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Abstract. We consider the 3D quantum BBGKY hierarchy which corresponds to the

N -particle Schrödinger equation. We assume the pair interaction is N3β−1V (Nβ•). For in-

teraction parameter β ∈ (0, 23 ), we prove that, as N →∞, the limit points of the solutions to

the BBGKY hierarchy satisfy the space-time bound conjectured by Klainerman-Machedon

[37] in 2008. This allows for the application of the Klainerman-Machedon uniqueness theo-

rem, and hence implies that the limit is uniquely determined as a tensor product of solutions

to the Gross-Pitaevski equation when the N -body initial data is factorized. The first result

in this direction in 3D was obtained by T. Chen and N. Pavlović [11] for β ∈ (0, 14 ) and sub-

sequently by X. Chen [15] for β ∈ (0, 27 ]. We build upon the approach of X. Chen but apply

frequency localized Klainerman-Machedon collapsing estimates and the endpoint Strichartz

estimate to extend the range to β ∈ (0, 23 ). Overall, this provides an alternative approach

to the mean-field program by Erdös-Schlein-Yau [23], whose uniqueness proof is based upon

Feynman diagram combinatorics.
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1. Introduction

The quantum BBGKY hierarchy refers to a sequence of trace class operator kernels{
γ
(k)
N (t,xk;x

′
k)
}N
k=1

, where t ∈ R, xk = (x1, x2, · · · , xk) ∈ R3k, x′k = (x′1, x
′
2, · · · , x′k) ∈ R3k,

which are symmetric, in the sense that

γ
(k)
N (t,xk,x

′
k) = γ

(k)
N (t,x′k,xk),

and

(1.1) γ
(k)
N (t, xσ(1), · · ·xσ(k), x′σ(1), · · ·x′σ(k)) = γ

(k)
N (t, x1, · · ·xk, x′1, · · ·x′k),

for any permutation σ, and satisfy the quantum BBGKY linear hierarchy of equations which

written in operator form is

(1.2) i∂tγ
(k)
N +

[
4xk , γ

(k)
N

]
=

1

N

∑
16i<j6k

[
VN (xi − xj) , γ(k)N

]

+
N − k
N

k∑
j=1

Trk+1

[
VN (xj − xk+1) , γ

(k+1)
N

]
with prescribed initial conditions

γ
(k)
N (0,xk,x

′
k) = γ

(k)
N,0(xk,x

′
k).

Here4xk denotes the standard Laplacian with respect to the variables xk ∈ R3k, the operator

VN (x) represents multiplication by the function VN (x), where

(1.3) VN (x) = N3βV (Nβx)

is an approximation to the Dirac δ function, and Trk+1 means taking the k + 1 trace, for

example,

Trk+1 VN (xj − xk+1) γ
(k+1)
N =

∫
VN (xj − xk+1) γ

(k+1)
N (t,xk, xk+1;x

′
k, xk+1)dxk+1.

We devote this paper to proving the following theorem.

Theorem 1.1 (Main theorem). Assume the interaction parameter β ∈ (0, 2/3) and the pair

interaction V ∈ L1∩W 2, 6
5
+. Suppose that the sequence

{
γ
(k)
N (t,xk;x

′
k)
}N
k=1

is a solution to the

quantum BBGKY hierarchy (1.2) subject to the energy condition: there is a C (independent

of N and k) such that for any k > 0, there is a N0(k) such that

(1.4) ∀ N > N0(k) , sup
t∈R

∥∥∥S(k)γ
(k)
N

∥∥∥
L2
x,x′

6 Ck

where S(k) =
k∏
j=1

(〈
∇xj

〉 〈
∇x′j

〉)
. Then, for every finite time T , every limit point Γ =

{
γ(k)
}∞
k=1

of {ΓN}∞N=1 =

{{
γ
(k)
N

}N
k=1

}∞
N=1

in
⊕

k>1C ([0, T ] ,L1
k) with respect to the product
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topology τ prod (defined in Appendix A) satisfies the Klainerman-Machedon space-time bound:

there is a C independent of j, k such that

(1.5)

∫ T

0

∥∥R(k)Bj,k+1γ
(k+1) (t)

∥∥
L2
x,x′

dt 6 Ck,

where L1
k is the space of trace class operators on L2(R3k), R(k) =

k∏
j=1

(∣∣∇xj

∣∣ ∣∣∣∇x′j

∣∣∣) , and

Bj,k+1 = Trk+1

[
δ (xj − xk+1) , γ

(k+1)
]
.

In particular, this theorem establishes a positive answer to Conjecture 1 by Klainerman and

Machedon in 2008 for β ∈ (0, 2/3).

Conjecture 1 (Klainerman-Machedon [37]). Under condition (1.4), for β ∈ (0, 1], every

limit point Γ =
{
γ(k)
}∞
k=1

of {ΓN}∞N=1 satisfies space-time bound (1.5).

The quantum BBGKY hierarchy (1.2) is generated from the N -body Hamiltonian evolu-

tion ψN(t) = eitHNψN(0) with the N -body Hamiltonian

(1.6) HN = −4xN +
1

N

∑
16i<j6N

N3βV (Nβ (xi − xj))

where the factor 1/N is to make sure that the interactions are proportional to the number

of particles, and the pair interaction N3βV (Nβ (xi − xj)) is an approximation to the Dirac δ

function which matches the Gross-Pitaevskii description of Bose-Einstein condensation that

the many-body effect should be modeled by a strong on-site self-interaction. Since ψNψN is

a probability density, we define the marginal densities
{
γ
(k)
N (t,xk;x

′
k)
}N
k=1

by

γ
(k)
N (t,xk;x

′
k) =

∫
ψN(t,xk,xN−k)ψN(t,x′k,xN−k)dxN−k, xk,x

′
k ∈ R3k.

Then we have that
{
γ
(k)
N (t,xk;x

′
k)
}N
k=1

satisfies the the quantum BBGKY hierarchy (1.2) if

we do not distinguish γ
(k)
N as a kernel and the operator it defines.1

Establishing the N →∞ limit of hierarchy (1.2) justifies the mean-field limit in the Gross-

Pitaevskii theory. Such an approach was first proposed by Spohn [43] and can be regarded

as a quantum version of Kac’s program. We see that, as N → ∞, hierarchy (1.2) formally

converges to the infinite Gross-Pitaevskii hierarchy

(1.7) i∂tγ
(k) +

[
4xk , γ

(k)
]

=

(∫
V (x)dx

) k∑
j=1

Trk+1

[
δ (xj − xk+1) , γ

(k+1)
]
.

When the initial data is factorized

γ(k)(0,xk;x
′
k) =

k∏
j=1

φ0(xj)φ̄0(xj),

1From here on out, we consider only the β > 0 case. For β = 0, see [21, 38, 40, 42, 30, 31, 13, 6] .
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hierarchy (1.7) has a special solution

(1.8) γ(k)(t,xk;x
′
k) =

k∏
j=1

φ(t, xj)φ̄(t, xj),

if φ solves the cubic NLS

(1.9) i∂tφ = −4xφ+

(∫
V (x)dx

)
|φ|2 φ.

Thus such a limit process shows that, in an appropriate sense,

lim
N→∞

γ
(k)
N =

k∏
j=1

φ(t, xj)φ̄(t, xj),

hence justifies the mean-field limit.

Such a limit in 3D was first proved in a series of important papers [20, 22, 23, 24, 25] by

Elgart, Erdös, Schlein, and Yau.2 Briefly, the Elgart-Erdös-Schlein-Yau approach3 can be

described as the following:

Step A. Prove that, with respect to the topology τ prod defined in Appendix A, the sequence

{ΓN}∞N=1 is compact in the space
⊕

k>1C
(
[0, T ] ,L1

(
R3k
))

).

Step B. Prove that every limit point Γ =
{
γ(k)
}∞
k=1

of {ΓN}∞N=1 must verify hierarchy (1.7).

Step C. Prove that, in the space in which the limit points from Step B lie, there is a unique

solution to hierarchy (1.7). Thus {ΓN}∞N=1 is a compact sequence with only one limit point.

Hence ΓN → Γ as N →∞.

In 2007, Erdös, Schlein, and Yau obtained the first uniqueness theorem of solutions [23,

Theorem 9.1] to the hierarchy (1.7). The proof is surprisingly delicate – it spans 63 pages

and uses complicated Feynman diagram techniques. The main difficulty is that hierarchy

(1.7) is a system of infinitely coupled equations. Briefly, [23, Theorem 9.1] is the following:

Theorem 1.2 (Erdös-Schlein-Yau uniqueness [23, Theorem 9.1]). There is at most one

nonnegative symmetric operator sequence
{
γ(k)
}∞
k=1

that solves hierarchy (1.7) subject to the

energy condition

(1.10) sup
t∈[0,T ]

Tr

(
k∏
j=1

(
1−4xj

))
γ(k) 6 Ck.

In [37], based on their null form paper [36], Klainerman and Machedon gave a different

proof of the uniqueness of hierarchy (1.7) in a space different from that used in [23, Theorem

9.1]. The proof is shorter (13 pages) than the proof of [23, Theorem 9.1]. Briefly, [37,

Theorem 1.1] is the following:

2Around the same time, there was the 1D work [1].
3See [5, 29, 41] for different approaches.
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Theorem 1.3 (Klainerman-Machedon uniqueness [37, Theorem 1.1]). There is at most one

symmetric operator sequence
{
γ(k)
}∞
k=1

that solves hierarchy (1.7) subject to the space-time

bound (1.5).

For special cases like (1.8), condition (1.10) is actually

(1.11) sup
t∈[0,T ]

‖〈∇x〉φ‖L2 6 C,

while condition (1.5) means

(1.12)

∫ T

0

∥∥|∇x|
(
|φ|2 φ

)∥∥
L2 dt 6 C.

When φ satisfies NLS (1.9), both are known. In fact, due to the Strichartz estimate [33],

(1.11) implies (1.12), that is, condition (1.5) seems to be a bit weaker than condition (1.10).

The proof of [37, Theorem 1.1] (13 pages) is also considerably shorter than the proof of [23,

Theorem 9.1] (63 pages). It is then natural to wonder whether [37, Theorem 1.1] simplifies

Step C. To answer such a question it is necessary to know whether the limit points in Step

B satisfy condition (1.10), that is, whether Conjecture 1 holds.

Away from curiosity, there are realistic reasons to study Conjecture 1. While [23, Theorem

9.1] is a powerful theorem, it is very difficult to adapt such an argument to various other

interesting and colorful settings: a different spatial dimension, a three-body interaction

instead of a pair interaction, or the Hermite operator instead of the Laplacian. The last

situation mentioned is physically important. On the one hand, all the known experiments

of BEC use harmonic trapping to stabilize the condensate [2, 19, 7, 34, 44]. On the other

hand, different trapping strength produces quantum behaviors which do not exist in the

Boltzmann limit of classical particles nor in the quantum case when the trapping is missing

and have been experimentally observed [26, 45, 18, 32, 17]. The Klainerman-Machedon

approach applies easily in these meaningful situations ([35, 9, 14, 15, 16, 27]). Thus proving

Conjecture 1 actually helps to advance the study of quantum many-body dynamic and the

mean-field approximation in the sense that it provides a flexible and powerful tool in 3D.

