∞. With our definition, the sequence of the marginal densities{
γ̃
(k)
N,ω

}N
k=1

associated with ψ̃N,ω satisfies the BBGKY hierarchy
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Figure 1. A graph of the various rational functions of β appearing in (1.15).

In Theorems 1.1, 1.2, the limit (N,ω) → ∞ is taken with N ≥ ωv(β)+ε. As

shown here, there are values of β for which v(β) ∼ 1, which allows N ∼ ω,

as in the experimental paper [28, 53, 35, 18]. We conjecture that Theorems

1.1, 1.2 hold with (1.15) replaced by the weaker constraint v(β) = 1−β
2β

for all

0 < β < 1.

(1.18)

i∂tγ̃
(k)
N,ω =

k∑
j=1

[
−4xj , γ̃

(k)
N,ω

]
+

k∑
j=1

ω
[
−∂2zj + z2j , γ̃

(k)
N,ω

]
+

1

N

k∑
i<j

[
VN,ω (ri − rj) , γ̃(k)N,ω

]

+
N − k
N

Trrk+1

k∑
j=1

[
VN,ω (rj − rk+1) , γ̃

(k+1)
N,ω

]
In the classical setting, deriving mean-field type equations by studying the limit of the

BBGKY hierarchy was proposed by Kac and demonstrated by Landford’s work [41] on

the Boltzmann equation. In the quantum setting, the usage of the BBGKY hierarchy was

suggested by Spohn [51] and has been proven to be successful by Elgart, Erdös, Schlein, and

Yau in their fundamental papers [21, 23, 24, 25, 26, 27] which rigorously derives the 3D cubic

NLS from a 3D quantum many-body dynamic without a trap. The Elgart-Erdös-Schlein-

Yau program consists of two principal parts: in one part, they consider the sequence of the

marginal densities
{
γ
(k)
N

}
associated with the Hamiltonian evolution eitHNψN(0) where

HN =
N∑
j=1

−4rj +
1

N

∑
16i<j6N

N3βV (Nβ (ri − rj))
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and prove that an appropriate limit of as N →∞ solves the 3D Gross-Pitaevskii hierarchy

(1.19) i∂tγ
(k) +

k∑
j=1

[
4rk , γ

(k)
]

= b0

k∑
j=1

Trrk+1
[δ(rj − rk+1), γ

(k+1)], for all k ≥ 1 .

In another part, they show that hierarchy (1.19) has a unique solution which is therefore a

completely factorized state. However, the uniqueness theory for hierarchy (1.19) is surpris-

ingly delicate due to the fact that it is a system of infinitely many coupled equations over

an unbounded number of variables. In [39], by imposing a space-time bound on the limit

of
{
γ
(k)
N

}
, Klainerman and Machedon gave another proof of the uniqueness in [24] through

a collapsing estimate originating from the ordinary multilinear Strichartz estimates in their

null form paper [38] and a board game argument inspired by the Feynman graph argument

in [24].

Later, the method in Klainerman and Machedon [39] was taken up by Kirkpatrick, Schlein,

and Staffilani [37], who derived the 2D cubic NLS from the 2D quantum many-body dynamic;

by Chen and Pavlović [9, 10], who considered the 1D and 2D 3-body interaction problem

and the general existence theory of hierarchy (1.19); and by X.C. [16], who investigated the

trapping problem in 2D and 3D. In [12, 13], Chen, Pavlović and Tzirakis worked out the

virial and Morawetz identities for hierarchy (1.19). In 2011, for the 3D case without traps,

Chen and Pavlović [11] proved that, for β ∈ (0, 1/4) , the limit of
{
γ
(k)
N

}
actually satisfies

the space-time bound assumed by Klainerman and Machedon [39] as N → ∞. This has

been a well-known open problem in the field. In 2012, X.C. [17] extended and simplified

their method to study the 3D trapping problem for β ∈ (0, 2/7].

The β = 0 case has been studied by many authors as well [22, 7, 40, 45, 48].

Away from the usage of the BBGKY hierarchy, there has been work by X.C., Grillakis,

Machedon and Margetis [31, 32, 15, 30] using the second order correction which can deal

with eitHNψN directly.

To our knowledge, this is the first direct rigorous treatment of the 3D to 2D dynamic

problem. We now compare our theorem with the known work which derives nD cubic NLS

from the nD quantum many-body dynamic. It is easy to tell that Theorem 1.2 deals with

a different limit than the known work [3, 21, 23, 24, 25, 26, 27, 37, 10, 16, 11, 17] which

derives nD NLS from nD dynamics. On the one hand, Theorem 1.2 deals with a 3D to

2D effect. Such a phenomenon is described by the limit equation (1.16) and the coupling

constant
∫
|h1(z)|4 dz. The limit in Theorem 1.2 is with the scaling

lim
N,ω→∞

N>ωv(β)+ε

N
√
ω scat

(
VN,ω
N

)
= constant,

instead of the scaling

lim
N→∞

N scat(Nnβ−1V (Nβ·)) = constant,

in the known nD to nD work.
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The main idea of the proof of Theorem 1.2 is to investigate the limit of hierarchy (1.18)

which at a glance is similar to the nD to nD work. However, in contrast with the nD to nD

case, even the formal limit of hierarchy (1.18) is not known.

Heuristically, according to the uncertainty principle, in 3D, as the z-component of the

particles’ position becomes more and more determined to be 0, the z-component of the

momentum and thus the energy must blow up. Hence the energy of the system is dominated

by its z-directional part which is in fact infinity as N,ω →∞. This renders the energy and

thus the analysis of the x−component intractable.

Technically, it is not clear whether the term

ω
[
−∂2zj + z2j , γ̃

(k)
N,ω

]
tends to a limit as N,ω → ∞. Since γ̃

(k)
N,ω is not a factorized state for t > 0, one cannot

expect the commutator to be zero. Thus we formally have an ∞−∞ in hierarchy (1.18) as

N,ω →∞. This is the main difficulty we need to circumvent in the proof of Theorem 1.2.
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2. Outline of the proof of Theorem 1.2

We begin by setting down some notation that will be used in the remainder of the paper.

We will always assume ω ≥ 1. Note that, as an operator, we have the positivity:

−1− ∂2zj + z2j ≥ 0

Define

(2.1) S̃j
def
= (1−∆xj + ω(−1− ∂2zj + z2j ))

1/2

We have S̃2
j (φ(xj)h(zj)) = (1 −∆xj)φ(xj)h(zj) and thus the diverging ω parameter has no

consequence when the operator is applied to a tensor product function φ(xj)h(zj) for which

the zj-component rests in the ground state.

Let P0 denote the orthogonal projection onto the ground state of −∂2z + z2 and P1

denote the orthogonal projection onto all higher energy modes, so I = P0 + P1, where

I : L2(R3) → L2(R3). Let P j
0 and P j

1 be the corresponding operators acting on L2(R3N) in

the zj component, 1 ≤ j ≤ N . Then

(2.2) I =
k∏
j=1

(P j
0 + P j

1 ) , where I : L2(R3N)→ L2(R3N)

For a k-tuple α = (α1, . . . , αk) with αj ∈ {0, 1}, let Pα = P 1
α1
· · ·P k

αk
. Adopt the notation

|α| = α1 + · · ·+ αk
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This leads to the coercivity (operator lower bounds) given in Lemma A.5.

We next introduce an appropriate topology on the density matrices as was previously done

in [21, 22, 23, 24, 25, 26, 27, 37, 10, 16, 17]. Denote the spaces of compact operators and

trace class operators on L2
(
R3k
)

as Kk and L1
k, respectively. Then (Kk)′ = L1

k. By the fact

that Kk is separable, we select a dense countable subset {J (k)
i }i>1 ⊂ Kk in the unit ball of

Kk (so ‖J (k)
i ‖op 6 1 where ‖·‖op is the operator norm). For γ(k), γ̃(k) ∈ L1

k, we then define a

metric dk on L1
k by

dk(γ
(k), γ̃(k)) =

∞∑
i=1

2−i
∣∣∣Tr J

(k)
i

(
γ(k) − γ̃(k)

)∣∣∣ .
A uniformly bounded sequence γ̃

(k)
N,ω ∈ L1

k converges to γ̃(k) ∈ L1
k with respect to the weak*

topology if and only if

lim
N,ω→∞

dk(γ̃
(k)
N,ω, γ̃

(k)) = 0.

For fixed T > 0, let C ([0, T ] ,L1
k) be the space of functions of t ∈ [0, T ] with values in L1

k

which are continuous with respect to the metric dk. On C ([0, T ] ,L1
k) , we define the metric

d̂k(γ
(k) (·) , γ̃(k) (·)) = sup

t∈[0,T ]
dk(γ

(k) (t) , γ̃(k) (t)),

and denote by τ prod the topology on the space ⊕k>1C ([0, T ] ,L1
k) given by the product of

topologies generated by the metrics d̂k on C ([0, T ] ,L1
k) .

With the above topology on the space of marginal densities, we now outline the proof of

Theorem 1.2. We divide the proof into five steps.

Step I (Energy estimate). We transform, through Theorem 3.1, the energy condition (1.17)

into an “easier to use” H1 type energy bound in which the interaction V is not involved. Since

the quantity on the left-hand side of energy condition (1.17) is conserved by the evolution,

we deduce the a priori bounds on the scaled marginal densities

sup
t

Tr
k∏
j=1

(
1−4xj + ω

(
−1− ∂2zj + z2j

))
γ̃
(k)
N,ω 6 Ck

sup
t

Tr
k∏
j=1

(
1−4rj

)
γ̃
(k)
N,ω 6 Ck

sup
t

TrPαγ̃
(k)
N,ωPβ ≤ Ckω−

1
2
|α|− 1

2
|β|

via Corollary 3.1. We remark that, in contrast to the nD to nD work, the quantity

Tr (1−4r1) γ̃
(1)
N,ω

is not the one particle kinetic energy of the system; the one particle kinetic energy of the

system is Tr
(
1−4x1 − ω∂2z1

)
γ̃
(1)
N,ω and grows like ω.

Step II (Compactness of BBGKY). We fix T > 0 and work in the time-interval t ∈ [0, T ].

In Theorem 4.1, we establish the compactness of the sequence ΓN,ω(t) =
{
γ̃
(k)
N,ω

}N
k=1
∈

⊕k>1C ([0, T ] ,L1
k) with respect to the product topology τ prod even though there is an∞−∞
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in hierarchy (1.18). Moreover, in Corollary 4.1, we prove that, to be compatible with the

energy bound obtained in Step I, every limit point Γ(t) =
{
γ̃(k)
}N
k=1

must take the form

γ̃(k) (t, (xk, zk) ; (x′k, z
′
k)) = γ̃(k)x (t,xk;x

′
k)

k∏
j=1

h1 (zj)h1
(
z′j
)
,

where γ̃(k)x = Trz γ̃
(k) is the x-component of γ̃(k).

