
SLOW SOLITON INTERACTION WITH DELTA IMPURITIES

JUSTIN HOLMER AND MACIEJ ZWORSKI

Abstract. We study the Gross-Pitaevskii equation with a delta function potential, qδ0,
where |q| is small and analyze the solutions for which the initial condition is a soliton with
initial velocity v0. We show that up to time (|q|+ v2

0)−
1
2 log(1/|q|) the bulk of the solution

is a soliton evolving according the classical dynamics of a natural effective Hamiltonian,
(ξ2 + q sech2(x))/2.

1. Introduction

The Gross-Pitaevskii equation (NLS) with a delta function potential and soliton initial
data,

(1.1)

{
i∂tu + 1

2
∂2

xu− qδ0(x)u + u|u|2 = 0

u(x, 0) = eiv0xsech(x− a0) ,

offers a surprising wealth of dynamical phenomena. In [12], (and numerically in [13]), the
authors and J. Marzuola studied the high velocity, v0 � 1, case and showed that the
scattering matrix of the delta potential controls the dynamics. In this paper we describe
the case of small q. The most interesting dynamics is visible for initial velocities satisfying
v2

0 ≤ |q|. The low v0 regime has been studied in the physics literature [3],[9],[2], and the
behaviour in the intermediate range of q’s and v0’s, that is between the fully quantum and
semiclassical cases studied in [12] and in this paper respectively, is still unclear. We state
the main result here with a slightly more precise version given in Theorem 2 in §7 below.

Theorem 1. Suppose that in (1.1) we have |q| � 1. Then, on a time interval 0 ≤ t ≤
δ(v2

0 + |q|)−1/2 log(1/|q|),

(1.2) ‖u(t, •)− ei•v(t)eiγ(t)sech(• − a(t))‖H1(R) ≤ C|q|1−3δ ,

where a, v, and γ solve the following system of equations

(1.3)
d

dt
a = v ,

d

dt
v = −1

2
q∂x(sech

2)(a) ,
d

dt
γ =

1

2
+

v2

2
− qsech2(a)− 1

2
q∂x(sech

2)(a) ,

with initial data (a0, v0, 0).

Remark. The arguments presented in the paper apply to much more general impurities.
In fact, one can replace δ0 by any V ∈ H−1(R). The effective potential qsech2(a) is then
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replaced by qV ∗ sech2(a). Since our motivation comes from [12] we present only the special
case.
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Figure 1. The top figure shows the evolution of |u(x, t)| for v0 = 0, a0 = −3,
q = −0.01 for 0 ≤ t ≤ 1000. In the bottom figure the dashed curve is the
computed center of motion, and the continuous curve, the plot of a(t) given by
(1.3). More figures illustrating other cases, some with an even more dramatic
agreement can be found at http://math.berkeley.edu/∼zworski/HZ1.pdf

Compared to numerical results, the theorem gives a remarkably good description of the
dynamics of a slow soliton interacting with a small delta function potential. For example
consider v0 = 0, a0 < 0 fixed, and |q| → 0, illustrated in Fig.1. When q < 0, the bulk of
the solution is oscillatory about the origin, with the center moving from a0 < 0 to −a0 > 0.
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Since
1

2
v2 +

1

2
qη2(a) =

1

2
qη2(a0) , η(x)

def
= sech(x) ,

the time to complete one cycle of oscillation is∫ −a0

a0

2 dx

|q|1/2
√

η2(x)− η2(a0)

which is of size comparable to |q|−1/2. Since the theorem provides an accurate description
up to time ∼ |q|−1/2 log(1/|q|), it covers many cycles for small enough |q|. When q > 0 the
soliton is repulsed by the δ potential and slowly slides to negative infinity with the terminal
velocity q1/2 – see Fig.3 below.