The well-posedness theory of the Gross-Pitaevskii hierarchy (1.7) subject to general initial

datum also requires that the limits of the BBGKY hierarchy (1.2) lie in the space in which

the space-time bound (1.5) holds. See [8, 10, 11].

As pointed out in [20], the study of the Hamiltonian (1.6) is of particular interest when

β ∈ (1/3, 1]. The reason is the following. In physics, the initial datum ψN (0) of the

Hamiltonian evolution eitHNψN (0) is usually assumed to be close to the ground state of the

Hamiltonian

HN,0 = −4xN + ω2
0 |xN |

2 +
1

N

∑
16i<j6N

N3βV (Nβ (xi − xj)).

The preparation of the available experiments and the mathematical work [39] by Lieb,

Seiringer, Solovej and Yngvason confirm this assumption. Such an initial datum ψN (0)

is localized in space. We can assume all N particles are in a box of length 1. Let the

effective radius of the pair interaction V be a, then the effective radius of VN is about



6 XUWEN CHEN AND JUSTIN HOLMER

a/Nβ. Thus every particle in the box interacts with
(
a/Nβ

)3 × N other particles. Thus,

for β > 1/3 and large N , every particle interacts with only itself. This exactly matches the

Gross-Pitaevskii theory that the many-body effect should be modeled by a strong on-site

self-interaction. Therefore, for the mathematical justification of the Gross-Pitaevskii theory,

it is of particular interest to prove Conjecture 1 for self-interaction (β > 1/3) as well.

To the best of our knowledge, the main theorem (Theorem 1.1) in the current paper is

the first result in proving Conjecture 1 for self-interaction (β > 1/3). For β 6 1/3, the

first progress of Conjecture 1 is the β ∈ (0, 1/4) work [11] by T. Chen and N. Pavlović and

then the β ∈ (0, 2/7] work [15] by X.C. As a matter of fact, the main theorem (Theorem

1.1) in the current paper has already fulfilled the original intent of [37], namely, simplifying

the uniqueness argument of [23], because [23] deals with β ∈ (0, 3/5). Conjecture 1 for

β ∈ [2/3, 1] is still open.

1.1. Organization of the paper. In §2, we outline the proof of Theorem 1.1. The overall

pattern follows that introduced by X.C.[15], who obtained Theorem 1.1 for β ∈ (0, 2
7
]. Let

P
(k)
≤M be the Littlewood-Paley projection defined in (2.1). Theorem 1.1 will follow once it is

established that for all M ≥ 1, there exists N0 depending on M such that for all N ≥ N0,

there holds

(1.13) ‖P (k)
≤MR

(k)BN,j,k+1γ
(k+1)
N (t)‖L1

TL
2
x,x′

6 Ck

where BN,j,k+1 is defined by (2.3). Substituting the Duhamel-Born expansion, carried out

to coupling level K, of the BBGKY hierarchy, this is reduced to proving analogous bounds

on the free part, potential part, and interaction part, defined in §2. Each part is reduced

via the Klainerman-Machedon board game. Estimates for the free part and interaction part

were previously obtained by X.C. [15]. For the estimate of the interaction part, one takes

K = lnN , the utility of which was first observed by T. Chen and N. Pavlović [11].

The main new achievement of our paper is the improved estimates on the potential part,

which are discussed in §3. We make use of the endpoint Strichartz estimate in place of the

Sobolev inequality employed by X.C [15]. The Strichartz estimate is phrased in terms of Xb

norms. We also introduce frequency localized versions of the Klainerman-Machedon collaps-

ing estimates, allowing us to exploit the frequency localization in (1.13). Specifically, the op-

erator P
(k)
≤M does not commute with BN,j,k+1, however, the composition P

(k)
≤Mk

BN,j,k+1P
(k+1)
∼Mk+1

enjoys better bounds if Mk+1 � Mk. We prove the Strichartz estimate and the frequency

localized Klainerman-Machedon collapsing estimates in §4. Frequency localized space-time

techniques of this type were introduced by Bourgain [4, Chapter IV, §3] into the study of

the well-posedness for nonlinear Schrödinger equations and other nonlinear dispersive PDE.

In X.C. [15], (1.13) is obtained without the frequency localization P
(k)
≤M for β ∈ (0, 2

7
].

In Theorem 3.2, we prove that this estimate still holds without frequency localization for

β ∈ (0, 2
5
) by using the Strichartz estimate alone. This already surpasses the self-interaction

threshold β = 1
3
. For the purpose of proving Conjecture 1, the frequency localized estimate

(1.13) is equally good, but allows us to achieve higher β.
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2. Proof of the Main Theorem

We establish Theorem 1.1 in this section. For simplicity of notation, we denote ‖·‖Lp[0,T ]L2
x,x′

by ‖·‖LpTL2
x,x′

and denote ‖·‖Lpt (R)L2
x,x′

by ‖·‖LptL2
x,x′

. Let us begin by introducing some nota-

tion for Littlewood-Paley theory. Let P i
≤M be the projection onto frequencies ≤M and P i

M

the analogous projections onto frequencies ∼ M , acting on functions of xi ∈ R3 (the ith

coordinate). We take M to be a dyadic frequency range 2` ≥ 1. Similarly, we define P i′
≤M

and P i′
M , which act on the variable x′i. Let

(2.1) P
(k)
≤M =

k∏
i=1

P i
≤MP

i′

≤M .

To establish Theorem 1.1, it suffices to prove the following theorem.

Theorem 2.1. Under the assumptions of Theorem 1.1, there exists a C (independent of

k,M,N) such that for each M ≥ 1 there exists N0 (depending on M) such that for N > N0,

there holds

(2.2) ‖P (k)
≤MR

(k)BN,j,k+1γ
(k+1)
N (t)‖L1

TL
2
x,x′

6 Ck

where

(2.3) BN,j,k+1γ
(k+1)
N = Trk+1

[
VN (xj − xk+1) , γ

(k+1)
N

]
.

We first explain how, assuming Theorem 2.1, we can prove Theorem 1.1. Passing to the

weak* limit γ
(k)
N → γ(k) as N →∞, we obtain

‖P (k)
≤MR

(k)Bj,k+1γ
(k+1)‖L1

TL
2
x,x′

6 Ck

Since this holds uniformly in M , we can send M → ∞ and, by the monotone convergence

theorem, we obtain

‖R(k)Bj,k+1γ
(k+1)‖L1

TL
2
x,x′

6 Ck

which is exactly the Klainerman-Machedon space-time bound (1.5). This completes the

proof Theorem 1.1, assuming Theorem 2.1.

The rest of this paper is devoted to proving Theorem 2.1. Without loss of generality, we

prove estimate (2.2) for k = 1, that is

(2.4) ‖P (1)
≤MR

(1)BN,1,2γ
(2)
N ‖L1

TL
2
x,x′

6 C

for N > N0(M). We are going to establish estimate (2.4) for a sufficiently small T which

depends on the controlling constant in condition (1.4) and is independent of N and M, then

a bootstrap argument together with condition (1.4) give estimate (2.4) for every finite time

at the price of a larger constant C.
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We start by rewriting hierarchy (1.2) as

γ
(k)
N (tk) = U (k)(tk)γ

(k)
N,0 +

∫ tk

0

U (k)(tk − tk+1)V
(k)
N γ

(k)
N (tk+1)dtk+1(2.5)

+
N − k
N

∫ tk

0

U (k)(tk − tk+1)B
(k+1)
N γ

(k+1)
N (tk+1)dtk+1

with the short-hand notation:

U (k) = eit4xke
−it4x′

k ,

V
(k)
N γ

(k)
N =

1

N

∑
16i<j6k

[
VN(xi − xj), γ(k)N

]

B
(k+1)
N γ

(k+1)
N =

k∑
j=1

BN,j,k+1γ
(k+1)
N .

We omit the i in front of the potential term and the interaction term so that we do not need

to keep track of its exact power.

Writing out the kth Duhamel-Born series of γ
(2)
N by iterating hierarchy (2.5) k times, we

have

γ
(2)
N (t2) = U (2)(t2)γ

(2)
N,0 +

∫ t2

0

U (2)(t2 − t3)V (2)
N γ

(2)
N (t3)dt3

+
N − 2

N

∫ t2

0

U (2)(t2 − t3)B(3)
N γ

(3)
N (t3)dt3

= U (2)(t2)γ
(2)
N,0 +

N − 2

N

∫ t2

0

U (2)(t2 − t3)B(3)
N U (3)(t3)γ

(3)
N,0dt3

+

∫ t2

0

U (2)(t2 − t3)V (2)
N γ

(2)
N (t3)dt3

+
N − 2

N

∫ t2

0

U (2)(t2 − t3)B(3)
N

∫ t3

0

U (3)(t3 − t4)V (3)
N γ

(3)
N (t4)dt4dt3

+
N − 2

N

N − 3

N

∫ t2

0

U (2)(t2 − t3)B(3)
N

∫ t3

0

U (3)(t3 − t4)B(4)
N γ

(4)
N (t4)dt4dt3

= ...

After k iterations4

(2.6) γ
(2)
N (t2) = FP (k)(t2) + PP (k)(t2) + IP (k)(t2)

4Henceforth, the k’s appearing in our formulas are the coupling level which is distinct from the k in the

statement of Theorem 2.1 (which has been fixed at k = 1).
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where the free part at coupling level k is given by

FP (k) = U (2)(t2)γ
(2)
N,0 +

k∑
j=3

(
j∏
l=3

N + 1− l
N

)∫ t2

0

· · ·
∫ tj−1

0

U (2)(t2 − t3)B(3)
N · · ·U

(j−1)(tj−1 − tj)B(j)
N

×
(
U (j)(tj)γ

(j)
N,0

)
dt3 · · · dtj,

the potential part is given by

PP (k) =

∫ t2

0

U (2)(t2 − t3)V (2)
N γ

(2)
N (t3)dt3 +

k∑
j=3

(
j∏
l=3

N + 1− l
N

)

×
∫ t2

0

· · ·
∫ tj−1

0

U (2)(t2 − t3)B(3)
N · · ·U

(j−1)(tj−1 − tj)B(j)
N

×
(∫ tj

0

U (j)(tj − tj+1)V
(j)
N γ

(j)
N (tj+1)dtj+1

)
dt3 · · · dtj,

and the interaction part is given by

IP (k) =

(
k∏
l=3

N + 1− l
N

)∫ t2

0

· · ·
∫ tk

0

U (2)(t2 − t3)B(3)
N · · ·

· · ·U (k)(tk − tk+1)B
(k+1)
N

(
γ
(k+1)
N (tk+1)

)
dt3 · · · dtk+1.

By (2.6), to establish (2.4), it suffices to prove

(2.7)
∥∥∥P (1)
≤MR

(1)BN,1,2FP
(k)
∥∥∥
L1
TL

2
x,x′

6 C

(2.8)
∥∥∥P (1)
≤MR

(1)BN,1,2PP
(k)
∥∥∥
L1
TL

2
x,x′

6 C

(2.9)
∥∥∥P (1)
≤MR

(1)BN,1,2IP
(k)
∥∥∥
L1
TL

2
x,x′

6 C

for some C and a sufficiently small T determined by the controlling constant in condition (1.4)

and independent of N and M. We observe that B
(j)
N has 2j terms inside so that each summand

of γ
(2)
N (t2) contains factorially many terms (∼ k!). We use the Klainerman-Machedon board

game to combine them and hence reduce the number of terms that need to be treated. Define

JN(tj+1)(f
(j+1)) = U (2)(t2 − t3)B(3)

N · · ·U
(j)(tj − tj+1)B

(j+1)
N f (j+1),

where tj+1 means (t3, . . . , tj+1) , then the Klainerman-Machedon board game implies the

lemma.