Step III (Limit points of BBGKY satisfy GP). In Theorem 5.1, we prove that if Γ(t) ={
γ̃(k)
}∞
k=1

is a N > ωv(β)+ε limit point of ΓN,ω(t) =
{
γ̃
(k)
N,ω

}N
k=1

with respect to the product

topology τ prod, then
{
γ̃(k)x = Trz γ̃

(k)
}∞
k=1

is a solution to the coupled Gross-Pitaevskii (GP)

hierarchy subject to initial data γ̃(k)x (0) = |φ0〉 〈φ0|
⊗k with coupling constant b0 =

∫
V (r) dr,

which written in differential form, is

i∂tγ̃
(k)
x =

k∑
j=1

[
−4xj , γ̃

(k)
x

]
+ b0

k∑
j=1

Trxk+1
Trz
[
δ (rj − rk+1) , γ̃

(k+1)
]
.

Together with Corollary 4.1, we then deduce that
{
γ̃(k)x = Trz γ̃

(k)
}∞
k=1

is a solution to the

well-known 2D GP hierarchy subject to initial data γ̃(k)x (0) = |φ0〉 〈φ0|
⊗k with coupling

constant b0
(∫
|h1 (z)|4 dz

)
, which, written in differential form, is

(2.3) i∂tγ̃
(k)
x =

k∑
j=1

[
−4xj , γ̃

(k)
x

]
+ b0

(∫
|h1 (z)|4 dz

) k∑
j=1

Trxk+1

[
δ (xj − xk+1) , γ̃

(k+1)
x

]
.

Step IV (GP has a unique solution). When γ̃(k)x (0) = |φ0〉 〈φ0|
⊗k , we know one solution to

the 2D Gross-Pitaevskii hierarchy (2.3), namely |φ〉 〈φ|⊗k, where φ solves equation (1.16).

Since we have the a priori bound

sup
t

Tr
k∏
j=1

(
1−4xj

)
γ̃(k)x 6 Ck,

the uniqueness theorem (Theorem 6.3) then gives that γ̃(k)x = |φ〉 〈φ|⊗k. Thus the compact

sequence ΓN,ω(t) =
{
γ̃
(k)
N,ω

}N
k=1

has only one N > ωv(β)+ε limit point, namely

γ̃(k) =
k∏
j=1

φ(t, xj)φ(t, x′j)h1 (zj)h1(z
′
j) .

By the definition of the topology, we know, as trace class operators

γ̃
(k)
N,ω →

k∏
j=1

φ(t, xj)φ(t, x′j)h1 (zj)h1(z
′
j) weak*.

Remark 1. This is in fact the very first time that the Klainerman-Machedon theory applies

to a 3D many-body system with β > 1/3. The previous best is β ∈ (0, 2/7] in [17] after

the β ∈ (0, 1/4) work [11]. Of course, we are not actually using any 3D Gross-Pitaevskii

hierarchies here.
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Step V (Weak convergence upgraded to strong). We use the argument in the bottom of p.

296 of [27] to conclude that the weak* convergence obtained in Step IV is in fact strong. We

include this argument for completeness. We test the sequence obtained in Step IV against

the compact observable

J (k) =
k∏
j=1

φ(t, xj)φ(t, x′j)h1 (zj)h1(z
′
j),

and notice the fact that
(
γ̃
(k)
N,ω

)2
6 γ̃

(k)
N,ω since the initial data is normalized, we see that as

Hilbert-Schmidt operators

γ̃
(k)
N,ω →

k∏
j=1

φ(t, xj)φ(t, x′j)h1 (zj)h1(z
′
j) strongly.

Since Tr γ̃
(k)
N,ω = Tr γ̃(k), we deduce the strong convergence

lim
N,ω→∞

N>ωv(β)+ε

Tr

∣∣∣∣∣γ̃(k)N,ω(t,xk, zk;x
′
k, z
′
k)−

k∏
j=1

φ(t, xj)φ(t, x′j)h1 (zj)h1(z
′
j)

∣∣∣∣∣ = 0,

via the Grümm’s convergence theorem [50, Theorem 2.19]

3. Energy estimate

We find it more convenient to prove the energy estimate for ψN,ω and then convert it by

scaling to an estimate for ψ̃N,ω (see (1.10)). Note that, as an operator, we have the positivity:

−ω − ∂2zj + ω2z2j ≥ 0

Define

Sj
def
= (1−∆xj − ω − ∂2zj + ω2z2j )

1/2 = (1− ω −∆rj + ω2z2j )
1/2

Theorem 3.1. Let the Hamiltonian be defined as in (1.7) with β ∈ (0, 2/5). Then for all

ε > 0, there exists a constant C > 0, and for all ω, k > 0, there exists N0(k, ω) such that

(3.1)
〈
ψN,ω, (N +HN,ω −Nω)k ψN,ω

〉
> CkNk

∥∥∥∥∥
k∏
j=1

SjψN,ω

∥∥∥∥∥
2

L2(R3N )

for all N > ωv(β)+ε, and all ψ ∈ L2
s

(
R3N

)
∩ D(Hk

N,ω).

Proof. We adapt the proof of [21, Prop. 3.1] to accommodate the operator −ω − ∂2zj + ω2z2j
in place of −∂2zj . The case k = 0 is trivial and the case k = 1 follows from the positivity of

V and symmetry of ψ. We proceed by induction. Suppose that the result holds for k = n,

and we will prove it for k = n+ 2. By the induction hypothesis,

(3.2)

〈ψ, (N −Nω +HN,ω)n+2ψ〉

≥ CnNn〈ψ, (N −Nω +HN,ω)
n∏
j=1

S2
j (N −Nω +HN,ω)ψ〉
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For convenience, let

Ṽ (r) = (N
√
ω)3β−1V ((N

√
ω)βr)

Expand

N −Nω +HN,ω =
N∑

`=n+1

S2
` +

(
n∑
`=1

S2
` +HI

N,ω

)
and substitute in both occurrences of the operator N −Nω+HN,ω in the right side of (3.2)

to obtain four terms. We ignore the last (positive) one of these terms to obtain

(3.3) 〈ψ, (N −Nω +HN,ω)n+2ψ〉 ≥ CnNn(I + II + III)

We have

I =
N∑

`1,`2=n+1

〈ψ, S2
`1
S2
`2

n∏
j=1

S2
jψ〉

In this double sum, there are (N − n)(N − n− 1) terms where `1 6= `2 that are all the same

by symmetry, and there are (N −n) terms where `1 = `2 that are all the same by symmetry.

We have

(3.4) I = (N − n)(N − n− 1)〈ψ,
n+2∏
j=1

S2
jψ〉+ (N − n)〈ψ, S2

1

n+1∏
j=1

S2
jψ〉

the first of which will ultimately fulfill the induction claim. In (3.3), we also have

II + III = 2
N∑

`1=n+1

n∑
`2=1

〈ψ, S2
`1

n∏
j=1

S2
jS

2
`2
ψ〉+

N∑
`=n+1

〈ψ, S2
`

n∏
j=1

S2
jH

I
N,ωψ〉

+
N∑

`=n+1

〈ψ,HI
N,ω

n∏
j=1

S2
jS

2
`ψ〉

Exploiting symmetry this becomes

(3.5) II + III = 2(N − n)n〈ψ, S2
1

n+1∏
j=1

S2
jψ〉+ 2(N − n) Re〈ψ,

n+1∏
j=1

S2
jH

I
N,ωψ〉

In the first term, we have applied the permutation that swaps `1 and n + 1 and `2 and 1.

In the second and third terms, we have applied the permutation σ that swaps ` and n + 1.

Strictly speaking, this permutation maps HI
N,ω to HI

N,ω,σ where

HI
N,ω,σ

def
=

1

Nω1/2

∑
1≤i<j≤N

(Nω1/2)3βV ((±1)(Nω1/2)β(ri − rj))

where ±1 is chosen according to the affect of the permutation on the pair (i, j). The dis-

tinction between HI
N,ω and HI

N,ω,σ is inconsequential for the remainder of the analysis (and

in fact HI
N,ω = HI

N,ω,σ if V is even), so we have ignored it in (3.5). The first of the terms

in (3.5) is positive – it is the second term that requires attention; in particular, we have to

manage commutators.



2D NLS FROM 3D QUANTUM MANY-BODY DYNAMIC 15

Assuming N ≥ 2n+ 2, we substitute (3.4), (3.5) into (3.3) to obtain

(3.6)

〈ψ, (N −Nω +HN,ω)n+2ψ〉 ≥ 1
4
CnNn+2〈ψ,

n+2∏
j=1

S2
jψ〉+ CnNn+1〈ψ, S2

1

n+1∏
j=1

S2
jψ〉

+2CnNn(N − n) Re〈ψ,
n+1∏
j=1

S2
jH

I
N,ωψ〉 =: D + E + F

The first two terms, D and E, in (3.6) are positive. The third term F will be decomposed

into components, some of which are positive and others that can be bounded in terms of the

first two terms appearing in (3.6). In the expression for HI
N,ω, there are

• 1
2
(n+ 1)n terms of the form Ṽ (ri − rj) for 1 ≤ i < j ≤ n+ 1.

• (n+ 1)(N −n− 1) terms of the form Ṽ (ri− rj) for 1 ≤ i ≤ n+ 1 and n+ 2 ≤ j ≤ N .

• 1
2
(N − n− 1)(N − n− 2) terms of the form Ṽ (ri − rj) for n+ 2 ≤ i < j ≤ N .

For convenience, let

Vij
def
= (Nω1/2)3β−1V ((Nω1/2)β(ri − rj))

Using symmetry, we obtain

F = 2CnNn(N − n)(n+ 1)nRe〈ψ,
n+1∏
j=1

S2
jV12ψ〉

+ 2CnNn(N − n)(n+ 1)(N − n− 1) Re〈ψ,
n+1∏
j=1

S2
jV1(n+2)ψ〉

+ CnNn(N − n)(N − n− 1)(N − n− 2) Re〈ψ,
n+1∏
j=1

S2
jV(n+2)(n+3)ψ〉

=: F1 + F2 + F3

The last term F3 is positive since each Sj for 1 ≤ j ≤ n+ 1 commutes with V(n+2)(n+3). We

will show F1 ≥ −1
2
E and F2 ≥ −1

2
D provided N ≥ N0(n), which together with (3.6) will

complete the induction argument. We have

F1 = 2CnNn(N − n)(n+ 1)nRe〈ψ,
n+1∏
j=1

S2
jV12ψ〉

= 2CnNn(N − n)(n+ 1)nRe

∫
r3,...,rN

〈f, S2
1S

2
2V12f〉r1,r2︸ ︷︷ ︸
=:F̃1

dr3 · · · drN

where f =
∏n+1

j=3 Sjψ. We can regard r3, . . . , rN as frozen in the following computation, so

to prove |F1| ≤ 1
2
E, it will suffice to show that

(3.7) |F̃1| ≤ 1
4
n−2‖S2

1S2f‖2L2
r1
L2
r2
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Toward this end, we have

|F̃1| = |〈S2
1f, V12S

2
2f〉+ 2〈S2

1f,∇r2V12 · ∇r2f〉+ 〈S2
1f, (∆r2V12) f〉|

. ‖S2
1f‖L2

r1
L6
r2
‖V12‖L∞r1L3

r2
‖S2

2f‖L2
r1
L2
r2

+ ‖S2
1f‖L2

r1
L6
r2
‖∇r2V12‖L∞r1L3/2

r2

‖∇r2f‖L2
r1
L6
r2

+ ‖S2
1f‖L2

r1
L6
r2
‖∆r2V12‖L∞r1L6/5

r2

‖f‖L2
r1
L∞r2

By evaluation of

‖V12‖L3
r2
∼ (Nω1/2)2β−1 , ‖∇r2V12‖L3/2

r2

∼ (Nω1/2)2β−1 , ‖∆r2V12‖L6/5
r2

∼ (Nω1/2)
5
2
β−1

the above estimate reduces to

|F̃1| . (Nω1/2)2β−1‖S2
1f‖L2

r1
L6
r2
‖S2

2f‖L2
r1
L2
r2

+ (Nω1/2)2β−1‖S2
1f‖L2

r1
L6
r2
‖∇r2f‖L2

r1
L6
r2

+ (Nω1/2)
5
2
β−1‖S2

1f‖L2
r1
L6
r2
‖f‖L2

r1
L∞r2

Applying Lemma A.4, this reduces further to

|F̃1| . (Nω1/2)2β−1ω1/6‖S2
1S2f‖L2

r1
L2
r2
‖S2

2f‖L2
r1
L2
r2

+ (Nω1/2)2β−1ω1/6ω2/3‖S2
1S2f‖L2

r1
L2
r2
‖S2

2f‖L2
r1
L2
r2

+ (Nω1/2)
5
2
β−1ω1/6ω1/4‖S2

1S2f‖L2
r1
L2
r2
‖S2

2f‖L2
r1
L2
r2

Hence we need β < 2
5

and conditions (3.13), (3.11) below to achieve (3.7).