The proof of our theorem follows the long tradition of the study of stability of solitons
which started with the work of M.I. Weinstein [16]. The interaction of solitons with external
potentials was studied in the stationary semiclassical setting by Floer and A. Weinstein
[5] and Oh [14], and the first dynamical result belongs to Bronski and Jerrard [1]. The
semiclassical regime is equivalent to considering slowly varying potentials,

(1.4)

{
i∂tu + 1

2
∂2

xu−W (hx)u + u|u|2 = 0 , 0 < h � 1

u(x, 0) = eiv0xsech(x− a0) , ‖W (k)‖∞ ≤ C , k ≤ 2 ,

and that case has been studied in various settings and degrees of generality in [6], [7], [8]
(see these papers for additional references). The approach of these works was our starting
point. The results of [6] in the special case of (1.4) give

(1.5) ‖u(t, •)− ei•v(t)eiγ(t)sech(• − a(t))‖H1(R) ≤ Ch , 0 ≤ t ≤ C log(1/h)/h ,

where
d

dt
a = v +O(h2) ,

d

dt
v = −hW ′(ha) +O(h2) ,

d

dt
γ =

1

2
+

v2

2
−W (ha) +O(h2) ,

(1.6)

with initial data (a0, v0, 0).† We note that unlike in (1.3) the ordinary differential system
(1.6) is not exact – see Fig.2 and the discussion below.

At first the equations (1.1) and (1.4) appear to be very different: a delta function po-
tential is very far from being slowly varying. The similarity of (1.3) and (1.6) is however a
result of the same underlying structure. As we recall in §2 the Gross-Pitaevski equations,
(1.1) or (1.4), are the equation for Hamiltonian flow of

(1.7) HV (u)
def
=

1

4

∫
(|∂xu|2 − |u|4)dx +

1

2

∫
V |u|2 , V = qδ0 , V = W (h•) ,

†Strictly speaking the result in [6] describes the dynamics for 0 ≤ t ≤ c0/h only. That corresponds to
small time dynamics of the potential W . Iterating the full strength of the result of [6] seems to give the
expected extension to Ehrenfest time log(1/h)/h [11].
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Figure 2. Comparison of the dynamics of the center of motion of the soliton
for the Gross-Pitaevskii equation with a slowly varying potential,

iut = −1

2
uxx − |u|2u− sech2(hx)u , h = 1/5 , h = 1/4 ,

and initial condition in (1.1) with v0 = 0, a0 = −3. The dashed red curve
shows the solution to Newton’s equations used in [1] and [6], the blue curve
shows the center of the approximate soliton u, and the black dashed curve is
given by the equations of motion of the effective Hamiltonian

1

2

(
v2 − sech2(h•) ∗ sech2(a)

)
.

The improvement of the approximation given by the effective Hamiltonian
is remarkable even in the case of h = 1/4 in which we already see radiative
dissipation in the first cycle.
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with respect to the symplectic form on H1(R, C) (considered as a real Hilbert space):

(1.8) ω(u, v) = Im

∫
uv̄ , u, v ∈ H1(R, C) .

When V ≡ 0, η = sech is a critical value (minimizer) of H0 with prescribed L2 norm:

(1.9) dEη = 0 , E(u)
def
= H0(u) +

1

4
‖u‖2

L2 .

The flow of H0 is tangent to the manifold of solitons,

M = {eiγeiv(x−a)µ sech(µ(x− a)) , a, v, γ ∈ R , µ ∈ R+} ,

which of course corresponds to the fact that the solution of (1.1) with q = 0 and u0(x, 0) =
eiγ+iv0(x−a0)µsech(µ(x− a0)), is

(1.10) u(x, t) = eiγ+iv0(x−a0)+i(µ2−v2)t/2µ sech(µ(x− a0 − v0t)) .

The symplectic form (1.8) restricted to M is

(1.11) ω�M= µdv ∧ da + vdµ ∧ da + dγ ∧ dµ ,

see §2.4. The evolution of the parameters (a, v, γ, µ) in the solution u(x, t) follows the
Hamilton flow of

H0�M=
µv2

2
− µ3

6
,

with respect to the symplectic form ω�M .