Lemma 2.1 (Klainerman-Machedon board game). One can express∫ t2

0

· · ·
∫ tj

0

JN(tj+1)(f
(j+1))dtj+1
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as a sum of at most 4j−1 terms of the form∫
D

JN(tj+1, µm)(f (j+1))dtj+1,

or in other words,∫ t2

0

· · ·
∫ tj

0

JN(tj+1)(f
(j+1))dtj+1 =

∑
m

∫
D

JN(tj+1, µm)(f (j+1))dtj+1.

Here D ⊂ [0, t2]
j−1, µm are a set of maps from {3, . . . , j+1} to {2, . . . , j} satisfying µm(3) = 2

and µm(l) < l for all l, and

JN(tj+1, µm)(f (j+1)) = U (2)(t2 − t3)BN,2,3U
(3)(t3 − t4)BN,µm(4),4 · · ·

· · ·U (j)(tj − tj+1)BN,µm(j+1),j+1(f
(j+1)).

Proof. Lemma 2.1 follows the exact same proof as [37, Theorem 3.4], the Klainerman-

Machedon board game, if one replaces Bj,k+1 by BN,j,k+1 and notices that BN,j,k+1 still

commutes with eit4xie−it4xi whenever i 6= j. This argument reduces the number of terms

by combining them.

In the rest of this paper, we establish estimate (2.8) only. The reason is the following. On

the one hand, the proof of estimate (2.8) is exactly the place that relies on the restriction

β ∈ (0, 2/3) in this paper. On the other hand, X.C. has already proven estimates (2.7)

and (2.9) as estimates (6.3) and (6.5) in [15] without using any frequency localization. For

completeness, we include a proof of estimates (2.7) and (2.9) in Appendix B. Before we

delve into the proof of estimate (2.8), we remark that the proof of estimates (2.7) and (2.9)

is independent of the coupling level k and we will take the coupling level k to be lnN for

estimate (2.9).5

3. Estimate of the Potential Part

In this section, we prove estimate (2.8). To be specific, we establish the following theorem.

Theorem 3.1. Under the assumptions of Theorem 1.1, there exists a C (independent of

k,M1, N) such that for each M1 > 1 there exists N0 (depending on M1) such that for N > N0,

there holds ∥∥∥P (1)
≤M1

R(1)BN,1,2PP
(k)
∥∥∥
L1
TL

2
x,x′

6 C

where PP (k) is given by (2.7).

In this section, we will employ the estimates stated and proved in Section 4. Due to

the technicality of the proof of Theorem 3.1 involving Littlewood-Paley theory, we prove a

simpler β ∈ (0, 2
5
) version first to illustrate the basic steps in establishing Theorem 3.1. We

then prove Theorem 3.1 in Section 3.2.

5The technique of taking k = lnN for estimate (2.9) was first observed by T.Chen and N.Pavlović [11].
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3.1. The simpler β ∈ (0, 2
5
) case.

Theorem 3.2. For β ∈ (0, 2
5
), we have the estimate∥∥∥R(1)BN,1,2PP

(k)
∥∥∥
L1
TL

2
x,x′

6 C

for some C and a sufficiently small T determined by the controlling constant in condition

(1.4) and independent of N.

Proof. The proof is divided into four steps. We will reproduce every step for Theorem 3.1

in Section 3.2.

Step I. By Lemma 2.1, we know that

PP (k) =

∫ t2

0

U (2)(t2 − t3)V (2)
N γ

(2)
N (t3)dt3

+
k∑
j=3

(
j∏
l=3

N + 1− l
N

)
(3.1)

×

(∑
m

∫
D

JN(tj, µm)

(∫ tj

0

U (j)(tj − tj+1)V
(j)
N γ

(j)
N (tj+1)dtj+1

)
dtj

)

where
∑

m has at most 4j−3 terms inside.

For the second term, we iterate Lemma 4.2 to prove the following estimate6:∥∥∥∥R(1)BN,1,2

∫
D

JN(tj+1, µm)(f (j+1))dtj+1

∥∥∥∥
L1
TL

2
x,x′

(3.2)

=

∫ T

0

∥∥∥∥∫
D

R(1)BN,1,2U
(2)(t2 − t3)BN,2,3 · · · dt3 . . . dtj+1

∥∥∥∥
L2
x,x′

dt2

6
∫
[0,T ]j

∥∥R(1)BN,1,2U
(2)(t2 − t3)BN,2,3 · · ·

∥∥
L2 dt2dt3...dtj+1

6 T
1
2

∫
[0,T ]j−1

(∫ ∥∥R(1)BN,1,2U
(2)(t2 − t3)BN,2,3...

∥∥2
L2 dt2

) 1
2

dt3...dtj+1

(Cauchy-Schwarz)

6 CT
1
2

∫
[0,T ]j−1

∥∥R(2)BN,2,3U
(3)(t3 − t4)...

∥∥ dt3...dtj+1 (Lemma 4.2)

(Iterate j − 2 times)

...

6 (CT
1
2 )j−1

∥∥R(j)BN,µm(j+1),j+1f
(j+1)

∥∥
L1
TL

2
x,x′

6This also helps in proving estimates (2.7) and (2.9)–see Appendix B
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Applying relation (3.2), we have∥∥∥R(1)BN,1,2PP
(k)
∥∥∥
L1
TL

2
x,x′

6

∥∥∥∥R(1)BN,1,2

∫ t2

0

U (2)(t2 − t3)V (2)
N γ

(2)
N (t3)dt3

∥∥∥∥
L1
TL

2
x,x′

+
k∑
j=3

4j−3(CT
1
2 )j−2

∥∥∥∥R(j−1)BN,µm(j),j

(∫ tj

0

U (j)(tj − tj+1)V
(j)
N γ

(j)
N (tj+1)dtj+1

)∥∥∥∥
L1
TL

2
x,x′

6

∥∥∥∥R(1)BN,1,2

∫ t2

0

U (2)(t2 − t3)V (2)
N γ

(2)
N (t3)dt3

∥∥∥∥
L1
TL

2
x,x′

+
k∑
j=3

(CT
1
2 )j−2

∥∥∥∥R(j−1)BN,µm(j),j

(∫ tj

0

U (j)(tj − tj+1)V
(j)
N γ

(j)
N (tj+1)dtj+1

)∥∥∥∥
L1
TL

2
x,x′

.

Inserting a smooth cut-off θ(t) with θ(t) = 1 for t ∈ [−T, T ] and θ(t) = 0 for t ∈ [−2T, 2T ]c

into the above estimate, we get∥∥∥R(1)BN,1,2PP
(k)
∥∥∥
L1
TL

2
x,x′

6

∥∥∥∥R(1)BN,1,2θ(t2)

∫ t2

0

U (2)(t2 − t3)θ(t3)V (2)
N γ

(2)
N (t3)dt3

∥∥∥∥
L1
TL

2
x,x′

+
k∑
j=3

(CT
1
2 )j−2

∥∥∥∥R(j−1)BN,µm(j),jθ(tj)

(∫ tj

0

U (j)(tj − tj+1)θ(tj+1)V
(j)
N γ

(j)
N (tj+1)dtj+1

)∥∥∥∥
L1
TL

2
x,x′

Step II. The Xb space version of Lemma 4.2, Lemma 4.3, then turns the last step into∥∥∥R(1)BN,1,2PP
(k)
∥∥∥
L1
TL

2
x,x′

6 C‖θ(t2)
∫ t2

0

U (2)(t2 − t3)R(2)
(
θ(t3)V

(2)
N γ

(2)
N (t3)

)
dt3‖X(2)

1
2+

+C
k∑
j=3

(CT
1
2 )j−2‖θ(tj)

∫ tj

0

U (j)(tj − tj+1)R
(j)
(
θ(tj+1)V

(j)
N γ

(j)
N (tj+1)

)
dtj+1‖X(j)

1
2+

Step III. We then proceed with Lemma 4.1 to get∥∥∥R(1)BN,1,2PP
(k)
∥∥∥
L1
TL

2
x,x′

6 C‖R(2)
(
θ(t3)V

(2)
N γ

(2)
N (t3)

)
‖
X

(2)

− 1
2+

+ C

k∑
j=3

(CT
1
2 )j−2‖R(j)

(
θ(tj+1)V

(j)
N γ

(j)
N (tj+1)

)
‖
X

(j)

− 1
2+

.
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Step IV. Now we would like to utilize Lemma 4.6. We first analyse a typical term to demon-

strated the effect of Lemma 4.6. To be specific, we have

‖R(2)
(
θ(t3)V

(2)
N γ

(2)
N (t3)

)
‖
X

(2)

− 1
2+

6
C

N
‖VN(x1 − x2)θ(t3)R(2)γ

(2)
N (t3)‖X(2)

− 1
2+

+
C

N
‖ (VN)′ (x1 − x2)θ(t3) |∇x2|

∣∣∇x′1

∣∣ ∣∣∇x′2

∣∣ γ(2)N (t3)‖X(2)

− 1
2+

+
C

N
‖ (VN)′′ (x1 − x2)θ(t3)

∣∣∇x′1

∣∣ ∣∣∇x′2

∣∣ γ(2)N (t3)‖X(2)

− 1
2+

6
C

N
‖VN‖L3+ ‖θ(t3)R(2)γ

(2)
N ‖L2

t3
L2
x,x′

+
C

N
‖V ′N‖L2+ ‖θ(t3) 〈∇x1〉

1
2 〈∇x2〉

∣∣∇x′1

∣∣ ∣∣∇x′2

∣∣ γ(2)N ‖L2
t3
L2
x,x′

+
C

N
‖V ′′N‖L 6

5+ ‖θ(t3)S(2)γ
(2)
N ‖L2

t3
L2
x,x′

6 C‖S(2)γ
(2)
N ‖L2

2TL
2
x,x′

since ‖VN/N‖L3+ ‖V ′N/N‖L2+ , and ‖V ′′N/N‖L 6
5+ are uniformly bounded in N for β ∈ (0, 2

5
).

In fact,

‖VN/N‖L3+ 6 N2β−1 ‖V ‖L3+

‖V ′N/N‖L2+ 6 N
5β
2
−1 ‖V ′‖L2+

‖V ′′N/N‖L 6
5+ 6 N

5β
2
−1 ‖V ′′‖

L
6
5+

where by Sobolev, V ∈ W 2, 6
5
+ implies V ∈ L 6

5
+ ∩ L6+ and V ′ ∈ L2+.

Using the same idea for all the terms, we end up with∥∥∥R(1)BN,1,2PP
(k)
∥∥∥
L1
TL

2
x,x′

6 CT
1
2‖S(2)γ

(2)
N ‖L∞2TL2

x,x′
+ CT

1
2

k∑
j=3

(CT
1
2 )j−2j2‖S(j)γ

(j)
N ‖L∞2TL2

x,x′

(j2 terms inside V
(j)
N )

6 CT
1
2C2 + CT

1
2

∞∑
j=3

(CT
1
2 )j−2Cj (Condition (1.4))

6 C <∞.

This concludes the proof of Theorem 3.2.