Let us now establish F2 ≥ −1
2
D. We have

F2 = 2CnNn(N − n)(n+ 1)(N − n− 1) Re〈ψ,
n+1∏
j=1

S2
jV1(n+2)ψ〉

= 2CnNn(N − n)(n+ 1)(N − n− 1)

∫
〈f, S2

1V1(n+2)f〉r1,rn+2︸ ︷︷ ︸
=:F̃2

dr2 · · · drn+1drn+3 · · · drN

where f =
∏n+1

j=2 Sjψ. Now

F̃2 = 〈f, (−ω − ∂2z1 + ω2z21)V1(n+2)f〉r1,rn+2

= −ω〈f, V1(n+2)f〉r1rn+2 + 〈∂z1f, (∂z1V1(n+2))f〉r1rn+2

+ 〈∂z1f, V1(n+2)∂z1f〉r1rn+2 + 〈f, ω2z21f〉r1rn+2

=: F̃2,1 + F̃2,2 + F̃2,3 + F̃2,4

Note that F̃2,3 and F̃2,4 are positive and can thus be disregarded. To prove F2 ≥ −1
2
D, it

suffices to prove

(3.8) |F̃2,1|+ |F̃2,2| ≤ 1
16
n−1‖S1Sn+2f‖2L2

r1
L2
rn+2

But

|F̃2,1| . ω‖f‖L2
r1
L6
rn+2
‖V1(n+2)‖L∞r1L3/2

rn+2

‖f‖L2
r1
L6
rn+2

By Lemma A.4 and ‖V1(n+2)‖L∞r1L3/2
rn+2

∼ (Nω1/2)β−1, we obtain

(3.9) |F̃2,1| . ω4/3(Nω1/2)β−1‖Sn+2f‖2L2
r1
L2
rn+2
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The upper bound in (3.8) will be achieved provided (3.12) below holds. Also,

|F̃2,2| . ‖∂z1f‖L2
r1
L6
rn+2
‖∂z1V1(n+2)‖L∞r1L3/2

rn+2

‖f‖L2
r1
L6
rn+2

Note that ‖∂z1V1(n+2)‖L∞r1L3/2
rn+2

∼ (Nω1/2)2β−1. By Lemma A.4,

‖∂z1f‖L2
r1
L6
rn+2
. ω1/6‖Sn+2∂z1f‖L2

r1
L2
rn+2
. ω2/3‖S1Sn+2f‖L2

r1
L2
rn+2

and ‖f‖L2
r1
L6
rn+2
. ω1/6‖Sn+2f‖L2

r1
L2
rn+2

. From this, it follows that

(3.10) |F̃2,2| . ω5/6(Nω1/2)2β−1‖S1Sn+2f‖L2
r1
L2
rn+2
‖Sn+2f‖L2

r1
L2
rn+2

The upper bound in (3.8) will be achieved provided (3.13) holds. By (3.9), (3.10), we obtain

(3.8), completing the proof. Let us collect the conditions on N and ω. We have

(Nω1/2)
5
2
β−1ω5/12 � n−2 ⇐⇒ N � ω

5
4β−

1
12

1− 5
2β n

2

1− 5
2β(3.11)

(Nω1/2)β−1ω4/3 � n−1 ⇐⇒ N � ω
1
2β+

5
6

1−β n
1

1−β(3.12)

(Nω1/2)2β−1ω5/6 � n−1 ⇐⇒ N � ω
β+1

3
1−2βn

1
1−2β(3.13)

The requirement that (3.11), (3.12), and (3.13) hold is imposed in the definition (1.15) of

v(β). �

Now consider the rescaled operator (2.1) so that

(Sjψ)(t,xN , zN) = ωN/4(S̃jψ̃)(t,xN ,
√
ωzN) .

We will convert the conclusions of Theorem 3.1 into statements about ψ̃, S̃j, and γ̃
(k)
N,ω

that we will then apply in the remainder of the paper.

Corollary 3.1. Let ψ̃N,ω(t) = eitH̃N,ω ψ̃N,ω(0) and {γ̃(k)N,ω(t)} be the marginal densities as-

sociated with it, then for all ω ≥ 1 , k ≥ 0, N ≥ ωv(β)+ε, we have the uniform-in-time

bound

(3.14) Tr
k∏
j=1

S̃2
j γ̃

(k)
N,ω =

∥∥∥∥∥
k∏
j=1

S̃jψ̃N,ω(t)

∥∥∥∥∥
2

L2(R3N )

≤ Ck

Consequently,

(3.15) Tr
k∏
j=1

(1−∆rj)γ̃
(k)
N,ω =

∥∥∥∥∥
k∏
j=1

(1−∆rj)
1/2ψ̃N,ω(t)

∥∥∥∥∥
2

L2(R3N )

≤ Ck

and

(3.16) ‖Pαψ̃N,ω‖L2(R3N ) ≤ Ckω−|α|/2 , TrPαγ̃
(k)
N,ωPβ ≤ Ckω−

1
2
|α|− 1

2
|β|

Proof. Substituting (1.10) into (3.1) of Theorem 3.1 and rescaling, we obtain

(3.17) 〈ψ̃N,ω, (N − H̃N,ω −Nω)kψ̃N,ω〉 ≥ CkNk

∥∥∥∥∥
k∏
j=1

S̃jψ̃N,ω

∥∥∥∥∥
2

L2(R3N )
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Since N − H̃N,ω −Nω is self-adjoint and [H̃N,ω, N − H̃N,ω −Nω] = 0,

∂t〈ψ̃N,ω, (N − H̃N,ω −Nω)kψ̃N,ω〉 = 0

Hence by (3.17),

CkNk

∥∥∥∥∥
k∏
j=1

S̃jψ̃N,ω(t)

∥∥∥∥∥
2

L2(R3N )

≤〈ψ̃N,ω(t), (N − H̃N,ω −Nω)kψ̃N,ω(t)〉

= 〈ψ̃N,ω(0), (N − H̃N,ω −Nω)kψ̃N,ω(0)〉 ≤ (C ′)kNk

where the last estimate follows from the hypothesis (1.17) of Theorem 1.2.

The inequality (3.15) follows from (3.14) and (A.27). The inequality on the left of (3.16)

follows from (A.29) and (3.14). By Lemma A.6, TrPαγ̃
(k)
N,ωPβ = 〈Pαψ̃N,ω, Pβψ̃N,ω〉, so the

inequality on the right of (3.16) follows by Cauchy-Schwarz. �

4. Compactness of the BBGKY sequence

Theorem 4.1. The sequence

ΓN,ω(t) =
{
γ̃
(k)
N,ω

}N
k=1
∈
⊕
k>1

C
(
[0, T ] ,L1

k

)
which satisfies the ∞−∞ BBGKY hierarchy (1.18), is compact with respect to the product

topology τ prod. For any limit point Γ(t) =
{
γ̃(k)
}N
k=1

, γ̃(k) is a symmetric nonnegative trace

class operator with trace bounded by 1.

We establish Theorem 4.1 at the end of this section. With Theorem 4.1, we can start

talking about the limit points of ΓN,ω(t) = {γ̃(k)N,ω}Nk=1.

Corollary 4.1. Let Γ(t) = {γ̃(k)}∞k=1 be a limit point of ΓN,ω(t) = {γ̃(k)N,ω}Nk=1 with respect to

the product topology τ prod, then γ̃(k) satisfies

(4.1) Tr
k∏
j=1

(
1−4rj

)
γ̃(k) 6 Ck

(4.2) γ̃(k) (t, (xk, zk) ; (x′k, z
′
k)) = γ̃(k)x (t,xk;x

′
k)

k∏
j=1

h1 (zj)h1
(
z′j
)

Proof. The estimate (4.1) is a direct consequence of (3.15) in Corollary 3.1 and Theorem

4.1. The formula (4.2) is equivalent to the statement that if either α 6= 0 or β 6= 0, then

Pαγ̃
(k)Pβ = 0. This is equivalent to the statement that for any J (k) ∈ Kk, Tr J (k)Pαγ̃

(k)Pβ =

0. However,

(4.3) Tr J (k)Pαγ̃
(k)Pβ = lim

(N,ω)→∞
Tr J (k)Pαγ̃

(k)
N,ωPβ

By Lemma A.6,

Tr J (k)Pαγ̃
(k)
N,ωPβ = 〈J (k)Pαψ̃N,ω, Pβψ̃N,ω〉rk
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and by Cauchy-Schwarz and (3.16),

|Tr J (k)Pαγ̃
(k)
N,ωPβ| ≤ ‖J (k)‖op‖Pαψ̃N,ω‖L2(R3N )‖Pβψ̃N,ω‖L2(R3N ) ≤ Ckω−

1
2
|α|− 1

2
|β|

Hence the right side of (4.3) is 0. �

Proof of Theorem 4.1. By the standard diagonalization argument, it suffices to show the

compactness of γ̃
(k)
N,ω for fixed k with respect to the metric d̂k. By the Arzelà-Ascoli theorem,

this is equivalent to the equicontinuity of γ̃
(k)
N,ω, and by [27, Lemma 6.2], this is equivalent

to the statement that for every observable J (k) from a dense subset of K(L2(R3k)) and for

every ε > 0, there exists δ(J (k), ε) such that for all t1, t2 ∈ [0, T ] with |t1 − t2| 6 δ, we have

(4.4) sup
N,ω

∣∣∣Tr J (k)γ̃
(k)
N,ω(t1)− Tr J (k)γ̃

(k)
N,ω(t2)

∣∣∣ 6 ε .

We assume that our compact operators J (k) have been cutoff as in Lemma A.7. Assume

t1 ≤ t2. Inserting the decomposition (2.2) on the left and right side of γ
(k)
N,ω, we obtain

γ̃
(k)
N,ω =

∑
α,β

Pαγ̃
(k)
N,ωPβ

where the sum is taken over all k-tuples α and β of the type described above.