The systems of equations (1.3) and (1.6) are obtained using the following basic idea: if
a Hamilton flow of H, with initial condition on a symplectic submanifold, M , stays close
to M , then the flow is close to the Hamilton flow of H�M .

In our case M is the manifold of solitons and H is given by (1.7)

(1.12) HV �M (a, v, γ, µ) =
µv2

2
− µ3

6
+

1

2
µ2(V ∗ sech2)(µa) ,

and in particular

Hqδ0�M= H0�M +
1

2
µ2 sech2(µa) , HW (h•)�M= H0�M +

1

2
µ2 W (h•) ∗ sech2(µ•) .

The equations (1.3) are simply the equations of the flow of Hqδ0�M – see §2.5. The equations
of the flow of HW (h•)�M are easily seen to imply (1.6) but some h corrections are built into
the classical motion. It would be interesting to see if this provides improvement of the
analysis of [6]. Since our interests lie in the study of various aspects of the delta impurity
we satisfy ourselves with a numerical experiment which shows that the improvement is
indeed dramatic – see Fig.2.

In either case, all of this hinges on the proximity of the flow to M and to show that we
use the Lyapunov function, L(w), introduced in [16] – see §5. Typically, and as is done
in [6], L(w) is bounded from below so that it controls the norm of w (roughly speaking
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the expression estimated in (1.2) and (1.4)), while (d/dt)L(w) is estimated from above. In
this paper due to the irregularity of the potential that approach for upper bounds does not
seem to be applicable but we can estimate L(w) directly, controlling the propagation of
a, v, γ, and µ more precisely.

The paper is organized as follows. In §2 we recall the Hamiltonian structure of the
nonlinear flow of (1.1) and describe the manifold of solitons. Its identification with the Lie
group G = H3nR+, where H3 is the Heisenberg group, provides useful notational shortcuts.
In §3 we describe the reparametrized evolution. The starting point there is an application
of the implicit function theorem and a decomposition of the solution into symplectically
orthogonal components. That method has a long tradition in soliton stability and we
learned it from [6]. In §4 we give a self-contained and constructive presentation of well
known spectral estimates. Weinstein’s Lyapunov function is adapted to our problem in §5.
It is estimated using classical energy. The ODE estimates needed for the iteration of our
stability argument are given in §6 and a stronger version of Theorem 1 is proved in §7.

Finally, we make comments on the numerics. The computations of solutions of (1.1) and
(1.4) were done using the FORTRAN code described in [13, §3] and written as part of that
project by J. Marzuola. Other computations and all the graphics were done using MATLAB.

Acknowledgments. We would like to thank Jeremy Marzuola for allowing us the use
of his code for NLS computations, and to Patrick Kessler and Jon Wilkening for generous
help with various computing issues. The work of the first author was supported in part by
an NSF postdoctoral fellowship, and that of the second second author by an NSF grant
DMS-0200732.

2. The Hamiltonian structure and the manifold of solitons

In this section we recall the well known facts about the Hamiltonian structure of the
nonlinear Schrödinger equation. The manifold of solitons is given as an orbit of a semidirect
product of the Heisenberg group and R+.

2.1. Symplectic structure. Let V be a complex Hilbert space with the inner product
〈•, •〉V . For W , a totally real subspace of V (W ∩ iW = {0}), we have V = W + iW ' W 2,
and we can consider W and V as real Hilbert spaces.

As a real Hilbert space V is equipped with the natural inner product or metric

g(X, Y ) = Re〈X, Y 〉V ,

and the natural symplectic form

ω(X, Y ) = Im〈X, Y 〉V = g(X, iY ) .

In other words g, ω, and J , multiplication by 1/i form a compatible triple:

(2.1) ω(X, Y ) = g(JX, Y ) , g(X, Y ) = ω(X, iY ) .
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In terms of W 2, we have

g(X, Y ) =

〈[
Re X
Im X

]
,

[
Re Y
Im Y

]〉
W 2

= ω

([
Re X
Im X

]
, J

[
Re Y
Im Y

])
and

ω(X, Y ) = g

(
J

[
Re X
Im X

]
,

[
Re Y
Im Y

])
where J is the matrix representing multiplication by −i:

J =

[
0 I
−I 0

]
For example, when we consider V = Cn and W = Rn, then ω is just the standard symplectic
form.