3.2. Proof of Theorem 3.1. To make formulas shorter, let us write

R
(k)
6Mk

= P
(k)
6Mk

R(k),

since P
(k)
6Mk

and R(k) are usually bundled together.
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3.2.1. Step I. By (3.1),∥∥∥R(1)
6M1

BN,1,2PP
(k)
∥∥∥
L1
TL

2
x,x′

6

∥∥∥∥R(1)
6M1

BN,1,2

∫ t2

0

U (2)(t2 − t3)V (2)
N γ

(2)
N (t3)dt3

∥∥∥∥
L1
TL

2
x,x′

+
k∑
j=3

∑
m

∥∥∥R(1)
6M1

BN,1,2

∫
D

JN(tj, µm)(f (j))dtj

∥∥∥
L1
TL

2
x,x′

where

f (j) =

∫ tj

0

U (j)(tj − tj+1)V
(j)
N γ

(j)
N (tj+1)dtj+1

where
∑

m has at most 4j−3 terms inside. By Minkowski’s integral inequality,∥∥∥∥R(1)
6M1

BN,1,2

∫
D

JN(tj, µm)(f (j))dtj

∥∥∥∥
L1
TL

2
x,x′

=

∫ T

0

∥∥∥∥∫
D

R
(1)
6M1

BN,1,2U
(2)(t2 − t3)BN,2,3 · · · dt3 . . . dtj

∥∥∥∥
L2
x,x′

dt2

6
∫
[0,T ]j−1

∥∥∥R(1)
6M1

BN,1,2U
(2)(t2 − t3)BN,2,3 · · ·

∥∥∥
L2
dt2dt3 . . . dtj

By Cauchy-Schwarz in the t2 integration,

6 T
1
2

∫
[0,T ]j−1

(∫ ∥∥∥R(1)
6M1

BN,1,2U
(2)(t2 − t3)BN,2,3 · · ·

∥∥∥2
L2
dt2

) 1
2

dt3 . . . dtj

By Lemma 4.4,

6 CεT
1
2

∑
M2>M1

(
M1

M2

)1−ε ∫
[0,T ]j−1

∥∥∥R(2)
6M2

BN,2,3U
(3)(t3 − t4) · · ·

∥∥∥ dt3 . . . dtj
Iterating the previous step (j − 3) times,

6 (CεT
1
2 )j−2

∑
Mj−1>···>M2>M1

(
M1

M2

M2

M3

· · ·Mj−2

Mj−1

)1−ε ∥∥∥R(j−1)
6Mj−1

BN,µm(j),jf
(j)
∥∥∥
L1
TL

2
x,x′

= (CεT
1
2 )j−2

∑
Mj−1>···>M2>M1

(
M1

Mj−1

)1−ε ∥∥∥R(j−1)
6Mj−1

BN,µm(j),jf
(j)
∥∥∥
L1
TL

2
x,x′

where the sum is over all M2, . . . ,Mj−1 dyadic such that Mj−1 > · · · >M2 >M1.

Hence ∥∥∥R(1)
6M1

BN,1,2PP
(k)
∥∥∥
L1
TL

2
x,x′

6

∥∥∥∥R(1)
6M1

BN,1,2

(∫ t2

0

U (2)(t2 − t3)V (2)
N γ

(2)
N (t3)dt3

)∥∥∥∥
L1
TL

2
x,x′

+
k∑
j=3

(CεT
1
2 )j−2

∑
Mj−1>···>M1

M1−ε
1

M1−ε
j−1

∥∥∥R(j−1)
6Mj−1

BN,µm(j),jf
(j)
∥∥∥
L1
TL

2
x,x′

.
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We then insert a smooth cut-off θ(t) with θ(t) = 1 for t ∈ [−T, T ] and θ(t) = 0 for

t ∈ [−2T, 2T ]c into the above estimate to get∥∥∥R(1)
6M1

BN,1,2PP
(k)
∥∥∥
L1
TL

2
x,x′

6

∥∥∥∥R(1)
6M1

BN,1,2θ(t2)

(∫ t2

0

U (2)(t2 − t3)θ(t3)V (2)
N γ

(2)
N (t3)dt3

)∥∥∥∥
L1
TL

2
x,x′

+
k∑
j=3

(CεT
1
2 )j−2

∑
Mj−1>···>M1

M1−ε
1

M1−ε
j−1

∥∥∥R(j−1)
6Mj−1

BN,µm(j),jθ(tj)f̃
(j)
∥∥∥
L1
TL

2
x,x′

,

where the sum is over all M2, . . . ,Mj−1 dyadic such that Mj−1 > · · · >M2 >M1, and

f̃ (j) =

∫ tj

0

U (j)(tj − tj+1)
(
θ(tj+1)V

(j)
N γ

(j)
N (tj+1)

)
dtj+1

3.2.2. Step II. Using Lemma 4.5, the Xb space version of Lemma 4.4, we turn Step I into∥∥∥R(1)
6M1

BN,1,2PP
(k)
∥∥∥
L1
TL

2
x,x′

6
∑

M2>M1

M1−ε
1

M1−ε
2

∥∥∥∥θ(t2)(∫ t2

0

U (2)(t2 − t3)
(
R

(2)
6M2

θ(t3)V
(2)
N γ

(2)
N (t3)

)
dt3

)∥∥∥∥
X

(2)
1
2+

+
k∑
j=3

(CεT
1
2 )j−2

∑
Mj>Mj−1>···>M1

M1−ε
1

M1−ε
j

∥∥∥θ(tj)R(j)
6Mj

f̃ (j)
∥∥∥
X

(j)
1
2+

3.2.3. Step III. Lemma 4.1 gives us∥∥∥R(1)
6M1

BN,1,2PP
(k)
∥∥∥
L1
TL

2
x,x′

≤ A+B

where

A =
∑

M2>M1

M1−ε
1

M1−ε
2

∥∥∥R(2)
6M2

(
θ(t3)V

(2)
N γ

(2)
N (t3)

)∥∥∥
X

(2)

− 1
2+

and

B =
k∑
j=3

(CεT
1
2 )j−2

∑
Mj>Mj−1>···>M1

M1−ε
1

M1−ε
j

∥∥∥R(j)
6Mj

(
θ(tj+1)V

(j)
N γ

(j)
N (tj+1)

)∥∥∥
X

(j)

− 1
2+

3.2.4. Step IV. We focus for a moment on B. Applying Lemmas 3.1 and 3.2, we can carry

out the sum in M2 ≤ · · · ≤Mj−1 at the expense of a factor
(
Mj

M1

)ε
. Hence

B .
k∑
j=3

(CεT
1
2 )j−2

∑
Mj>M1

(
M1

Mj

)1−2ε ∥∥∥R(j)
6Mj

(
θ(tj+1)V

(j)
N γ

(j)
N (tj+1)

)∥∥∥
X

(j)

− 1
2+

where the sum is over dyadic Mj such that Mj ≥M1. Applying (4.25),

B .
k∑
j=3

(CεT
1
2 )j−2j2

∑
Mj>M1

(
M1

Mj

)1−2ε

min(M2
j , N

2β)N
1
2
β−1‖θ(tj+1)S

(j)γ
(j)
N (tj+1) ‖L2

tj+1
L2
x,x′
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Rearranging terms

B .
k∑
j=3

(CεT
1
2 )j−2j2‖θ(tj+1)S

(j)γ
(j)
N (tj+1) ‖L2

tj+1
L2
xx′
M1−2ε

1 N
1
2
β−1

∑
Mj>M1

(· · · )

where ∑
Mj>M1

(· · · ) =
∑

Mj>M1

min(M1+2ε
j ,M−1+2ε

j N2β) .

We carry out the sum in Mj by dividing into Mj 6 Nβ (for which min(M1+2ε
j ,M−1+2ε

j N2β) =

M1+2ε
j ) and Mj > Nβ (for which min(M1+2ε

j ,M−1+2ε
j N2β) = M−1+2ε

j N2β). This yields∑
Mj>M1

min(M1+2ε
j ,M−1+2ε

j N2β)

.

 ∑
Nβ>Mj>M1

+
∑

Mj>M1,Mj>Nβ

 (...)

.
∑

Nβ>Mj>1

M1+2ε
j +

∑
Mj>Nβ

M−1+2ε
j N2β

. Nβ+2ε.

Hence

B .
k∑
j=3

(CεT
1
2 )j−2j2‖θ(tj+1)S

(j)γ
(j)
N (tj+1) ‖L2

tj+1
L2
x,x′
M1−2ε

1 N
3
2
β−1+2ε

. M1−2ε
1 N

3
2
β−1+2ε

k∑
j=3

(CεT
1
2 )j−2T

1
2 j2‖S(j)γ

(j)
N ‖L∞t L2

x,x′

. M1−2ε
1 N

3
2
β−1+2ε

k∑
j=3

(CεT
1
2 )j−2j2T

1
2Cj by Condition (1.4)

. CM1−2ε
1 N

3
2
β−1+2ε, for T small enough.

Therefore, for β < 2/3, there is a C independent of M1 and N s.t. given a M1, there is

N0(M1) which makes

B 6 C, for all N > N0.

This completes the treatment of term B for β < 2/3. Term A is treated similarly (without

the need to appeal to Lemmas 3.1, 3.2 below). Whence we have completed the proof of

Theorem 3.1 and thence Theorem 2.1.

Lemma 3.1.  ∑
M1≤M2≤···≤Mj−2≤Mj−1

1

 ≤ (log2
Mj−1

M1
+ j − 3)j−3

(j − 3)!
,

where the sum is in M2, . . . ,Mj−2 over dyads, such that M1 ≤ M2 ≤ M3 ≤ · · · ≤ Mj−2 ≤
Mj−1.
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Proof. This is equivalent to ∑
i1≤i2≤···≤ij−2≤ij−1

1

 ≤ (ij−1 − i1 + j − 3)j−3

(j − 3)!
,

where the sum is taken over integers i2, . . . , ij−2 such that i1 ≤ i2 ≤ · · · ≤ ij−2 ≤ ij−1. We

use the estimate (for p ≥ 0, ` ≥ 0)

q∑
i=0

(i+ `)p ≤ (q + `+ 1)p+1

p+ 1
,

which just follows by estimating the sum by an integral.

First, carry out the sum in i2 from i1 to i3 to obtain

=
∑

i1≤i3≤···≤ij−1

(
i3∑

i2=i1

1

)
≤

∑
i1≤i3≤···≤ij−1

(i3 − i1 + 1).

Next, carry out the sum in i3 from i1 to i4,

≤
∑

i1≤i4≤···≤ij−1

(
i4∑

i3=i1

(i3 − i1 + 1)

)

≤
∑

i1≤i4≤···≤ij−1

(
i4−i1∑
i3=0

(i3 + 1)

)

≤
∑

i1≤i4≤···≤ij−1

(i4 − i1 + 2)2

2
.

Continue in this manner to obtain the claimed bound.