To establish (4.4) it suffices to establish, for each α and β

(4.5) sup
N,ω

∣∣∣Tr J (k)Pαγ̃
(k)
N,ωPβ(t1)− Tr J (k)Pαγ̃

(k)
N,ωPβ(t2)

∣∣∣ 6 ε .

Below, we establish the estimate

(4.6)

|Tr J (k)Pαγ̃
(k)
N,ωPβ(t2)− Tr J (k)Pαγ̃

(k)
N,ωPβ(t1)|

. |t2 − t1|

{
1 if both α = 0 and β = 0

max(1, ω1− 1
2
|α|− 1

2
|β|) otherwise

Estimate (4.6) suffices to prove (4.5) except when |α| = 0 and |β| = 1 or vice versa, in which

case it yields the upper bound ω1/2|t2− t1| with the adverse factor ω1/2. On the other hand,

we can also prove the (comparatively simpler) bound

(4.7) |Tr J (k)Pαγ̃
(k)
N,ωPβ(t2)− Tr J (k)Pαγ̃

(k)
N,ωPβ(t1)| . ω−

1
2
|α|− 1

2
|β|

that provides no gain as t2 → t1, but a better power of ω. By averaging (4.6) and (4.7) in

the case |α| = 0 and |β| = 1 (or vice versa), we obtain

|Tr J (k)Pαγ̃
(k)
N,ωPβ(t2)− Tr J (k)Pαγ̃

(k)
N,ωPβ(t1)| . |t2 − t1|1/2

which suffices to establish (4.5).
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Thus, it remains to prove both (4.6) and (4.7), and we begin with (4.6). Hierarchy (1.18)

yields

(4.8) i∂t Pαγ̃
(k)
N,ωPβ =

k∑
j=1

[
−4xj , Pαγ̃

(k)
N,ωPβ

]
+

k∑
j=1

ω
[
−∂2zj + z2j , Pαγ̃

(k)
N,ωPβ

]

+
1

N

k∑
i<j

Pα

[
VN,ω (ri − rj) , γ̃(k)N,ω

]
Pβ

+
N − k
N

Trrk+1

k∑
j=1

Pα

[
VN,ω (rj − rk+1) , γ̃

(k+1)
N,ω

]
Pβ

Let

I = −i
k∑
j=1

Tr J (k)[−∆xj , Pαγ̃
(k)
N,ωPβ]

(4.9) II = −ωi
k∑
j=1

Tr J (k)[−∂2zj + z2j , Pαγ̃
(k)
N,ωPβ]

III = −iN−1
∑

1≤i<j≤k
Tr J (k)Pα[VN,ω(ri − rj), γ̃(k)N,ω]Pβ

IV = −iN − k
N

k∑
j=1

Tr J (k)Pα[VN,ω(rj − rk+1), γ̃
(k+1)
N,ω ]Pβ

Then it follows from (4.8) that

(4.10) ∂t Tr J (k)Pαγ̃
(k)
N,ωPβ = I + II + III + IV

First, consider I. Applying Lemma A.6 and then integration by parts, we obtain

I = i
k∑
j=1

(
〈J (k)∆xjPαψ, Pβψ〉rk − 〈J (k)Pαψ, Pβ∆xjψ〉rk

)
= i

k∑
j=1

(
〈J (k)∆xjPαψ, Pβψ〉rk − 〈∆xjJ

(k)Pαψ, Pβψ〉rk
)

Hence

(4.11) |I| ≤
k∑
j=1

(‖J (k)∆xj‖op + ‖∆xjJ
(k)‖op)‖Pαψ‖L2(R3N )‖Pβψ‖L2(R3N ) ≤ Ck,J(k)

where in the last step we applied the energy estimate.

Now, consider II. When α = 0 and β = 0, we use that

II = −ωi
k∑
j=1

Tr J (k)[1− ∂2zj + z2j , Pαγ̃
(k)
N,ωPβ] = 0
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Otherwise, we proceed directly from (4.9), applying Lemma A.6 and integration by parts to

obtain (Hj = −∂2zj + z2j )

II = ωi

k∑
j=1

〈J (k)HjPαψ, Pβψ〉 − 〈J (k)Pαψ,HjPβψ〉

= ωi

k∑
j=1

〈J (k)HjPαψ, Pβψ〉 − 〈HjJ
(k)Pαψ, Pβψ〉

Hence

|II| . ω

k∑
j=1

(‖J (k)Hj‖op + ‖HjJ
(k)‖op)‖Pαψ‖L2(R3N )‖Pβψ‖L2(R3N )

By the energy estimates,

(4.12) II

{
= 0 if α = 0 and β = 0

. Ck,J(k) ω1− 1
2
|α|− 1

2
|β| otherwise

Now, consider III.

III = −iN−1
∑

1≤i<j≤k
〈J (k)PαVN,ω(ri − rj)ψ, Pβψ〉 − 〈J (k)Pαψ, PβVN,ω(ri − rj)ψ〉

= −iN−1
∑

1≤i<j≤k
〈J (k)PαVN,ω(ri − rj)ψ, Pβψ〉 − 〈Pαψ, J

(k)PβVN,ω(ri − rj)ψ〉

Let Li = (1−∆ri)
1/2 and

Wij = L−1i L−1j VN,ω(ri − rj)L−1i L−1j .

Then

III = −iN−1
∑

1≤i<j≤k
〈J (k)PαLiLjWijLiLjψ, Pβψ〉 − 〈Pαψ, J

(k)PβLiLjWijLiLjψ〉

Hence

|III| . N−1‖J (k)LiLj‖op‖Wij‖op‖LiLjψ‖L2(R3N )‖Pβψ‖L2(R3N )

+N−1‖Pαψ‖L2(R3N )‖J (k)LiLj‖op‖Wij‖op‖LiLjψ‖L2(R3N )

By Lemma A.1, ‖Wij‖op . ‖VN,ω‖L1 = ‖V ‖L1 (independent of N , ω), and hence the energy

estimates imply that

(4.13) |III| . Ck,J(k) N−1

Now consider IV.

IV = −iN − k
N

k∑
j=1

(
〈J (k)PαVN,ω(rj − rk+1)ψ, Pβψ〉 − 〈J (k)Pαψ, PβVN,ω(rj − rk+1)ψ〉

)
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Then, since J (k)Lk+1 = Lk+1J
(k),

IV = − iN − k
N

k∑
j=1

〈J (k)LjPαWj(k+1)LjLk+1ψ, PβLk+1ψ〉

− iN − k
N

k∑
j=1

〈LjJ (k)PαLk+1ψ, PβWj(k+1)LjLk+1ψ〉

Estimating yields

|IV| .
k∑
j=1

(‖J (k)Lj‖op + ‖LjJ (k)‖op)‖Wj(k+1)‖op‖LjLk+1ψ‖L2(R3N )‖Lk+1ψ‖L2(R3N )

By (3.15),

(4.14) |IV| . Ck,J(k)

Integrating (4.10) from t1 to t2 and applying the bounds obtained in (4.11), (4.12), (4.13),

and (4.14), we obtain (4.6).

Finally, we proceed to prove (4.7). We have, by Lemma A.1,

|Tr J (k)Pαγ̃
(k)
N,ωPβ(t2)− Tr J (k)Pαγ̃

(k)
N,ωPβ(t1)|

≤ 2 sup
t
|〈J (k)Pαψ̃N,ω(t), Pβψ̃N,ω(t)〉rk |

. ‖J (k)‖op‖Pαψ̃N,ω(t)‖L2(R3N )‖Pβψ̃N,ω(t)‖L2(R3N )

. ω−
1
2
|α|− 1

2
|β|

where in the last step we applied (3.16).

�

According to Corollary 4.1, the study of the limit point of ΓN,ω(t) =
{
γ̃
(k)
N,ω

}N
k=1

is directly

related to the sequence Γx,N,ω(t) =
{
γ̃
(k)
x,N,ω = Trz γ̃

(k)
N,ω

}N
k=1
∈ ⊕k>1C

(
[0, T ] ,L1

k

(
R2k
))
. We

will do so in Section 5. We end this section on compactness by proving that Γx,N,ω(t) is

compact with respect to the two dimensional version of the product topology τ prod used in

Theorem 4.1. This proof is not as delicate as the proof of Theorem 4.1 because we do not

need to deal with ∞−∞ here.

Theorem 4.2. The sequence

Γx,N,ω(t) =
{
γ̃
(k)
x,N,ω = Trz γ̃

(k)
N,ω

}N
k=1
∈
⊕
k>1

C
(
[0, T ] ,L1

k

(
R2k
))
.

is compact with respect to the two dimensional version of the product topology τ prod used in

Theorem 4.1.
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Proof. Similar to Theorem 4.1, we show that for every observable J
(k)
x from a dense subset

of K
(
L2
(
R2k
))

and for every ε > 0, ∃δ(J (k)
x , ε) s.t. ∀t1, t2 ∈ [0, T ] with |t1 − t2| 6 δ, we have

sup
N,ω

∣∣∣Tr J (k)
x

(
γ̃
(k)
x,N,ω (t1)− γ̃(k)x,N,ω (t2)

)∣∣∣ 6 ε.

We utilize the observables J
(k)
x ∈ K

(
L2
(
R2k
))

which satisfy∥∥∥〈∇xi〉
〈
∇xj

〉
J (k)
x 〈∇xi〉

−1 〈∇xj

〉−1∥∥∥
op

+
∥∥∥〈∇xi〉

−1 〈∇xj

〉−1
J (k)
x 〈∇xi〉

〈
∇xj

〉∥∥∥
op
<∞.

Here we choose similar but different observables from the proof of Theorem 4.1 since γ̃
(k)
x,N,ω

acts on L2
(
R2k
)

instead of L2
(
R3k
)
. This seems to make a difference when we deal with

the terms involving γ̃
(k)
N,ω or γ̃(k). But J

(k)
x does nothing on the z variable, hence

∥∥LjJ (k)
x L−1j

∥∥
op
∼

∥∥∥∥∥(〈∇xj

〉
+ ∂zj

)
J (k)
x

1(〈
∇xj

〉
+ ∂zj

)∥∥∥∥∥
op

6

∥∥∥∥∥〈∇xj

〉
J (k)
x

1(〈
∇xj

〉
+ ∂zj

)∥∥∥∥∥
op

+

∥∥∥∥∥J (k)
x

∂zj(〈
∇xj

〉
+ ∂zj

)∥∥∥∥∥
op

6
∥∥∥〈∇xj

〉
J (k)
x

〈
∇xj

〉−1∥∥∥
op

+
∥∥J (k)

x

∥∥
op
,

i.e. ‖LjJ (k)
x L−1j ‖op, ‖L−1j J

(k)
x Lj‖op, ‖LiLjJ (k)

x L−1i L−1j ‖op and ‖L−1i L−1j J
(k)
x LiLj‖op are all fi-

nite. It is true that J
(k)
x and the related operators listed are only in L∞

(
L2
(
R3k
))

, but this

is good enough for our purpose here.

Taking Trz on both sides of hierarchy (1.18), we have that γ̃
(k)
x,N,ω satisfies the coupled

BBGKY hierarchy:

i∂tγ̃
(k)
x,N,ω =

k∑
j=1

[
−4xj , γ̃

(k)
x,N,ω

]
+

1

N

k∑
i<j

Trz

[
VN,ω (ri − rj) , γ̃(k)N,ω

]
(4.15)

+
N − k
N

k∑
j=1

Trxk+1
Trz

[
VN,ω (rj − rk+1) , γ̃

(k+1)
N,ω

]
.