In our work, we take V = H1(R, C) ⊂ L2(R, C), and on V we use the L2 inner product.
The symplectic form ω is thus

(2.2) ω(u, v) = Im

∫
uv̄ ,

and the metric g is

g(u, v) = Re

∫
uv̄

Now we consider Hamiltonians and associated Hamiltonian flows. Let H : V → R be a
function, our Hamiltonian. The associated Hamiltonian vector field is a map ΞH : V → TV ,
which means that for a particular point u ∈ V , we have (ΞH)u ∈ TuV . The vector field ΞH

is defined by the relation

(2.3) ω(v, (ΞH)u) = duH(v) ,

where v ∈ TuV , and duH : TuV → R is defined by

duH(v) =
d

ds

∣∣∣
s=0

H(u + sv) .

In the notation of (2.1) if we use g to define functionals, dHu(v) = g(v,∇Hu), then (ΞH)u =
J∇Hu.

If we take V = H1(R, C) with the symplectic form (2.2), and

H(u) =

∫
1

4
|∂xu|2 −

1

4
|u|4

then we can compute

duH(v) = Re

∫
((1/2)∂xu∂xv̄ − |u|2uv̄)

= Re

∫
(−(1/2)∂2

xu− |u|2u)v̄ .
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Thus, in view of (2.1) and (2.3),

(ΞH)u =
1

i

(
−1

2
∂2

xu− |u|2u
)

The flow associated to this vector field (Hamiltonian flow) is

(2.4) u̇ = (ΞH)u =
1

i

(
−1

2
∂2

xu− |u|2u
)

.

For future reference we state two general lemmas of symplectic geometry:

Lemma 2.1. Suppose that g : V → V is a diffeomorphism such that g∗ω = µ(g)ω, where
µ(g) ∈ C∞(V ; R). Then for f ∈ C∞(V, R),

(2.5) (g−1)∗Ξf (g(ρ)) =
1

µ(g)
Ξg∗f (ρ) , ρ ∈ V .

Proof. This is a straightforward generalization of Jacobi’s theorem which is the case of
µ(g) ≡ 1. To compute (g−1)∗Ξf (g(ρ)), we note

ωρ((g
−1)∗X, (g−1)∗Ξf (g(ρ))) = ((g−1)∗ω)g(ρ)(X, Ξf (g(ρ))) =

1

µ(g)
ωg(ρ)(X, Ξf (g(ρ)))

=
1

µ(g)
[df(g(ρ))](X) =

1

µ(g)
[g∗df(ρ)]((g−1)∗X)

=
1

µ(g)
ωρ((g

−1)∗X, Ξg∗f (ρ))

and the lemma follows. �

Suppose that f ∈ C∞(V ; R) and that df(ρ0) = 0. Then the Hessian of f at ρ0, f ′′(ρ0) :
Tρ0V 7→ T ∗

ρ0
V , is well defined. The Hamiltonian map F : Tρ0V → Tρ0V is given by the

relation

(2.6) [f ′′(ρ0)X] (Y ) = ωρ0(Y, FX) .

In this notation we have

Lemma 2.2. Suppose that N ⊂ V is a finite dimensional symplectic submanifold of V ,
and f ∈ C∞(V, R) satisfies

Ξf (ρ) ∈ TρN ⊂ TρV , ρ ∈ N .