Lemma 3.2. For each α > 0 (possibly large) and each ε > 0 (arbitrarily small), there exists

t > 0 (independent of M) sufficiently small such that

∀ j ≥ 1, ∀M , we have
tj(α logM + j)j

j!
≤M ε

Proof. We use the following fact: for each σ > 0 (arbitrarily small) there exists t > 0

sufficiently small such that

(3.3) ∀ x > 0 , tx
(

1

x
+ 1

)x
≤ eσ

To apply this fact to prove the lemma, use Stirling’s formula to obtain

tj(α logM + j)j

j!
≤ (et)j

(
α logM + j

j

)j
Define x in terms of j by the formula j = α(logM)x. Then

=

[
(et)x

(
1

x
+ 1

)x]α logM
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Applying (3.3),

≤ eσα logM = Mσα

4. The Xb Norms and a Few Strichartz Estimates

Define the norm

‖α(k)‖
X

(k)
b

=

(∫
〈τ + |ξk|

2 − |ξ′k|
2〉2b

∣∣∣α̂(k)(τ , ξk, ξ
′
k)
∣∣∣2 dτ dξk dξ′k)1/2

We will use the case b = 1
2
+ of the following lemma.

Lemma 4.1. Let 1
2
< b < 1 and θ(t) be a smooth cutoff. Then

(4.1)

∥∥∥∥θ(t)∫ t

0

U (k)(t− s)β(k)(s) ds

∥∥∥∥
X

(k)
b

. ‖β(k)‖
X

(k)
b−1

Proof. The estimate reduces to the space-independent estimate

(4.2)

∥∥∥∥θ(t)∫ t

0

h(t′) dt′
∥∥∥∥
Hb
t

. ‖h‖Hb−1
t
, for 1

2
< b ≤ 1

Indeed, taking h(t) = hxkx′k(t)
def
= U (k)(−t)β(k)(t,xk,x

′
k), applying the estimate (4.2) for fixed

xk,x
′
k, and then applying the L2

xkx
′
k

norm to both sides, yields (4.1). Now we prove estimate

(4.2). Let P≤1 and P≥1 denote Littlewood-Paley projections onto frequencies |τ | . 1 and

|τ | & 1 respectively. Decompose h = P≤1h + P≥1h and use that
∫ t
0
P≥1h(t′) = 1

2

∫
(sgn(t −

t′) + sgn(t′))P≥1h(t′) dt′ to obtain the decomposition

θ(t)

∫ t

0

h(t′) dt′ = H1(t) +H2(t) +H3(t),

where

H1(t) = θ(t)

∫ t

0

P≤1h(t′) dt′

H2(t) = 1
2
θ(t)[sgn ∗P≥1h](t) dt′

H3(t) = 1
2
θ(t)

∫ +∞

−∞
sgn(t′)P≥1h(t′) dt′.

We begin by addressing term H1. By Sobolev embedding (recall 1
2
< b ≤ 1) and the Lp → Lp

boundedness of the Hilbert transform for 1 < p <∞,

‖H1‖Hb
t
. ‖H1‖L2

t
+ ‖∂tH1‖L2/(3−2b)

t
.

Using that ‖P≤1h‖L∞t . ‖h‖Hb−1
t

, we thus conclude

‖H1‖Hb
t
. (‖θ‖L2

t
+ ‖θ‖

L
2/(3−2b)
t

+ ‖θ′‖
L
2/3−2b
t

)‖h‖Hb−1
t

.

Next we address the term H2. By the fractional Leibniz rule,

‖H2‖Hb
t
. ‖〈Dt〉bθ‖L2

t
‖ sgn ∗P≥1h‖L∞t + ‖θ‖L∞t ‖〈Dt〉b(sgn ∗P≥1h)‖L2

t
.
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However,

‖ sgn ∗P≥1h‖L∞t . ‖〈τ〉−1ĥ(τ)‖L1
τ
. ‖h‖Hb−1

t
.

On the other hand,

‖〈Dt〉b sgn ∗P≥1h‖L2
t
. ‖〈τ〉b〈τ〉−1ĥ(τ)‖L2

τ
. ‖h‖Hb−1

t
.

Consequently,

‖H2‖Hb
t
. (‖〈Dt〉bθ‖L2

t
+ ‖θ‖L∞t )‖h‖Hb−1

t
.

For term H3, we have

‖H3‖Hb
t
. ‖θ‖Hb

t

∥∥∥∥∫ +∞

−∞
sgn(t′)P≥1h(t′) dt′

∥∥∥∥
L∞t

.

However, the second term is handled via Parseval’s identity∫
t′

sgn(t′)P≥1h(t′) dt′ =

∫
|τ |≥1

τ−1ĥ(τ) dτ ,

from which the appropriate bounds follow again by Cauchy-Schwarz. Collecting our esti-

mates for H1, H2, and H3, we have∥∥∥∥θ(t)∫ t

0

h(t′) dt′
∥∥∥∥
Hb
t

. Cθ‖h‖Hb−1
t
,

where

Cθ = ‖θ‖L2
t

+ ‖θ′‖
L
2/(3−2b)
t

+ ‖〈Dt〉bθ‖L2
t

+ ‖θ‖
L
2/(3−2b)
t

+ ‖θ‖L∞t

4.1. Various Forms of Collapsing Estimates.

Lemma 4.2. There is a C independent of j, k, and N such that, (for f (k+1)(xk+1,xk+1)

independent of t)∥∥R(k)BN,j,k+1U
(k+1)(t)f (k+1)

∥∥
L2
tL

2
x,x′

6 C ‖V ‖L1

∥∥R(k+1)f (k+1)
∥∥
L2
x,x′

.

Proof. One can find this estimate as estimate (A.18) in [11] or a special case of Theorem 7

of [15]. For more estimates of this type, see [35, 28, 12, 14, 3, 27].

We have the following consequence of Lemma 4.2.

Lemma 4.3. There is a C independent of j, k, and N such that (for α(k+1)(t,xk+1,xk+1)

dependent on t)

‖R(k)BN,j,k+1α
(k+1)‖L2

tL
2
x,x′

6 C‖R(k+1)α(k+1)‖
X

(k+1)
1
2+

Proof. Let

f (k+1)
τ (xk+1,x

′
k+1) = Ft7→τ (U (k+1)(−t)α(k+1)(t,xk+1,x

′
k+1))

where Ft7→τ denotes the Fourier transform in t 7→ τ . Then

α(k+1)(t,xk+1,x
′
k+1) =

∫
τ

eitτU (k+1)(t)f (k+1)(xk+1,x
′
k+1) dτ
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By Minkowski’s inequality

‖R(k)BN,j,k+1α
(k+1)‖L2

tL
2
x,x′
≤
∫
τ

‖R(k)BN,j,k+1U
(k+1)(t)f (k+1)‖L2

tL
2
x,x′

dτ

By Lemma 4.2,

≤
∫
τ

‖R(k+1)f (k+1)‖L2
x,x′

dτ

For any b > 1
2
, we write 1 = 〈τ〉−b〈τ〉b and apply Cauchy-Schwarz in τ to obtain

≤ ‖〈τ〉bR(k+1)f (k+1)‖L2
τ,x,x′

= ‖R(k+1)α(k+1)‖
X

(k+1)
b

Lemma 4.4. For each ε > 0, there is a Cε independent of Mk, j, k, and N such that

‖R(k)P
(k)
6Mk

BN,j,k+1U
(k+1)(t)f (k+1)‖L2

tL
2
x,x′

6 Cε ‖V ‖L1

∑
Mk+1>Mk

(
Mk

Mk+1

)1−ε ∥∥∥R(k+1)P
(k+1)
6Mk+1

f (k+1)
∥∥∥
L2
x,x′

where the sum on the right is in Mk+1, over dyads such that Mk+1 > Mk. In particular, we

have Lemma 4.2 back if we carry out the sum and let Mk →∞.

Proof. It suffices to take k = 1 and prove

‖R(1)P≤M1BN,1,2(R
(2))−1U (2)(t)f (2)‖L2

tL
2
x1x
′
1

≤ Cε‖V ‖L1

∑
M2>M1

(
M1

M2

)1−ε

‖P (2)
≤M2

f (2)‖L2
tL

2
x2x
′
2

where the sum is over dyadic M2 such that M2 >M1. For convenience, we take only “half”

of the operator BN,1,2: For α(2)(t, x1, x2, x
′
1, x
′
2), define

(B̃N,1,2α
(2))(t, x1, x

′
1)

def
=

∫
x2

VN(x1 − x2)α(2)(t, x1, x2, x
′
1, x2) dx2

Note that(
R(1)B̃N,1,2(R

(2))−1U (2)(t)f (2)
)

(̂τ , ξ1, ξ
′
1)

=

∫∫
ξ2,ξ
′
2

δ(· · · ) V̂N(ξ2 + ξ′2)|ξ1|
|ξ1 − ξ2 − ξ′2||ξ2||ξ′2|

f̂ (2)(ξ1 − ξ2 − ξ′2, ξ2, ξ′1, ξ′2) dξ2 dξ′2

where

δ(· · · ) = δ(τ + |ξ1 − ξ2 − ξ′2|
2

+ |ξ2|2 − |ξ′1|
2 − |ξ′2|

2
)

Divide this integration into two pieces:

=

∫∫
|ξ2|≤|ξ′2|

(· · · ) dξ2 dξ′2 +

∫∫
|ξ′2|≤|ξ2|

(· · · ) dξ2 dξ′2

In the first term, decompose the ξ′2 integration into dyadic intervals, and in the second term,

decompose the ξ2 integration into dyadic intervals:

=
∑

M2≥M1

∫∫
|ξ2|≤|ξ′2|

P 2′

M2
(· · · ) dξ2 dξ′2 +

∑
M2≥M1

∫∫
|ξ′2|≤|ξ2|

P 2
M2

(· · · ) dξ2 dξ′2
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Observe that, in the first integration, we can insert for free the projection P 1
≤3M2

P 1′
≤M1

P 2
≤M2

and in the second integration, we can insert P 1
≤3M2

P 1′
≤M1

P 2′
≤M2

.

=
∑

M2≥M1

∫∫
|ξ2|≤|ξ′2|

P 1
≤3M2

P 1′

≤M1
P 2
≤M2

P 2′

M2
(· · · ) dξ2 dξ′2

+
∑

M2≥M1

∫∫
|ξ′2|≤|ξ2|

P 1
≤3M2

P 1′

≤M1
P 2′

≤M2
P 2
M2

(· · · ) dξ2 dξ′2

Then for each piece, we proceed as in Klainerman-Machedon [37], performing Cauchy-

Schwarz with respect to measures supported on hypersurfaces and applying the L2
τξ1ξ

′
1

norm

to both sides of the resulting inequality.7 In this manner, it suffices to prove the following

estimates, uniform in τ ′ = τ − |ξ′1|
2
:

(4.3)

∫∫
|ξ′2|∼M2,
|ξ2|≤M2

δ(· · · ) |ξ1|2

|ξ1 − ξ2 − ξ′2|
2 |ξ2|

2 |ξ′2|
2 dξ2 dξ

′
2 ≤ Cε

(
M1

M2

)2(1−ε)

,

(recall that |ξ1| .M1 �M2) and also

(4.4)

∫∫
|ξ2|∼M2,
|ξ′2|≤M2

δ(· · · ) |ξ1|2

|ξ1 − ξ2 − ξ′2|
2 |ξ2|

2 |ξ′2|
2 dξ2 dξ

′
2 ≤ Cε

(
M1

M2

)2(1−ε)

.

In both (4.3) and (4.4),

δ(· · · ) = δ(τ ′ + |ξ1 − ξ2 − ξ′2|
2

+ |ξ2|
2 − |ξ′2|

2
).

By rescaling ξ2 7→M2ξ2 and ξ′2 7→M2ξ
′
2, (4.3) and (4.4) reduce to, respectively, the following.