Assume t1 6 t2, the above hierarchy yields∣∣∣Tr J (k)
x

(
γ̃
(k)
x,N,ω (t1)− γ̃(k)x,N,ω (t2)

)∣∣∣
6

k∑
j=1

∫ t2

t1

∣∣∣Tr J (k)
x

[
−4xj , γ̃

(k)
x,N,ω

]∣∣∣ dt+
1

N

k∑
i<j

∫ t2

t1

∣∣∣Tr J (k)
x

[
VN,ω (ri − rj) , γ̃(k)N,ω

]∣∣∣ dt
+
N − k
N

k∑
j=1

∫ t2

t1

∣∣∣Tr J (k)
x

[
VN,ω (rj − rk+1) , γ̃

(k+1)
N,ω

]∣∣∣ dt.
=

k∑
j=1

∫ t2

t1

I (t) dt+
1

N

k∑
i<j

∫ t2

t1

II (t) dt+
N − k
N

k∑
j=1

∫ t2

t1

III (t) dt.



24 XUWEN CHEN AND JUSTIN HOLMER

For I, we have∣∣∣Tr J (k)
x

[
−4xj , γ̃

(k)
x,N,ω

]∣∣∣
=

∣∣∣Tr J (k)
x

[〈
∇xj

〉2
, γ̃

(k)
x,N,ω

]∣∣∣ (1 commutes with everything)

=
∣∣∣Tr
〈
∇xj

〉−1
J (k)
x

〈
∇xj

〉2
γ̃
(k)
x,N,ω

〈
∇xj

〉
− Tr

〈
∇xj

〉
J (k)
x

〈
∇xj

〉−1 〈∇xj

〉
γ̃
(k)
x,N,ω

〈
∇xj

〉∣∣∣
6

(∥∥∥〈∇xj

〉−1
J (k)
x

〈
∇xj

〉∥∥∥
op

+
∥∥∥〈∇xj

〉
J (k)
x

〈
∇xj

〉−1∥∥∥
op

)
Tr
〈
∇xj

〉
γ̃
(k)
x,N,ω

〈
∇xj

〉
6 CJ Tr

〈
∇xj

〉2
γ̃
(k)
N,ω

6 CJ (Corollary 3.1).

for II and III, we have

II =
∣∣∣Tr J (k)

x

[
VN,ω (ri − rj) , γ̃(k)N,ω

]∣∣∣
= |TrL−1i L−1j J (k)

x LiLjWijLiLj γ̃
(k)
N,ωLiLj − TrLiLjJ

(k)
x L−1i L−1j LiLj γ̃

(k)
N,ωLiLjWij|

6
(∥∥L−1i L−1j J (k)

x LiLj
∥∥
op

+
∥∥LiLjJ (k)

x L−1i L−1j
∥∥
op

)
‖Wij‖op TrLiLj γ̃

(k)
N,ωLiLj

6 CJ ,

and similarly,

III =
∣∣∣Tr J (k)

x

[
VN,ω (rj − rk+1) , γ̃

(k+1)
N,ω

]∣∣∣
= |TrL−1j L−1k+1J

(k)
x LjLk+1Wj(k+1)LjLk+1γ̃

(k+1)
N,ω LjLk+1

−TrLjLk+1J
(k)
x L−1j L−1k+1LjLk+1γ̃

(k+1)
N,ω LjLk+1Wj(k+1)|

6
(∥∥L−1j J (k)

x Lj
∥∥
op

+
∥∥LjJ (k)

x L−1j
∥∥
op

)∥∥Wj(k+1)

∥∥
op

TrLjLk+1γ̃
(k+1)
N,ω LjLk+1

6 CJ .

Up to this point, we have proven uniform in time bounds for I - III, thus we conclude the

compactness of the sequence Γx,N,ω(t) =
{
γ̃
(k)
x,N,ω

}N
k=1

. �

5. Limit points satisfy GP hierarchy

Theorem 5.1. Let Γ(t) =
{
γ̃(k)
}∞
k=1

be a N > ωv(β)+ε limit point of ΓN,ω(t) =
{
γ̃
(k)
N,ω

}N
k=1

with respect to the product topology τ prod, then
{
γ̃(k)x = Trz γ̃

(k)
}∞
k=1

is a solution to the coupled

Gross-Pitaevskii hierarchy subject to initial data γ̃(k)x (0) = |φ0〉 〈φ0|
⊗k with coupling constant

b0 =
∫
V (r) dr, which, written in integral form, is

(5.1) γ̃(k)x = U (k)(t)γ̃(k)x (0)− ib0
k∑
j=1

∫ t

0

U (k)(t− s) Trxk+1
Trz
[
δ (rj − rk+1) , γ̃

(k+1) (s)
]
ds,
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where

U (k) =
k∏
j=1

eit4xj e
−it4x′

j .

We prove Theorem 5.1 below. Combining Corollary 4.1 and Theorem 5.1, we see that

γ̃(k)x in fact solves the 2D Gross-Pitaevskii hierarchy with the desired coupling constant

b0
(∫
|h1 (z)|4 dz

)
.

Corollary 5.1. Let Γ(t) =
{
γ̃(k)
}∞
k=1

be a N > ωv(β)+ε limit point of ΓN,ω(t) =
{
γ̃
(k)
N,ω

}N
k=1

with respect to the product topology τ prod, then
{
γ̃(k)x = Trz γ̃

(k)
}∞
k=1

is a solution to the 2D

Gross-Pitaevskii hierarchy subject to initial data γ̃(k)x (0) = |φ0〉 〈φ0|
⊗k with coupling constant

b0
(∫
|h1 (z)|4 dz

)
, which, written in integral form, is

(5.2)

γ̃(k)x = U (k)(t)γ̃(k)x (0)−ib0
(∫
|h1 (z)|4 dz

) k∑
j=1

∫ t

0

U (k)(t−s) Trxk+1

[
δ (xj − xk+1) , γ̃

(k+1)
x (s)

]
ds.

Proof. We compute the k = 1 case explicitly here. Written in kernels, the inhomogeneous

term in hierarchy (5.1) is

ib0

∫
U (1)(t− s)ds

∫
δ(z1 − z′1)dz1dz′1

∫
δ(r1 − r2)γ̃(2)(r1, r2, r′1, r2)dr2

− ib0
∫
U (1)(t− s)ds

∫
δ(z1 − z′1)dz1dz′1

∫
δ(r′1 − r2)γ̃(2)(r1, r2, r′1, r2)dr2

which, by Corollary 4.1, is

= ib0

∫
U (1)(t− s)ds

∫
δ(z1 − z′1)δ(r1 − r2)γ̃(2)x (x1, x2, x

′
1, x2)

×h1(z1)h1(z2)h1(z′1)h1(z2)dr2dz1dz′1

−ib0
∫
U (1)(t− s)ds

∫
δ(z1 − z′1)δ(r′1 − r2)γ̃(2)x (x1, x2, x

′
1, x2)

×h1(z1)h1(z2)h1(z′1)h1(z2)dr2dz1dz′1
Further simplifications lead to

= ib0

∫
U (1)(t− s)ds

∫
δ(x1 − x2)γ̃(2)x (x1, x2, x

′
1, x2)|h1(z1)|4dx2dz1

− ib0
∫
U (1)(t− s)ds

∫
δ(x′1 − x2)γ̃(2)x (x1, x2, x

′
1, x2)|h1(z′1)|4dx2dz′1.

In summary, we have

ib0

∫
U (1)(t− s) Trx2 Trz

[
δ (r1 − r2) , γ̃(2) (s)

]
ds

= ib0

(∫
|h1 (z)|4 dz

)∫
U (2)(t− s) Trx2

[
δ (x1 − x2) , γ̃(2)x (s)

]
ds.

�
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Proof of Theorem 5.1. By Theorems 4.1, 4.2, passing to subsequences if necessary, we have

(5.3)

lim
N,ω→∞

N>ωv(β)+ε

sup
t

Tr J (k)
(
γ̃
(k)
N,ω (t)− γ̃(k) (t)

)
= 0, ∀ J (k) ∈ K

(
L2
(
R3k
))
,

lim
N,ω→∞

N>ωv(β)+ε

sup
t

Tr J (k)
x

(
γ̃
(k)
x,N,ω (t)− γ̃(k)x (t)

)
= 0, ∀ J (k)

x ∈ K
(
L2
(
R2k
))
.

We establish (5.1) by testing the limit point against the observables J
(k)
x ∈ K

(
L2
(
R2k
))

as

in the proof of Theorem 4.2. We will prove that the limit point satisfies

(5.4) Tr J (k)
x γ̃(k)x (0) = Tr J (k)

x |φ0〉 〈φ0|
⊗k

and

(5.5)

Tr J (k)
x γ̃(k)x (t) = Tr J (k)

x U (k) (t) γ̃(k)x (0)

− ib0
k∑
j=1

∫ t

0

Tr J (k)
x U (k)(t− s)

[
δ (rj − rk+1) , γ̃

(k+1) (s)
]
ds.

To this end, we use the coupled BBGKY hierarchy (4.15) satisfied by γ̃
(k)
x,N,ω, which, written

in the form needed here, is

Tr J (k)
x γ̃

(k)
x,N,ω (t) = Tr J (k)

x U (k) (t) γ̃
(k)
x,N,ω (0)

− i

N

k∑
i<j

∫ t

0

Tr J (k)
x U (k) (t− s)

[
VN,ω (ri − rj) , γ̃(k)N,ω (s)

]
ds

− i
(
N − k
N

) k∑
j=1

∫ t

0

Tr J (k)
x U (k) (t− s)

[
VN,ω (rj − rk+1) , γ̃

(k+1)
N,ω (s)

]
ds

=A− i

N

k∑
i<j

B − i
(

1− k

N

) k∑
j=1

D.

By (5.3), we know

lim
N,ω→∞

N>ωv(β)+ε

Tr J (k)
x γ̃

(k)
x,N,ω (t) = Tr J (k)

x γ̃(k)x (t) ,

lim
N,ω→∞

N>ωv(β)+ε

Tr J (k)
x U (k) (t) γ̃

(k)
x,N,ω (0) = Tr J (k)

x U (k) (t) γ̃(k)x (0) .

By the argument that appears between Theorem 1 and Corollary 1 in [42], we know that

assumption (b) in Theorem 1.1,

γ̃
(1)
N,ω (0)→ |φ0 ⊗ h1〉 〈φ0 ⊗ h1| , strongly in trace norm ,

in fact implies

γ̃
(k)
N,ω (0)→ |φ0 ⊗ h1〉 〈φ0 ⊗ h1|

⊗k , strongly in trace norm .
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Thus we have tested relation (5.4), the left-hand side of (5.5), and the first term on the

right-hand side of (5.5) for the limit point. We are left to prove that

lim
N,ω→∞

N>ωv(β)+ε

B

N
= 0,

lim
N,ω→∞

N>ωv(β)+ε

(
1− k

N

)
D = b0

∫ t

0

Tr J (k)
x U (k)(t− s)

[
δ (rj − rk+1) , γ̃

(k+1) (s)
]
ds.