If at ρ0 ∈ N , df(ρ0) = 0, then the Hamiltonian map defined by (2.6) satisfies

F (Tρ0N) ⊂ Tρ0N .
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Proof. Since N is assumed to be finite dimensional we only need to prove the lemma for a
finite dimensional V (any particular Y ∈ (TρV )⊥ can be a value of a vector field in a finite
dimensional submanifold of V containing N). We can then assume that ρ0 = (0, 0), and
that in local coordinates near (0, 0), N = {(x, ξ) | x′′ = ξ′′ = 0}, x = (x′, x′′) , ξ = (ξ′, ξ′′),
•′ = (•1, · · · , •k), where 2k = dim N (see for instance [15, Theorem 21.2.4]). The conditions
of f mean that

dx′′f(x′, ξ′, 0, 0) = dξ′′f(x′, ξ′, 0, 0) = 0 , df(0, 0) = 0 ,

where we wrote (x, ξ) = (x′, ξ′, x′′, ξ′′). Hence, the Hessian at (0, 0) is given by

f ′′(0, 0) =

[
f ′′x′,ξ′(0, 0) 0

0 f ′′x′′,ξ′′(0, 0)

]
.

This means that

〈f ′′(ρ0)X, Y 〉 = 0 ∀ X ∈ TρN , Y ∈ (TρN)⊥ .

where •⊥ denotes the symplectic orthogonal. Since the Hamiltonian map, F , is defined by
〈f ′′(ρ0)X, Y 〉 = ω(Y, FY ) this proves the lemma. �

2.2. Associated symmetries and Noether’s theorem. For completeness we comment
on the Hamiltonian version of Noether’s theorem which states that the following three
statements are equivalent

ΞHE
def
= ω(ΞH , ΞE) = 0 ,

E is preserved by the Hamiltonian flow of H,

H is preserved by the Hamiltonian flow of E.

For example, consider the mass M =
∫
|u|2. The associated Hamiltonian vector field is

(ΞM)u = iu. We compute

ω(ΞM , ΞH) = − Im

∫
iu i(∂2

xu + |u|2u) = 0

The flow associated to ΞM is u 7→ eisu, which is the phase invariance of H and thus solutions
to ∂tu = i(∂2

xu + |u|2u).

Similarly, the time translation, u(x, t) 7→ u(x, t + s) gives the conservation of energy,
H(u), the space translation, u(x, t) 7→ u(x + y, t), gives the conservation of momentum,
Im
∫

uxū.

2.3. Manifold of solitons as an orbit of a group. For g = (a, v, γ, µ) ∈ R3 × R+ we
define the following map

(2.7) H1 3 u 7−→ g · u ∈ H1 , (g · u)(x)
def
= eiγeiv(x−a)µu(µ(x− a)) .
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This action gives a group structure on R3 × R+ and it is easy to check that this transfor-
mation group is a semidirect product of the Heisenberg group H3 and R+:

G = H3 n R+ , µ · (a, v, γ) = (
a

µ
, µv, γ) .

We recall that the Heisenberg group can be identified with the group of matrices of the
form 1 v γ

0 1 a
0 0 1

 , a, v, γ ∈ R ,

and that the semidirect product of H and R+ is defined by

(h, µ) · (h′, µ′) = (h · (µ · h′), µµ′) , h, h′ ∈ H .

Explicitly, the group law on G is given by

(a, v, γ, µ) · (a′, v′, γ′, µ′) = (a′′, v′′, γ′′, µ′′) ,

where

v′′ = v + v′µ , a′′ = a +
a′

µ
, γ′′ = γ + γ′ +

va′

µ
, µ′′ = µµ′

Remark. As was pointed to us by Bjorn Poonen, the group acts faithfully on the 4-
dimensional space spanned by 1,v,a,γ viewed as functions on the group. This can be used
to see that the group is faithfully represented by the group of matrices of the form

1 0 0 0
v µ 0 0
a 0 1/µ 0
γ 0 v/µ 1

 , v, a, γ ∈ R , µ ∈ R+ ,

but we will not use this below.

The action of G is not symplectic but it is conformally symplectic in the sense that

(2.8) g∗ω = µ(g)ω , g = (h(g), µ(g)) , µ(g) ∈ R+ ,

as is easily seen from (2.2).