(4.5)

for |ξ1| � 1, I(τ ′, ξ1)
def
=

∫∫
|ξ′2|∼1,
|ξ2|≤2

δ(· · · ) |ξ1|2

|ξ1 − ξ2 − ξ′2|
2 |ξ2|

2 |ξ′2|
2 dξ2 dξ

′
2 ≤ Cε|ξ1|2(1−ε),

(4.6)

for |ξ1| � 1, I ′(τ ′, ξ1)
def
=

∫∫
|ξ2|∼1,
|ξ′2|≤2

δ(· · · ) |ξ1|2

|ξ1 − ξ2 − ξ′2|
2 |ξ2|

2 |ξ′2|
2 dξ2 dξ

′
2 ≤ Cε|ξ1|2(1−ε).

To be precise, the ξ1 in estimates (4.5) and (4.6) is ξ1/M2 in estimates (4.3) and (4.4). We

shall obtain the upper bound |ξ1|2 log |ξ1|−1 for both (4.5), (4.6).

First, we prove (4.6). Begin by carrying out the ξ′2 integral to obtain

I ′(τ ′, ξ1) =
1

2
|ξ1|2

∫
1
2
≤|ξ2|≤2

H ′(τ ′, ξ1, ξ2)

|ξ1 − ξ2||ξ2|2
dξ2

where H ′(τ ′, ξ1, ξ2) is defined as follows. Let P ′ be the truncated plane defined by

P ′(τ ′, ξ1, ξ2) =
{
ξ′2 ∈ R3 | (ξ′2 − λω) · ω = 0 , |ξ′2| ≤ 2

}
where

ω =
ξ1 − ξ2
|ξ1 − ξ2|

, λ =
τ ′ + |ξ1 − ξ2|2 + |ξ2|2

2|ξ1 − ξ2|

7Notice that
∥∥∥V̂N∥∥∥

L∞
6 ‖VN‖L1 = ‖V ‖L1 i.e. V̂N is a dummy factor.
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Now let

(4.7) H ′(τ ′, ξ1, ξ2) =

∫
ξ′2∈P ′(τ ′,ξ1,ξ2)

dσ(ξ′2)

|ξ1 − ξ2 − ξ′2|
2 |ξ′2|

2

where the integral is computed with respect to the surface measure on P ′.

Since |ξ1 − ξ2| ∼ 1, |ξ2| ∼ 1, we have the following reduction

I ′(τ ′, ξ1) . |ξ1|2
∫

1
2
≤|ξ2|≤2

H ′(τ ′, ξ1, ξ2) dξ2

We now evaluate H ′(τ ′, ξ1, ξ2). Introduce polar coordinates (ρ, θ) on the plane P ′ with

respect to the “center” λω, and note that

(4.8)

|ξ1 − ξ2 − ξ′2|2 = ||ξ1 − ξ2|ω − ξ′2|2

= |(|ξ1 − ξ2| − λ)ω − (ξ′2 − λω)|2

= (|ξ1 − ξ2| − λ)2 + |ξ′2 − λω|2

= (|ξ1 − ξ2| − λ)2 + ρ2

= α2 + ρ2

where

α = |ξ1 − ξ2| − λ =
|ξ1|2 − 2ξ1 · ξ2 − τ ′

2|ξ1 − ξ2|
Also,

(4.9) |ξ′2|
2

= |(ξ′2 − λω) + λω|2 = |ξ′2 − λω|
2

+ λ2 = ρ2 + λ2

Using (4.8) and (4.9) in (4.7),

H ′(τ ′, ξ1, ξ2) =

∫ √4−λ2

0

2πρ dρ

(ρ2 + α2)(ρ2 + λ2)

The restriction to 0 ≤ ρ ≤
√

4− λ2 arises from the fact that the plane P ′ must sit within

the ball |ξ′2| ≤ 2. In particular, H ′(τ , ξ1, ξ2) = 0 if |λ| ≥ 2 since then the plane P ′ is located

entirely outside the ball |ξ′2| ≤ 2. Since |λ| ≤ 2, we have |α| ≤ 3 and |τ ′| ≤ 10.

We consider the three cases: (A) |λ| ≤ 1
4

(which implies |α| ≥ 1
4
), (B) |α| ≤ 1

4
(which

implies |λ| ≥ 1
4
), and (C) |λ| ≥ 1

4
and |α| ≥ 1

4
. Case (C) is the easiest since clearly

|H ′(τ ′, ξ1, ξ2)| ≤ C.

Let us consider case (B). Then

H ′(τ , ξ1, ξ2) .
∫ 2

ρ=0

ρ dρ

ρ2 + α2
=

∫ √2
ν=0

dν

ν + α2
= log

(
1 +

√
2

α2

)
Substituting back into I ′,

I ′(τ ′, ξ1) . |ξ1|2
∫
|ξ2|≤2

log

(
1 +

√
2

α2

)
dξ2
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Since |α| ≤
√

3, it follows that8

log(1 +

√
2

α2
) ≤ c+ | log |α||

≤ c+ | log |(|ξ1|2 − 2ξ1 · ξ2 − τ ′)||

= c+ | log 2|ξ1 · (ξ2 −
1

2
ξ1 +

τ ′ξ1
2|ξ1|2

)|

= c+ | log |ξ1 · (ξ2 −
1

2
ξ1 +

τ ′ξ1
2|ξ1|2

)|

Hence

I ′(τ ′, ξ1) . |ξ1|2
(

1 +

∫
|ξ2|≤2

| log |ξ1 · (ξ2 −
1

2
ξ1 +

τ ′ξ1
2|ξ1|2

)| dξ2
)

Denoting by B(µ, r) the ball of center µ and radius r, the substitution ξ2 7→ ξ2 + 1
2
ξ1−

τ ′ξ1
2|ξ1|2

yields, with µ = 1
2
ξ1 −

τ ′ξ1
2|ξ1|2

,

I ′(τ ′, ξ1) . |ξ1|2
(

1 +

∫
B(µ,2)

| log |ξ1 · ξ2|| dξ2
)

. |ξ1|2
(

log |ξ1|−1 +

∫
B(µ,2)

| log | ξ1
|ξ1|
· ξ2|| dξ2

)
By rotating coordinates so that ξ

ξ1
= (1, 0, 0), and letting µ′ denote the corresponding rota-

tion of µ,

I ′(τ ′, ξ1) . |ξ1|2
(

log |ξ1|−1 +

∫
B(µ′,2)

| log |(ξ2)1| dξ2
)

where (ξ2)1 denotes the first coordinate of the vector ξ2. Since |τ ′| ≤ 10, it follows that

|µ′| . |ξ1|−1 and we finally obtain

I ′(τ ′, ξ1) . |ξ1|2 log |ξ1|−1

as claimed, completing Case (B).

Case (A) is similar except that we begin with the bound

H ′(τ ′, ξ1, ξ2) .
∫ 2

ρ=0

2πρ dρ

ρ2 + λ2

This completes the proof of (4.6).

Next, we prove (4.5). In the integral defining I(τ ′, ξ1), we have the restriction 1
2
≤ |ξ′2| ≤ 2

and |ξ2| ≤ 2. Note that if 1
4
≤ |ξ2| ≤ 2, then the argument above that provided the bound

for I ′(τ ′, ξ1) applies. Hence it suffices to restrict to |ξ2| ≤ 1
4
, from which it follows that

|ξ1 − ξ2 − ξ′2| ∼ 1.

Begin by carrying out the ξ′2 integral to obtain

(4.10) I(τ ′, ξ1) =
1

2
|ξ1|2

∫
|ξ2|≤2

H(τ ′, ξ1, ξ2)

|ξ1 − ξ2||ξ2|2
dξ2

8The first step is simply: if x ≥ δ > 0, then log(1 + x) ≤ log x + log(1 + 1
δ ). The second step uses that

|ξ1 − ξ2| ∼ 1, which follows since |ξ1| � 1 and |ξ2| ∼ 1.
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where H(τ ′, ξ1, ξ2) is defined as follows. Let P be the truncated plane defined by

P (τ ′, ξ1, ξ2) = { ξ′2 ∈ R3 | (ξ′2 − λω) · ω = 0 ,
1

2
≤ |ξ′2| ≤ 2 }

where

ω =
ξ1 − ξ2
|ξ1 − ξ2|

, λ =
τ ′ + |ξ1 − ξ2|2 + |ξ2|2

2|ξ1 − ξ2|
Now let

H(τ ′, ξ1, ξ2) =

∫
ξ′2∈P (τ ′,ξ1,ξ2)

dσ(ξ′2)

|ξ1 − ξ2 − ξ′2|
2 |ξ′2|

2

where the integral is computed with respect to the surface measure on P . Since |ξ1−ξ2−ξ′2| ∼
1 and |ξ′2| ∼ 1, we obtain H(τ ′, ξ1, ξ2) ≤ C. Substituting into (4.10), we obtain

I(τ ′, ξ1) . |ξ1|2
∫
|ξ2|≤ 1

4

dξ2
|ξ1 − ξ2||ξ2|2

. |ξ1|2
(∫
|ξ2|≤2|ξ1|

dξ2
|ξ1 − ξ2||ξ2|2

+

∫
2|ξ1|≤|ξ2|≤ 1

4

dξ2
|ξ1 − ξ2||ξ2|2

)
In the first integral, we change variables ξ2 = |ξ1|η, and in the second integral, we use the

bound |ξ1 − ξ2|−1 ≤ 2|ξ2|−1 to obtain

. |ξ1|2
(∫
|η|≤2

dη

| ξ1|ξ1| − η||η|
2

+

∫
2|ξ1|≤|ξ2|≤ 1

4

dξ2
|ξ2|3

)
. |ξ1|2 log |ξ1|−1

This completes the proof of (4.5).

Lemma 4.5. For each ε > 0, there is a Cε independent of Mk, j, k, and N such that

‖R(k)P
(k)
6Mk

BN,j,k+1α
(k+1)‖L2

tL
2
x,x′

6 Cε
∑

Mk+1>Mk

(
Mk

Mk+1

)1−ε ∥∥∥R(k+1)P
(k+1)
6Mk+1

α(k+1)
∥∥∥
X

(k)
1
2+

.

where the sum on the right is in Mk+1, over dyads such that Mk+1 >Mk.

Proof. The proof is exactly the same as deducing Lemma 4.3 from Lemma 4.2. We include

the proof for completeness. Let

f (k+1)
τ (xk+1,x

′
k+1) = Ft7→τ (U (k+1)(−t)α(k+1)(t,xk+1,x

′
k+1))

where Ft7→τ denotes the Fourier transform in t 7→ τ . Then

α(k+1)(t,xk+1,x
′
k+1) =

∫
τ

eitτU (k+1)(t)f (k+1)(xk+1,x
′
k+1) dτ

By Minkowski’s inequality

‖R(k)P
(k)
6Mk

BN,j,k+1α
(k+1)‖L2

tL
2
x,x′
≤
∫
τ

‖R(k)P
(k)
6Mk

BN,j,k+1U
(k+1)(t)f (k+1)‖L2

tL
2
x,x′

dτ

By Lemma 4.4,

≤ Cε
∑

Mk+1>Mk

(
Mk

Mk+1

)1−ε ∫
τ

‖R(k+1)P
(k+1)
6Mk+1

f (k+1)‖L2
x,x′

dτ
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For any b > 1
2
, we write 1 = 〈τ〉−b〈τ〉b and apply Cauchy-Schwarz in τ to obtain

≤ Cε
∑

Mk+1>Mk

(
Mk

Mk+1

)1−ε

‖〈τ〉bR(k+1)P
(k+1)
6Mk+1

f (k+1)‖L2
τ,x,x′

= Cε
∑

Mk+1>Mk

(
Mk

Mk+1

)1−ε ∥∥∥R(k+1)P
(k+1)
6Mk+1

α(k+1)
∥∥∥
X

(k)
1
2+

.