First of all, we can use an argument similar to the estimate of III and IV in the proof of

Theorem 4.1 to show the boundedness of |B| and |D| for every finite time t. In fact, noticing

that U (k) commutes with Fourier multipliers, we have

|B| 6
∫ t

0

∣∣∣Tr J (k)
x U (k) (t− s)

[
VN,ω (ri − rj) , γ̃(k)N,ω (s)

]∣∣∣ ds
=

∫ t

0

ds|TrL−1i L−1j J (k)
x LiLjU

(k) (t− s)WijLiLj γ̃
(k)
N,ω (s)LiLj

−TrLiLjJ
(k)
x L−1i L−1j U (k) (t− s)LiLj γ̃(k)N,ω (s)LiLjWij|

6
∫ t

0

ds
∥∥L−1i L−1j J (k)

x LiLj
∥∥
op

∥∥U (k)
∥∥
op
‖Wij‖TrL2

iL
2
j γ̃

(k)
N,ω (s)

+

∫ t

0

ds
∥∥LiLjJ (k)

x L−1i L−1j
∥∥
op

∥∥U (k)
∥∥
op
‖Wij‖TrL2

iL
2
j γ̃

(k)
N,ω (s)

6 CJt.

Hence

lim
N,ω→∞

N>ωv(β)+ε

B

N
= lim

N,ω→∞
N>ωv(β)+ε

kD

N
= 0.

To prove

(5.6) lim
N,ω→∞

N>ωv(β)+ε

D =

∫ t

0

Tr J (k)
x U (k)(t− s)

[
δ (rj − rk+1) , γ̃

(k+1) (s)
]
ds,

we need Lemma A.2 (stated and proved in Appendix A) which compares the δ−function

and its approximation. We choose a probability measure ρ ∈ L1 (R3) and define ρα (r) =

α−3ρ
(
r
α

)
. In fact, ρ can be the square of any 3D Hermite function. Write J

(k)
s−t = J

(k)
x U (k) (t− s),
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we then have∣∣∣Tr J (k)
x U (k) (t− s)

(
VN,ω (rj − rk+1) γ̃

(k+1)
N,ω (s)− b0δ (rj − rk+1) γ̃

(k+1) (s)
)∣∣∣

6
∣∣∣Tr J

(k)
s−t (VN,ω (rj − rk+1)− b0δ (rj − rk+1)) γ̃

(k+1)
N,ω (s)

∣∣∣
+ b0

∣∣∣Tr J
(k)
s−t (δ (rj − rk+1)− ρα (rj − rk+1)) γ̃

(k+1)
N,ω (s)

∣∣∣
+ b0

∣∣∣Tr J
(k)
s−tρα (rj − rk+1)

(
γ̃
(k+1)
N,ω (s)− γ̃(k+1) (s)

)∣∣∣
+ b0

∣∣∣Tr J
(k)
s−t (ρα (rj − rk+1)− δ (rj − rk+1)) γ̃

(k+1) (s)
∣∣∣

= I + II + III + IV

We take care of I first because it is a term which requires N > ω
1
2β
− 1

2 . Write Vω(r) =
1√
ω
V (x, z√

ω
), we have VN,ω = (N

√
ω)

3β
Vω((N

√
ω)

β
r), Lemma A.2 then yields

I 6
Cb0

(N
√
ω)

βκ

(∫
Vω(r) |r|κ dr

)
×
(∥∥LjJ (k)

x L−1j
∥∥
op

+
∥∥L−1j J (k)

x Lj
∥∥
op

)
TrLjLk+1γ̃

(k+1)
N,ω (s)LjLk+1

= CJ

(∫
Vω(r) |r|κ dr

)
(N
√
ω)

βκ
.

Notice that
(∫

Vω(r) |r|κ dr
)

grows like (
√
ω)

κ
, so I 6 CJ

(
(
√
ω)

1−β

Nβ

)κ
which converges to

zero as N,ω →∞ in the way that N > ω
1
2β
− 1

2
+ε. More precisely,

lim
N,ω→∞

N>ωv(β)+ε

I = 0.

So we have handled I.

For II and IV, we have

II 6 Cb0α
κ
(∥∥LjJ (k)

x L−1j
∥∥
op

+
∥∥L−1j J (k)

x Lj
∥∥
op

)
TrLjLk+1γ̃

(k+1)
N,ω (s)LjLk+1 (Lemma A.2)

6 CJα
κ (Corollary 3.1)

IV 6 Cb0α
κ
(∥∥LjJ (k)

x L−1j
∥∥
op

+
∥∥L−1j J (k)

x Lj
∥∥
op

)
TrLjLk+1γ̃

(k+1) (s)LjLk+1 (Lemma A.2)

6 CJα
κ (Corollary 4.1)

which converges to 0 as α→ 0, uniformly in N,ω.

For III,

III 6 b0

∣∣∣∣Tr J
(k)
s−tρα (rj − rk+1)

1

1 + εLk+1

(
γ̃
(k+1)
N,ω (s)− γ̃(k+1) (s)

)∣∣∣∣
+b0

∣∣∣∣Tr J
(k)
s−tρα (rj − rk+1)

εLk+1

1 + εLk+1

(
γ̃
(k+1)
N,ω (s)− γ̃(k+1) (s)

)∣∣∣∣ .
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The first term in the above estimate goes to zero as N,ω →∞ for every ε > 0, since we have

assumed condition (5.3) and J
(k)
s−tρα (rj − rk+1) (1 + εLk+1)

−1 is a compact operator. Due to

the energy bounds on γ̃
(k+1)
N,ω and γ̃(k+1), the second term tends to zero as ε → 0, uniformly

in N .

Combining the estimates for I-IV, we have justified limit (5.6). Hence, we have obtained

Theorem 5.1.

�

6. Uniqueness of the 2D GP hierarchy

For completeness, we discuss the uniqueness theory of the 2D Gross-Pitaevskii hierarchy.

To be specific, we have the following theorem.

Theorem 6.1 ([16, Theorem 3]). Define the collision operator Bj,k+1 by

Bj,k+1γ
(k+1)
x = Trk+1

[
δ (xj − xk+1) , γ

(k+1)
x

]
.

Suppose that
{
γ
(k)
x

}∞
k=1

solves the 2D constant coefficient Gross-Pitaevskii hierarchy

(6.1) i∂tγ
(k)
x +

k∑
j=1

[
−4xj , γ

(k)
x

]
= c0

k∑
j=1

Bj,k+1

(
γ(k+1)
x

)
,

subject to zero initial data and the space-time bound

(6.2)

∫ T

0

∥∥∥∥∥
k∏
j=1

(∣∣∇xj

∣∣ 12 ∣∣∣∇x′j

∣∣∣ 12)Bj,k+1γ
(k+1)
x (t, ·; ·)

∥∥∥∥∥
L2(R2k×R2k)

dt 6 Ck

for some C > 0 and all 1 6 j 6 k. Then ∀k, t ∈ [0, T ],∥∥∥∥∥
k∏
j=1

(∣∣∇xj

∣∣ 12 ∣∣∣∇x′j

∣∣∣ 12) γ(k)x (t, ·; ·)

∥∥∥∥∥
L2(R2k×R2k)

= 0.

Proof. This is the constant coefficient version of [16, Theorem 3]. W. Beckner obtained

the key estimate of this theorem independently in [5]. Some other estimates of this type

can be found in [14, 29]. K. Kirpatrick, G. Staffilani and B. Schlein are the first to obtain

uniqueness theorems for 2D Gross-Pitaevskii hierarchies. One will find their Theorem 7.1 in

[37] by replacing |∇|
1
2 by 〈∇〉

1
2
+ε in the statement of the above theorem. �

To apply Theorem 6.1 to our problem here, it is necessary to prove that both the known

solution to the 2D Gross-Pitaevskii hierarchy (namely |φ〉 〈φ|⊗k, where φ solves the 2D cubic

NLS) and the limit obtained from the coupled BBGKY hierarchy (4.15), satisfy the space-

time bound (6.2). It is easy to see that |φ〉 〈φ|⊗k verifies the space-time bound (6.2) because

it is part of the standard procedure of proving well-posedness of the 2D cubic NLS. We use

the following trace theorem to prove the space-time bound (6.2) for the limit.
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Theorem 6.2 ([37, Theorem 5.2]). For every α < 1, there is a Cα > 0 such that∥∥∥∥∥
k∏
j=1

(〈
∇xj

〉α 〈∇x′j

〉α)
Bj,k+1γ

(k+1)
x

∥∥∥∥∥
L2(R2k×R2k)

6 Cα Tr

(
k+1∏
j=1

(
1−4xj

))
γ(k+1)
x

for all nonnegative γ
(k+1)
x ∈ L1

(
L2
(
R2k
))

.

We can combine the above theorems so that it is easy to see how they apply to our problem.

Theorem 6.3. There is at most one nonnegative operator sequence{
γ(k)x
}∞
k=1
∈
⊕
k>1

C
(
[0, T ] ,L1

k

(
R2k
))

that solves the 2D Gross-Pitaevskii hierarchy (6.1) subject to the energy condition

Tr

(
k∏
j=1

(
1−4xj

))
γ(k)x 6 Ck.

7. Conclusion

In this paper, by proving the limit of a BBGKY hierarchy whose limit is not even for-

mally known since it contains (∞−∞) , we have rigorously derived the 2D cubic nonlinear

Schrödinger equation from a 3D quantum many-body dynamic and we have accurately de-

scribed the 3D to 2D phenomenon by establishing the exact emergence of the coupling

constant
(∫
|h1(z)|4 dz

)
. This is the first direct rigorous treatment of the 3D to 2D dynamic

problem in the literature.

Appendix A. Basic operator facts and Sobolev-type lemmas

Lemma A.1 ([24, Lemma A.3]). Let Lj =
(
1−4rj

) 1
2 . Then we have∥∥L−1i L−1j V (ri − rj)L−1i L−1j

∥∥
op
6 C ‖V ‖L1 .

Lemma A.2. Let ρ ∈ L1 (R3) be a probability measure such that
∫
R3 〈r〉

1
2 ρ (r) dr < ∞ and

let ρα (r) = α−3ρ
(
r
α

)
. Then, for every κ ∈ (0, 1/2) , there exists C > 0 s.t.∣∣Tr J (k) (ρα (rj − rk+1)− δ (rj − rk+1)) γ

(k+1)
∣∣

6 C

(∫
ρ (r) |r|κ dr

)
ακ
(∥∥LjJ (k)L−1j

∥∥
op

+
∥∥L−1j J (k)Lj

∥∥
op

)
TrLjLk+1γ

(k+1)LjLk+1

for all nonnegative γ(k+1) ∈ L1
(
L2
(
R3k+3

))
.

Proof. We give a proof by modifying the proof of [37, Lemma A.2]. We remark that the

range of κ is smaller here because we are working in 3D. It suffices to prove the estimate
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for k = 1. We represent γ(2) by γ(2) =
∑

j λj
∣∣ϕj〉 〈ϕj∣∣, where ϕj ∈ L2 (R6) and λj > 0. We

write

Tr J (1) (ρα (r1 − r2)− δ (r1 − r2)) γ(2)

=
∑
j

λj
〈
ϕj, J

(1) (ρα (r1 − r2)− δ (r1 − r2))ϕj
〉

=
∑
j

λj
〈
ψj, (ρα (r1 − r2)− δ (r1 − r2))ϕj

〉

where ψj =
(
J (1) ⊗ 1

)
ϕj. By Parseval, we find

|〈ψj, (ρα(r1 − r2)− δ(r1 − r2))ϕj〉|

= |
∫
ψ̂j(ξ1, ξ2)ϕ̂j(ξ

′
1, ξ
′
2)ρ(r)(eiαr·(ξ1−ξ

′
1) − 1)δ(ξ1 + ξ2 − ξ′1 − ξ′2)drdξ1dξ2dξ′1dξ′2|

6
∫
|ψ̂j(ξ1, ξ2)||ϕ̂j(ξ′1, ξ′2)|δ(ξ1 + ξ2 − ξ′1 − ξ′2)|

∫
ρ(r)(eiαr·(ξ1−ξ

′
1) − 1)dr|dξ1dξ2dξ′1dξ′2.

Using the inequality that ∀κ ∈ (0, 1)

∣∣∣eiαr·(ξ1−ξ′1) − 1
∣∣∣ 6 ακ |r|κ |ξ1 − ξ′1|

κ

6 ακ |r|κ
(
|ξ1|

κ + |ξ′1|
κ)
,

we get

|〈ψj, (ρα(r1 − r2)− δ(r1 − r2))ϕj〉|

6 ακ(

∫
ρ(r)|r|κdr)

∫
|ξ1|κ|ψ̂j(ξ1, ξ2)||ϕ̂j(ξ′1, ξ′2)|δ(ξ1 + ξ2 − ξ′1 − ξ′2)dξ1dξ2dξ′1dξ′2

+ ακ(

∫
ρ(r)|r|κdr)

∫
|ξ′1|κ|ψ̂j(ξ1, ξ2)||ϕ̂j(ξ′1, ξ′2)|δ(ξ1 + ξ2 − ξ′1 − ξ′2)dξ1dξ2dξ′1dξ′2

= ακ(

∫
ρ(r)|r|κdr)(I + II).
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The estimate for I and II are similar, so we only deal with I explicitly.

I 6
∫
δ (ξ1 + ξ2 − ξ′1 − ξ′2)

〈ξ1〉 〈ξ2〉
〈ξ′1〉 〈ξ′2〉

∣∣∣ψ̂j (ξ1, ξ2)
∣∣∣ 〈ξ′1〉 〈ξ′2〉
〈ξ1〉

1−κ 〈ξ2〉
∣∣ϕ̂j (ξ′1, ξ

′
2)
∣∣ dξ1dξ2dξ′1dξ′2

6 ε

∫
δ (ξ1 + ξ2 − ξ′1 − ξ′2)

〈ξ1〉
2 〈ξ2〉

2

〈ξ′1〉
2 〈ξ′2〉

2

∣∣∣ψ̂j (ξ1, ξ2)
∣∣∣2 dξ1dξ2dξ′1dξ′2

+
1

ε

∫
δ (ξ1 + ξ2 − ξ′1 − ξ′2)

〈ξ′1〉
2 〈ξ′2〉

2

〈ξ1〉
2(1−κ) 〈ξ2〉

2

∣∣ϕ̂j (ξ′1, ξ
′
2)
∣∣2 dξ1dξ2dξ′1dξ′2

= ε

∫
〈ξ1〉

2 〈ξ2〉
2
∣∣∣ψ̂j (ξ1, ξ2)

∣∣∣2 dξ1dξ2 ∫ 1

〈ξ1 + ξ2 − ξ′2〉
2 〈ξ′2〉

2dξ
′
2

1

ε

∫
〈ξ′1〉

2 〈ξ′2〉
2 ∣∣ϕ̂j (ξ′1, ξ

′
2)
∣∣2 dξ′1dξ′2 ∫ 1

〈ξ′1 + ξ′2 − ξ2〉
2(1−κ) 〈ξ2〉

2
dξ2

6 ε
〈
ψj, L

2
1L

2
2ψj
〉

sup
ξ

∫
R3

1

〈ξ − η〉2 〈η〉2
dη +

1

ε

〈
ϕj, L

2
1L

2
2ϕj
〉

sup
ξ

∫
R3

1

〈ξ − η〉2(1−κ) 〈η〉2
dη.

When κ ∈ [0, 1/2),

sup
ξ

∫
R3

1

〈ξ − η〉2(1−κ) 〈η〉2
dη < ∞,

sup
ξ

∫
R3

1

〈ξ − η〉2 〈η〉2
dη < ∞,

and hence we have (with ε = ‖L1J
(1)L−11 ‖−1op ),∣∣Tr J (1) (ρα (r1 − r2)− δ (r1 − r2)) γ(k+1)

∣∣
6 C

(∫
ρ (r) |r|κ dr

)
ακ
(
εTr J (1)L2

1L
2
2J

(1)γ(2) +
1

ε
TrL2

1L
2
2γ

(2)

)
= C

(∫
ρ (r) |r|κ dr

)
ακ
(
εTrL−11 L−12 J (1)L1L1J

(1)L−11 L1L
2
2γ

(2)L1L2 +
1

ε
TrL2

1L
2
2γ

(2)

)
6 C

(∫
ρ (r) |r|κ dr

)
ακ
(
ε
∥∥L−11 J (1)L1

∥∥
op

∥∥L1J
(1)L−11

∥∥
op

+
1

ε

)
TrL2

1L
2
2γ

(2)

6 C

(∫
ρ (r) |r|κ dr

)
ακ
(∥∥L−11 J (1)L1

∥∥
op

+
∥∥L1J

(1)L−11

∥∥
op

)
TrL2

1L
2
2γ

(2)

�

Lemma A.3 (some standard operator inequalities).

(1) Suppose that A ≥ 0, Pj = P ∗j , and I = P0 + P1. Then A ≤ 2P0AP0 + 2P1AP1.

(2) If A ≥ B ≥ 0, and AB = BA, then Aα ≥ Bα for any α ≥ 0.

(3) If A1 ≥ A2 ≥ 0, B1 ≥ B2 ≥ 0 and AiBj = BjAi for all 1 ≤ i, j ≤ 2, then

A1B1 ≥ A2B2.

(4) If A ≥ 0 and AB = BA, then A1/2B = BA1/2.

Proof. For (1), ‖A1/2f‖2 = ‖A1/2(P0 + P1)f‖2 ≤ 2‖A1/2P0f‖2 + 2‖A1/2P1f‖2. The rest are

standard facts in operator theory. �
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Recall that

S2 = 1−∆x − ω − ∂2z + ω2z2

Lemma A.4 (Estimates with ω-loss). Suppose f = f(x, z). Then

‖∇rf‖L2
r
. ω1/2‖Sf‖L2

r
(A.1)

‖f‖L6
r
. ω1/6‖Sf‖L2

r
(A.2)

‖∇rf‖L6
r
. ω2/3‖S2f‖L2

r
(A.3)

‖f‖L∞r . ω1/4‖S2f‖L2
r

(A.4)

The factors of ω appearing here are seen to be optimal by taking f(x, z) = g(x)hω(z),

where g(x) is a smooth bump function. Then S2f = (1−∆x)g(x)hω(z) and hence

‖Sf‖2L2
r

= 〈S2f, f〉 = 〈(1−∆x)ghω, hω〉 = (‖g‖2L2
x

+ ‖∇xg‖2L2
x
)‖hω‖2L2

z

which is ω-independent. Also, ‖S2f‖L2
r

= ‖(1 − ∆x)g‖L2
x

is ω-independent. On the other

hand, it is apparent that ‖∇rf‖L2
r

= ω1/2, ‖f‖L6
r

= ω1/6, ‖∇rf‖L6
r

= ω2/3 and ‖f‖L∞r = ω1/4,

which demonstrates sharpness of the estimates.

Proof. Recall I = P0 + P1. First, we establish

‖∇rP1f‖L2
r
. ‖Sf‖L2

r
(A.5)

‖P1f‖L6
r
. ‖Sf‖L2

r
(A.6)

‖∇rP1f‖L6
r
. ‖S2f‖L2

r
(A.7)

‖P1f‖L∞r . ‖S
2f‖L2

r
(A.8)

Note that PjS
2 = S2Pj. By the definition of S,

P1(1−∆r + ω2z2)P1 = S2P1 + ωP1

By spectral considerations 2ωP1 ≤ P1S
2, and hence

(A.9) P1(1−∆r + ω2z2)P1︸ ︷︷ ︸
all terms positive

. S2P1

Since [P1(1−∆x)P1, S
2P1] = 0 and P1(1−∆x)P1 ≤ S2P1 (from (A.9)), we have by Lemma

A.3(3)

(A.10) P1(1−∆x)
2P1 . S4P1

Since [P1(−∂2z +ω2z2)P1, S
2P1] = 0 and P1(−∂2z +ω2z2)P1 . S2P1 (from (A.9)), we have by

Lemma A.3(3)

(A.11) P1(−∂2z + ω2z2)2P1 . S4P1

Expanding and “integrating by parts”

(A.12) (−∂2z + ω2z2)2 = ∂4z − 2ω2∂zz
2∂z + ω4z4︸ ︷︷ ︸

terms all positive

+B +B∗
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where B
def
= −2ω2∂zz. We claim

(A.13) P1(B +B∗)P1 . S4P1

Since ‖∂zP1f‖L2
r
. ‖SP1f‖L2

r
and ω‖zP1f‖L2

r
. ‖SP1f‖L2

r
, it follows by Cauchy-Schwarz

that

ω2|Re〈∂zP1f, zP1f〉| . ω‖SP1f‖2L2
r
. ‖S2P1f‖2L2

r

which is equivalent to (A.13). By (A.11), (A.12), (A.13), we obtain

(A.14) P1(∂
4
z )P1 . S4P1

Now, (A.10), (A.14) imply

(A.15) P1(1−∆r)
2P1 . S4P1

Then (A.5), (A.6), (A.7), (A.8) follow from Sobolev embedding and (A.9), (A.15). For

example, to prove (A.7), we apply 3D Sobolev embedding and (A.15) to obtain

‖∇rP1f‖L6
r
. ‖∆rP1f‖L2

r
. ‖S2P1f‖L2

r
. ‖S2f‖L2

r
.