4.2. A Strichartz Estimate for PP (k).

Lemma 4.6. Assume γ(k)(t,xk;x
′
k) satisfies the symmetric condition (1.1). Let

(4.11) β(k)(t,xk;x
′
k) = V (xi − xj)γ(k)(t,xk;x′k)

Then we have the estimates:

‖β(k)‖
X

(k)

− 1
2+

. ‖V ‖
L

6
5+
x

‖〈∇xi〉〈∇xj〉γ(k)‖L2
tL

2
x,x′
,(4.12)

‖β(k)‖
X

(k)

− 1
2+

. ‖V ‖L3+
x
‖γ(k)‖L2

tL
2
x,x′
,(4.13)

‖β(k)‖
X

(k)

− 1
2+

. ‖V ‖L2+
x
‖〈∇xi〉

1
2γ(k)‖L2

tL
2
x,x′
.(4.14)

Proof. It suffices to prove Lemma 4.6 for k = 2. Since we will need to deal with Fourier

transforms in only selected coordinates, we introduce the following notation: F0 denotes

Fourier transform in t, Fj denotes Fourier transform in xj, and Fj′ denotes Fourier transform

in x′j. Fourier transforms in multiple coordinates will denoted as combined subscripts –

for example, F01′ = F0F1′ denotes the Fourier transform in t and x′1.
9 Let T denote the

translation operator

(Tf)(x1, x2) = f(x1 + x2, x2)

Suppressing the x′1, x
′
2 dependence, we have

(4.15) (F12Tβ
(2))(t, ξ1, ξ2) = (F12β

(2))(t, ξ1, ξ2 − ξ1)

Also

(4.16) e−2itξ1·ξ2(F12Tβ
(2))(t, ξ1, ξ2) = F1

[
(F2Tβ

(2))(t, x1 − 2tξ2, ξ2)
]
(ξ1)

Now

(4.17)

(F012β
(2))(τ − |ξ2|2 + 2ξ1 · ξ2, ξ1, ξ2 − ξ1)

= (F012Tβ
(2))(τ − |ξ2|2 + 2ξ1 · ξ2, ξ1, ξ2) by (4.15)

= F0

[
eit|ξ2|

2

e−2itξ1·ξ2(F12Tβ
(2))(t, ξ1, ξ2)

]
(τ)

= F0

[
eit|ξ2|

2F1

[
(F2Tβ

(2))(t, x1 − 2tξ2, ξ2)
]
(ξ1)

]
(τ) by (4.16)

= F01

[
eit|ξ2|

2

(F2Tβ
(2))(t, x1 − 2tξ2, ξ2)

]
(τ , ξ1)

9We are going to apply the endpoint Strichartz estimate on the non-transformed coordinates. We do not

know currently the origin of such an technique. The only other place we know about it is [13, Lemma 6].
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By changing variables ξ2 7→ ξ2 − ξ1 and then changing τ 7→ τ − |ξ2|2 + 2ξ1 · ξ2, we obtain

‖β(2)‖
X

(2)

− 1
2+

= ‖β̂
(2)

(τ , ξ1, ξ2, ξ
′
1, ξ
′
2)〈τ + |ξ1|

2 + |ξ2|
2 − |ξ′1|

2 − |ξ′2|
2〉−

1
2
+‖L2

τξ1ξ2ξ
′
1ξ
′
2

= ‖β̂
(2)

(τ − |ξ2|2 + 2ξ1 · ξ2, ξ1, ξ2 − ξ1, ξ′1, ξ′2)〈τ + 2 |ξ1|
2 − |ξ′1|

2 − |ξ′2|
2〉−

1
2
+‖L2

τξ1ξ2ξ
′
1ξ
′
2

Applying the the dual Strichartz (see (4.19) below), the above is bounded by

. ‖F−101

[
(F012β

(2))(τ − |ξ2|2 + 2ξ1 · ξ2, ξ1, ξ2 − ξ1)
]
(t, x1)‖

L2
ξ2
L2
tL

6
5+
x1

L2
x′1x
′
2

Utilizing (4.17), the above is equal to

= ‖(F2Tβ
(2))(t, x1 − 2tξ2, ξ2)‖

L2
tL

2
ξ2
L

6
5+
x1

L2
x′1x
′
2

Change variable in x1 7→ x1 + 2tξ2 to obtain

= ‖(F2Tβ
(2))(t, x1, ξ2)‖

L2
tL

2
ξ2
L

6
5+
x1

L2
x′1x
′2
2

Now note that from (4.11), we have

(F2Tβ
(2))(t, x1, ξ2) = V (x1)(F2Tγ

(2))(t, x1, ξ2)

It follows that

‖(F2Tβ
(2))(t, x1, ξ2)‖

L2
tL

2
ξ2
L

6
5+
x1

L2
x′1x
′
2

=

∥∥∥∥V (x1)
(
‖(F2Tγ

(2))(t, x1, ξ2)‖L2
x′1x
′
2

)∥∥∥∥
L2
tL

2
ξ2
L

6
5+
x1

≤ ‖V ‖
L

6
5+‖(F2Tγ

(2))(t, x1, ξ2)‖L2
tL

2
ξ2
L∞x1L

2
x′1x
′
2

(4.18)

≤ ‖V ‖
L

6
5+‖(F2Tγ

(2))(t, x1, ξ2)‖L2
tL

2
ξ2x
′
1x
′
2
L∞x1

and continue with Sobolev, Plancherel, etc. We also need to remark that we split γ(2) into the

piece where |ξ1| ≥ |ξ2| and the piece where |ξ2| ≥ |ξ1|. The above represents the treatment

of the case |ξ1| ≤ |ξ2|. This proves estimate (4.12). Using Hölder exponents (3+, 2, 6
5
+) and

(2+, 3, 6
5
+) in (4.18) yields estimates (4.13) and (4.14).

It remains to prove the following dual Strichartz estimate (here σ(2)(t, x1, x
′
1, x
′
2), note that

the x2 coordinate is missing):

(4.19) ‖〈τ + 2 |ξ1|
2 − |ξ′1|

2 − |ξ′2|
2〉−

1
2
+σ̂(2)(τ , ξ1, ξ

′
1, ξ
′
2)‖L2

τL
2
ξ1ξ
′
1ξ
′
2

. ‖σ(2)‖
L2
tL

6
5+
x1

L2
x′1x
′
2

The estimate (4.19) is dual to the equivalent estimate

(4.20) ‖σ(2)‖L2
tL

6−
x1
L2
x′1x
′
2

. ‖〈τ + 2 |ξ1|
2 − |ξ′1|

2 − |ξ′2|
2〉

1
2
−σ̂(2)(τ , ξ1, ξ

′
1, ξ
′
2)‖L2

τL
2
ξ1ξ
′
1ξ
′
2
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To prove (4.20), we prove

(4.21) ‖σ(2)‖L2
tL

6
x1
L2
x′1x
′
2

. ‖〈τ + 2 |ξ1|
2 − |ξ′1|

2 − |ξ′2|
2〉

1
2
+σ̂(2)(τ , ξ1, ξ

′
1, ξ
′
2)‖L2

τL
2
ξ1ξ
′
1ξ
′
2

The estimate (4.20) follows from the interpolation of (4.21) and the trivial equality

‖σ(2)‖L2
tL

2
x1
L2
x′1x
′
2

= ‖〈τ + 2 |ξ1|
2 − |ξ′1|

2 − |ξ′2|
2〉0σ̂(2)(τ , ξ1, ξ

′
1, ξ
′
2)‖L2

τL
2
ξ1ξ
′
1ξ
′
2

Thus proving (4.19) is reduced to proving (4.21), which we do now. Let

(4.22) φτ (x1, x
′
1, x2)

def
= F0[U

1(−2t)U1′(−t)U2′(−t)σ(2)(t, x1, x
′
1, x
′
2)](τ)

Then note φτ is independent of t and

σ(2)(t, x1, x
′
1, x
′
2) =

∫
eitτU1(2t)U1′(t)U2′(t)φτ (x1, x

′
1, x
′
2)dτ

Thus

‖σ(2)‖L2
tL

6
x1
L2
x′1x
′
2

.
∫
τ

‖U1′(t)U2′(t)U1(2t)φτ (x1, x
′
1, x
′
2)‖L2

tL
6
x1
L2
x′1x
′
2

dτ

.
∫
τ

‖U1(2t)φτ (x1, x
′
1, x
′
2)‖L2

tL
6
x1
L2
x′1x
′
2

dτ

.
∫
τ

‖U1(2t)φτ (x1, x
′
1, x
′
2)‖L2

x′1x
′
2
L2
tL

6
x1
dτ

Now apply Keel-Tao [33] endpoint Strichartz estimate to obtain

.
∫
τ

‖φτ (x1, x′1, x′2)‖L2
x′1x
′
2
L2
x1
dτ

. ‖〈τ〉
1
2
+φτ (x1, x

′
1, x
′
2)‖L2

τL
2
x1x
′
1x
′
2

It follows from (4.22) that

= ‖〈τ + 2 |ξ1|
2 − |ξ′1|

2 − |ξ′2|
2〉

1
2
+σ̂(2)(τ , ξ1, ξ

′
1, ξ
′
2)‖L2

τξ1ξ
′
1ξ
′
2

which completes the proof of (4.21).

Corollary 4.1. Let

β(k)(t,xk,x
′
k) = N3β−1V (Nβ(xi − xj))γ(k)(t,xk,x′k)

Then for N ≥ 1, we have

(4.23) ‖ |∇xi |
∣∣∇xj

∣∣ β(k)‖
X

(k)

− 1
2+

. N
5
2
β−1‖〈∇xi〉〈∇xj〉γ(k)‖L2

tL
2
xx′

and

(4.24) ‖β(k)‖
X

(k)

− 1
2+

. N
1
2
β−1‖〈∇xi〉〈∇xj〉γ(k)‖L2

tL
2
xx′

Consequently, (R
(k)
≤M = P

(k)
≤MR

(k))

(4.25) ‖R(k)
≤Mβ

(k)‖
X

(k)

− 1
2+

. N
1
2
β−1 min(M2, N2β)‖S(k)γ(k)‖L2

tL
2
xx′
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Proof. Estimate (4.23) follows by applying either (4.12), (4.13), or (4.14) according to

whether two derivatives, no derivatives, or one derivative, respectively, lands onN3β−1V (Nβ(xi−
xj)).

Estimate (4.24) follows by applying (4.12).