Next we prove

‖∇rP0f‖L2
r
. ω1/2‖Sf‖L2

r
(A.16)

‖P0f‖L6
r
. ω1/6‖Sf‖L2

r
(A.17)

‖∇rP0f‖L6
r
. ω2/3‖S2f‖L2

r
(A.18)

‖P0f‖L∞r . ω1/4‖S2f‖L2
r

(A.19)

Recall that

(A.20) P0f(x, z) =

∫
z′
f(x, z′)hω(z′) dz′ hω(z) = 〈f(x, ·), hω〉z′ hω(z)

We have

(A.21) ∇xP0f(x, z) = 〈∇xf(x, ·), hω〉 hω(z)

By Cauchy-Schwarz,

(A.22) ‖∇xP0f‖L2
r
. ‖∇xf‖L2

r
. ‖Sf‖L2

r

Also,

(A.23) ∂zP0f(x, z) = 〈f(x, ·), hω〉 ∂zhω(z)

and hence by Cauchy-Schwarz,

(A.24) ‖∂zP0f‖L2
r
. ω1/2‖f‖L2

r

(A.22) and (A.24) together imply (A.16). By Cauchy-Schwarz, Minkowski, and 2D Sobolev,

‖P0f‖L6
r
≤ ‖〈f(x, ·), hω〉z′‖L6

x
‖hω‖L6

z

. ‖f‖L6
xL

2
z
‖hω‖L2

z
‖hω‖L6

z

. ‖(1−∆x)
1/2f‖L2

r
ω1/6
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Since (1−∆x) ≤ S2, we obtain (A.17) as a consequence of the previous estimate. Next, we

prove (A.18). By (A.21), Cauchy-Schwarz, Minkowski, and 2D Sobolev,

‖∇xP0f‖L6
r
. ‖〈∇xf(x, ·), hω〉‖L6

x
‖hω‖L6

z

. ‖∇xf‖L6
xL

2
z
ω1/6

. ‖(−∆x)
5/6f‖L2

r
ω1/6

Since (−∆x)
5/3 ≤ (1−∆x)

2 ≤ S4, we obtain

(A.25) ‖∇xP0f‖L6
r
. ω1/6‖S2f‖L2

r

By (A.23), Cauchy-Schwarz, Minkowski, and 2D Sobolev,

‖∂zP0f‖L6
r
. ‖〈f(x, ·), hω〉‖L6

x
‖∂zhω‖L6

z

. ‖f‖L6
xL

2
z
ω2/3

. ‖(1−∆x)
1/3f‖L2

r
ω2/3

Since (1−∆x)
2/3 ≤ (1−∆x)

2 ≤ S4, we obtain

(A.26) ‖∂zP0f‖L6
r
. ‖S2f‖L2

r
ω2/3

Combining (A.25) and (A.26), we obtain (A.18). Next, we prove (A.19). By (A.20) and 2D

Sobolev,

‖P0f‖L∞r . ‖〈f(x, ·), hω〉‖L∞x ‖hω‖L∞z
. ‖f‖L∞x L2

z
ω1/4

. ‖(1−∆x)
1
2
+εf‖L2

r
ω1/4

Since (1 − ∆x)
1+2ε ≤ (1 − ∆x)

2 ≤ S4, we obtain (A.19) as a consequence of the previous

estimate.

Note that combining (A.5)–(A.8) and (A.16)–(A.19) yeilds (A.1)–(A.4). �

Let

S̃ = (1−∆x + ω(−1− ∂2z + z2))1/2

Lemma A.5.

S̃2 & 1−∆r(A.27)

S̃2P1 ≥ P1(1−∆x − ω∂2z + ωz2)P1(A.28)

S̃2P1 ≥ ωP1(A.29)

Proof. Directly from the definition of S̃, we have

(A.30) P1(1−∆x − ω∂2z + ωz2)P1︸ ︷︷ ︸
all terms positive

≤ ωP1 + S̃2P1

By spectral considerations

(A.31) 2ωP1 ≤ ω(−1− ∂2z + z2)P1 ≤ S̃2P1
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Combining (A.30) and (A.31) yields (A.28). Also, (A.29) follows from (A.31). Next, we

establish (A.27) using (A.28). It is immediate that

(A.32) S̃2 ≥ (1−∆x)

On the other hand, since P0 is just projection onto the smooth function e−z
2
,

(A.33) P0(−∂2z )P0 . 1 ≤ S̃2

By (A.28),

(A.34) P1(−∂2z )P1 ≤ S̃2P1 ≤ S̃2

By Lemma A.3(1), (A.33), (A.34),

(A.35) −∂2z . S̃2

The claimed inequality (A.27) follows from (A.32) and (A.35). �

Lemma A.6. Suppose σ : L2(R3k)→ L2(R3k) has kernel

σ(rk, r
′
k) =

∫
ψ(rk, rN−k)ψ(r′k, rN−k) drN−k ,

for some ψ ∈ L2(R3N), and let A,B : L2(R3k) → L2(R3k). Then the composition AσB has

kernel

(AσB)(rk, r
′
k) =

∫
(Aψ)(rk, rN−k)(B∗ψ)(r′k, rN−k) drN−k

It follows that

TrAσB = 〈Aψ,B∗ψ〉 .

Let Kk denote the class of compact operators on L2(R3k), L1
k denote the trace class oper-

ators on L2(R3k), and L2
k denote the Hilbert-Schmidt operators on L2(R3k). We have

L1
k ⊂ L2

k ⊂ Kk

For an operator J on L2(R3k), let |J | = (J∗J)1/2 and denote by J(rk, r
′
k) the kernel of J and

|J |(rk, r′k) the kernel of |J |, which satisfies |J |(rk, r′k) ≥ 0. Let

µ1 ≥ µ2 ≥ · · · ≥ 0

be the eigenvalues of |J | repeated according to multiplicity (the singular values of J). Then

‖J‖Kk = ‖µn‖`∞n = µ1 = ‖ |J | ‖op = ‖J‖op

‖J‖L2k = ‖µn‖`2n = ‖J(rk, r
′
k)‖L2(rk,r

′
k)

= (Tr J∗J)1/2

‖J‖L1k = ‖µn‖`1n = ‖|J |(rk, rk)‖L1(rk) = Tr |J |

The topology on Kk coincides with the operator topology, and Kk is a closed subspace of the

space of bounded operators on L2(R3k).
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Lemma A.7. Let χ be a smooth function on R3 such that χ(ξ) = 1 for |ξ| ≤ 1 and χ(ξ) = 0

for |ξ| ≥ 2. Let

(QMf)(rk) =

∫
eirk·ξk

k∏
j=1

χ(M−1ξj)f̂(ξk) dξk

With respect to the spectral decomposition of L2(R) corresponding to the operator Hj =

−∂2zj + z2j , let Zj
M be the orthogonal projection onto the sum of the first M eigenspaces (in

the zj variable only). Let

RM =
k∏
j=1

Zj
M

(1) Suppose that J is a compact operator. Then JM
def
= RMQMJQMRM → J in the

operator norm.

(2) HjJM , JMHj, ∆rjJM and JM∆rj are all bounded.

(3) There exists a countable dense subset {Ti} of the closed unit ball in the space of

bounded operators on L2(R3k) such that each Ti is compact and in fact for each i

there exists M (depending on i) such that Ti = RMQMTiQMRM .

Proof. (1) If Sn → S strongly and J ∈ Kk, then SnJ → SJ in the operator norm and

JSn → JS in the operator norm. (2) is straightforward. For (3), start with a subset {Yn}
of the closed unit ball in the space of bounded operators on L2(R3k) such that each Yn is

compact. Then let {Ti} be an enumeration of the set RMQMYnQMRM where M ranges over

the dyadic integers. By (1) this collection will still be dense. �

Appendix B. Deducing Theorem 1.1 from Theorem 1.2

The argument presented here which deduces Theorem 1.1 from Theorem 1.2 has been used

in all the nD to nD work. We refer the readers to them for more details. We first give the

following proposition.

Proposition B.1. Assume ψ̃N,ω(0) satisfies (a), (b) and (c) in Theorem 1.1. Let χ ∈
C∞0 (R) be a cut-off such that 0 6 χ 6 1, χ (s) = 1 for 0 6 s 6 1 and χ (s) = 0 for s > 2.

For κ > 0, we define an approximation of ψ̃N,ω(0) by

ψ̃
κ

N,ω(0) =
χ
(
κ
(
H̃N,ω −Nω

)
/N
)
ψ̃N,ω(0)∥∥∥χ(κ(H̃N,ω −Nω

)
/N
)
ψ̃N,ω(0)

∥∥∥ .
This approximation has the following properties:

(i) ψ̃
κ

N,ω(0) verifies the energy condition

〈ψ̃κN,ω(0), (H̃N,ω −Nω)kψ̃
κ

N,ω(0)〉 6 2kNk

κk
.

(ii)

sup
N,ω

∥∥∥ψ̃N,ω(0)− ψ̃κN,ω(0)
∥∥∥
L2
6 Cκ

1
2 .
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(iii) For small enough κ > 0, ψ̃
κ

N,ω(0) is asymptotically factorized as well

lim
N,ω→∞

Tr
∣∣∣γ̃κ,(1)N,ω (0, x1, z1;x

′
1, z
′
1)− φ0(x1)φ0(x

′
1)h(z1)h(z′1)

∣∣∣ = 0,

where γ̃
κ,(1)
N,ω (0) is the marginal density associated with ψ̃

κ

N,ω(0), and φ0 is the same as in

assumption (b) in Theorem 1.1.

Proof. Proposition B.1 follows the same proof as [26, Proposition 9.1] if one replaces HN by

(H̃N,ω −Nω) and ĤN by

N∑
j=2

(−∆xj + ω(−1 +−∂2zj + z2j )) +
1

N

∑
1<i<j≤N

VN,ω(ri − rj).

�

Via (i) and (iii) of Proposition 1.2, ψ̃
κ

N,ω(0) verifies the hypothesis of Theorem 1.2 for small

enough κ > 0. Therefore, for γ̃
κ,(1)
N,ω (t) , the marginal density associated with eitH̃N,ω ψ̃

κ

N,ω(0),

Theorem 1.2 gives the convergence

(B.1) lim
N,ω→∞

N>ωv(β)+ε

Tr

∣∣∣∣∣γ̃κ,(k)N,ω (t,xk, zk;x
′
k, z
′
k)−

k∏
j=1

φ(t, xj)φ(t, x′j)h1(zj)h1(z
′
j)

∣∣∣∣∣ = 0.

for all small enough κ > 0, all k > 1, and all t ∈ R.

For γ̃
(k)
N,ω (t) in Theorem 1.1, we notice that, ∀J (k) ∈ Kk, ∀t ∈ R, we have∣∣∣Tr J (k)

(
γ̃
(k)
N,ω (t)− |φ (t)⊗ h1〉 〈φ (t)⊗ h1|⊗k

)∣∣∣
6

∣∣∣Tr J (k)
(
γ̃
(k)
N,ω (t)− γ̃κ,(k)N,ω (t)

)∣∣∣+
∣∣∣Tr J (k)

(
γ̃
κ,(k)
N,ω (t)− |φ (t)⊗ h1〉 〈φ (t)⊗ h1|⊗k

)∣∣∣
= I + II.

Convergence (B.1) then takes care of II. To handle I , part (ii) of Proposition 1.2 yields∥∥∥eitH̃N,ω ψ̃N,ω(0)− eitH̃N,ω ψ̃κN,ω(0)
∥∥∥
L2

=
∥∥∥ψ̃N,ω(0)− ψ̃κN,ω(0)

∥∥∥
L2
6 Cκ

1
2

which implies

I =
∣∣∣Tr J (k)

(
γ̃
(k)
N,ω (t)− γ̃κ,(k)N,ω (t)

)∣∣∣ 6 C
∥∥J (k)

∥∥
op
κ

1
2 .

Since κ > 0 is arbitrary, we deduce that

lim
N,ω→∞

N>ωv(β)+ε

∣∣∣Tr J (k)
(
γ̃
(k)
N,ω (t)− |φ (t)⊗ h1〉 〈φ (t)⊗ h1|⊗k

)∣∣∣ = 0.

i.e. as trace class operators

γ̃
(k)
N,ω (t)→ |φ (t)⊗ h1〉 〈φ (t)⊗ h1|⊗k weak*.

Then again, the Grümm’s convergence theorem upgrades the above weak* convergence to

strong. Thence, we have concluded Theorem 1.1 via Theorem 1.2 and Proposition B.1.
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