Finally, (4.25) follows from (4.23) and (4.24), as follows. Let

Q =
∏

1≤`≤k
` 6=i,j

|∇x` |

Then

‖R(k)
≤Mβ

(k)‖
X

(k)

− 1
2+

≤M2‖Qβ(k)‖
X

(k)

− 1
2+

The Q operator passes directly onto γ(k), and one applies (4.24) to obtain

(4.26) ‖R(k)
≤Mβ

(k)‖
X

(k)

− 1
2+

. N
1
2
β−1M2‖S(k)γ(k)‖L2

tL
2
xx′

On the other hand,

‖R(k)
≤Mβ

(k)‖
X

(k)

− 1
2+

≤ ‖Q |∇xi |
∣∣∇xj

∣∣ β(k)‖
X

(k)

− 1
2+

The Q operator passes directly on γ(k), and one applies (4.23) to obtain

(4.27) ‖R(k)
≤Mβ

(k)‖
X

(k)

− 1
2+

. N
5
2
β−1‖S(k)γ(k)‖L2

tL
2
xx′

Combining (4.26) and (4.27), we obtain (4.25).

5. Conclusion

In this paper, we have established a positive answer to Conjecture 1 by Klainerman and

Machedon [37] in 2008 for β ∈ (0, 2/3). This is the first progress in proving Conjecture 1 for

self-interaction (β > 1/3). Moreover, our main theorem (Theorem 1.1) has already fulfilled

the original intent of [37], namely, simplifying the uniqueness argument of [23] which deals

with β ∈ (0, 3/5). Conjecture 1 for β ∈ [2/3, 1] is still open.

Appendix A. The Topology on the Density Matrices

In this appendix, we define a topology τ prod on the density matrices as was previously

done in [20, 21, 22, 23, 24, 25, 35, 9, 14, 15]

Denote the spaces of compact operators and trace class operators on L2
(
R3k
)

as Kk and

L1
k, respectively. Then (Kk)′ = L1

k. By the fact that Kk is separable, we select a dense

countable subset {J (k)
i }i>1 ⊂ Kk in the unit ball of Kk (so ‖J (k)

i ‖op 6 1 where ‖·‖op is the

operator norm). For γ(k), γ̃(k) ∈ L1
k, we then define a metric dk on L1

k by

dk(γ
(k), γ̃(k)) =

∞∑
i=1

2−i
∣∣∣Tr J

(k)
i

(
γ(k) − γ̃(k)

)∣∣∣ .
A uniformly bounded sequence γ

(k)
N ∈ L1

k converges to γ(k) ∈ L1
k with respect to the weak*

topology if and only if

lim
N
dk(γ

(k)
N , γ(k)) = 0.
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For fixed T > 0, let C ([0, T ] ,L1
k) be the space of functions of t ∈ [0, T ] with values in L1

k

which are continuous with respect to the metric dk. On C ([0, T ] ,L1
k) , we define the metric

d̂k(γ
(k) (·) , γ̃(k) (·)) = sup

t∈[0,T ]
dk(γ

(k) (t) , γ̃(k) (t)).

We can then define a topology τ prod on the space ⊕k>1C ([0, T ] ,L1
k) by the product of

topologies generated by the metrics d̂k on C ([0, T ] ,L1
k) .

Appendix B. Proof of Estimates (2.7) and (2.9)

Proof of Estimate (2.7). Utilizing Lemma 2.1 and estimate (3.2) to the free part of γ
(2)
N , we

obtain ∥∥∥P (1)
≤MR

(1)BN,1,2FP
(k)(t2)

∥∥∥
L1
TL

2
x,x′

6
∥∥∥R(1)BN,1,2FP

(k)(t2)
∥∥∥
L1
TL

2
x,x′

6 CT
1
2

∥∥∥R(2)γ
(2)
N,0

∥∥∥
L2
x,x′

+
k∑
j=3

∑
m

∥∥∥∥R(1)BN,1,2

∫
D

JN(tj, µm)(U (j)(tj)γ
(j)
N,0)dtj

∥∥∥∥
L1
TL

2
x,x′

6 CT
1
2

∥∥∥R(2)γ
(2)
N,0

∥∥∥
L2
x,x′

+
k∑
j=3

∑
m

C(CT
1
2 )j−2

∥∥∥R(j−1)BN,µm(j+1),j+1U
(j)(tj)γ

(j)
N,0

∥∥∥
L1
TL

2
x,x′

6 CT
1
2

∥∥∥R(2)γ
(2)
N,0

∥∥∥
L2
x,x′

+ C
∞∑
j=3

4j−2(CT
1
2 )j−1

∥∥∥R(j)γ
(j)
N,0

∥∥∥
L2
x,x′

.

Via condition (1.4), we can choose a T small enough such that the series in the above estimate

converge. Whence, we have shown estimate (2.7).

Proof of Estimate (2.9). We proceed like the proof of estimate (2.7) and end up with∥∥∥P (1)
≤MR

(1)BN,1,2IP
(k)
∥∥∥
L1
TL

2
x,x′

6
∥∥∥R(1)BN,1,2IP

(k)
∥∥∥
L1
TL

2
x,x′

6
∑
m

∥∥∥∥R(1)BN,1,2

∫
D

JN(tk+1, µm)(γ
(k+1)
N (tk+1))dtk+1

∥∥∥∥
L1
TL

2
x,x′

6
∑
m

C(CT
1
2 )k−1

∥∥∥R(k)BN,µm(k+1),k+1γ
(k+1)
N (tk+1)

∥∥∥
L1
TL

2
x,x′

.

We then investigate ∥∥∥R(k)BN,µm(k+1),k+1γ
(k+1)
N

∥∥∥
L1
TL

2
x,x′

.
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Set µm(k + 1) = 1 for simplicity and look at B1
N,1,k+1, we have∫ ∣∣∣R(k)B1

N,1,k+1γ
(k+1)
N (t)

∣∣∣2 dxkdx′k
=

∫ ∣∣∣∣R(k)

∫
VN(x1 − xk+1)γ

(k+1)
N (t,xk, xk+1;x

′
k, xk+1)dxk+1

∣∣∣∣2 dxkdx′k
6 C

∫ ∣∣∣∣∣
∫
V ′N(x1 − xk+1)

(
k∏
j=2

∣∣∇xj

∣∣)( k∏
j=1

∣∣∣∇x′j

∣∣∣) γ(k+1)
N (t,xk, xk+1;x

′
k, xk+1)dxk+1

∣∣∣∣∣
2

dxkdx
′
k

+C

∫ ∣∣∣∣∫ VN(x1 − xk+1)R
(k)γ

(k+1)
N (t,xk, xk+1;x

′
k, xk+1)dxk+1

∣∣∣∣2 dxkdx′k
= C(I + II).

We estimate I and II as following:

I

=

∫ ∣∣∣∣∣
∫
V ′N(x1 − xk+1)

(
k∏
j=2

∣∣∇xj

∣∣)( k∏
j=1

∣∣∣∇x′j

∣∣∣) γ(k+1)
N (t,xk, xk+1;x

′
k, xk+1)dxk+1

∣∣∣∣∣
2

dxkdx
′
k

6
∫
dxkdx

′
k

(∫
|V ′N(x1 − xk+1)|2 dxk+1

)

×

∫ ∣∣∣∣∣
(

k∏
j=2

∣∣∇xj

∣∣)( k∏
j=1

∣∣∣∇x′j

∣∣∣) γ(k+1)
N (t,xk, xk+1;x

′
k, xk+1)

∣∣∣∣∣
2

dxk+1

 (Cauchy-Schwarz)

6 N5β ‖V ′‖2L2

∫ ∫ ∣∣∣∣∣
(

k∏
j=2

∣∣∇xj

∣∣)( k∏
j=1

∣∣∣∇x′j

∣∣∣) γ(k+1)
N (t,xk, xk+1;x

′
k, xk+1)

∣∣∣∣∣
2

dxk+1

 dxkdx
′
k

6 CN5β ‖V ′‖2L2

∫
dxkdx

′
k

×

∫ ∣∣∣∣∣〈∇xk+1

〉 〈
∇x′k+1

〉( k∏
j=2

∣∣∇xj

∣∣)( k∏
j=1

∣∣∣∇x′j

∣∣∣) γ(k+1)
N (t,xk, xk+1;x

′
k, x

′
k+1)

∣∣∣∣∣
2

dxk+1dx
′
k+1


(Trace Theorem)

6 CN5β ‖V ′‖2L2

∥∥S(k+1)γ(k+1)
∥∥2
L∞T L

2
x,x′

and

II =

∫ ∣∣∣∣∫ VN(x1 − xk+1)R
(k)γ

(k+1)
N (t,xk, xk+1;x

′
k, xk+1)dxk+1

∣∣∣∣2 dxkdx′k
6 CN3β ‖V ‖2L2

∥∥S(k+1)γ(k+1)
∥∥2
L∞T L

2
x,x′

(Same method as I),

where V ∈ W 2, 6
5
+ implies that V ∈ H1 by Sobolev. Accordingly,∫ ∣∣∣R(k)B1

N,1,k+1γ
(k+1)
N (t)

∣∣∣2 dxkdx′k 6 CN5β ‖V ‖2H1

∥∥S(k+1)γ(k+1)
∥∥2
L∞T L

2
x,x′

.
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Thence ∥∥∥P (1)
≤MR

(1)BN,1,2IP
(k)
∥∥∥
L1
TL

2
x,x′

6
∑
m

C(CT
1
2 )k−1

∥∥∥R(k)BN,µm(k+1),k+1γ
(k+1)
N (tk+1)

∥∥∥
L1
TL

2
x,x′

6 4k−1C(CT
1
2 )k−1T

(
CN

5β
2 ‖V ‖H1

∥∥S(k+1)γ(k+1)
∥∥2
L∞T L

2
x,x′

)
6 C ‖V ‖H1 (T

1
2 )k+2N

5β
2 Ck. (Condition (1.4))

As in [11, 15], take the coupling level k = lnN , we have∥∥∥P (1)
≤MR

(1)BN,1,2IP
(k)
∥∥∥
L1
TL

2
x,x′

6 C ‖V ‖H1 (T
1
2 )2+lnNN

5β
2 N c.

Selecting T such that

T 6 e−(5β+2C),

ensures that

(T
1
2 )lnNN

5β
2 N c 6 1,

and thence ∥∥∥P (1)
≤MR

(1)BN,1,2IP
(k)
∥∥∥
L1
TL

2
x,x′

6 C,

where C is independent of N and M. Whence, we have finished the proof of estimate (2.9).
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32 XUWEN CHEN AND JUSTIN HOLMER

[12] X. Chen, Classical Proofs Of Kato Type Smoothing Estimates for The Schrödinger Equation with Qua-

dratic Potential in Rn+1 with Application, Differential and Integral Equations 24 (2011), 209-230.

[13] X. Chen, Second Order Corrections to Mean Field Evolution for Weakly Interacting Bosons in the Case

of Three-body Interactions, Arch. Rational Mech. Anal. 203 (2012), 455-497. DOI: 10.1007/s00205-011-

0453-8.

[14] X. Chen, Collapsing Estimates and the Rigorous Derivation of the 2d Cubic Nonlinear Schrödinger

Equation with Anisotropic Switchable Quadratic Traps, J. Math. Pures Appl. 98 (2012), 450–478. DOI:

10.1016/j.matpur.2012.02.003.

[15] X. Chen, On the Rigorous Derivation of the 3D Cubic Nonlinear Schrödinger Equation with A Quadratic

Trap, 30pp, arXiv:1204.0125, submitted.

[16] X. Chen and J. Holmer, On the Rigorous Derivation of the 2D Cubic Nonlinear Schrödinger Equation

from 3D Quantum Many-Body Dynamics, 41pp, arXiv:1212.0787, submitted.
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