The Lie algebra of G, denoted by g, is generated by e1, e2, e3, e4,

exp(te1) = (t, 0, 0, 1) , exp(te2) = (0, t, 0, 1) ,

exp(te3) = (0, 0, t, 1) , exp(te4) = (0, 0, 0, et) ,

and the bracket acts as follows:

(2.9) [e1, e4] = e1, [e2, e4] = −e2, [e1, e2] = −e3, [e3, •] = 0 ,

so e3 is in the center. The infinitesimal representation obtained from (2.7) is given by

(2.10) e1 = −∂x , e2 = ix , e3 = i , e4 = ∂x · x .
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It acts, for instance on S(R) ⊂ H1, and by X ∈ g we will denote a linear combination of
the operators ej.

We have the following standard

Lemma 2.3. Suppose R 3 t 7→ g(t) is a C1 function and that u ∈ S(R). Then, in the
notation of (2.7),

d

dt
g(t) · u = g(t) · (X(t)u) ,

where X(t) ∈ g is given by

(2.11) X(t) = ȧ(t)µ(t)e1 +
v̇(t)

µ(t)
e2 + (γ̇(t)− ȧ(t)v(t))e3 +

µ̇(t)

µ(t)
e4 ,

where g(t) = (a(t), v(t), γ(t), µ(t)).

Proof. We differentiate

g(t) · u = exp(iγ(t)) exp(−a(t)∂x) exp(iv(t)x) exp(θ(∂x · x))u , exp θ(t) = µ(t) ,

and note that

∂x exp(ivx) = exp(ivx)(∂x + iv) ,

∂x exp(θ(∂x · x)) = exp(θ(∂x · x))eθ∂x ,

ix exp(θ(∂x · x)) = exp(θ(∂x · x))(e−θix) ,

either by direct computation or using (2.9). The formula (2.11) follows. �

The manifold of solitons is an orbit of this group, G · η, to which ΞH , defined in (2.3), is
tangent. In view of (2.4) that means that

i

(
1

2
∂2

xη + |η|2η
)

= X · η ,

for some X ∈ g. The simplest choice is given by taking X = λi, λ ∈ R, so that η solves a
nonlinear elliptic equation

−1

2
η′′ − η3 + λη = 0 .

This has a solution in H1 if λ = µ2/2 > 0 and it then is η(x) = µsech(µx). We will fix
µ = 1 so that

η(x) = sechx .

Using Lemma 2.1 we can check that G · η is the only orbit of G to which ΞH is tangent.

We define the submanifold of solitons, M ⊂ H1, as the orbit of η under G,

M = G · η ⊂ H1

and thus we have the identifications

(2.12) M = G · η ' G/Z , TηM = g · η ' g .
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The quotient corresponds to the Z-action

(a, v, γ, µ) 7→ (a, v, γ + 2πk, µ) , k ∈ Z

2.4. Symplectic structure on the manifold of solitons. We first compute the sym-
plectic form ω�M on TηM using the identification (2.12):

(ω�M)η(ei, ej) = Im

∫
(ei · η)(x)(ej · η)(x) .

Since ∫
η2(x)dx = 2 ,

∫
η(x)∂xη(x) = 0 ,

∫
∂xη(x)xη(x)dx = −1 ,

we obtain from (2.10) that

(2.13) (ω�M)η(e2, e1) = 1 , (ω�M)η(e3, e4) = 1 ,

and all the other (ω�M)η(ei, ej)’s vanish. In other words,

(ω�M)η = (dv ∧ da + dγ ∧ dµ)(0,0,0,1) = (d(vda + γdµ))(0,0,0,1) .

To find an expression for ω�M we use (2.8) and the following elementary

Lemma 2.4. If σ is a one form on R3 × R+ such that

σ(0,0,0,1) = (vda + γdµ)(0,0,0,1) , g∗σ = µ(g)σ , g ∈ G ,

then
σ = µvda + γdµ .

We conclude that using the identification (2.12)

(2.14) ω�M= µdv ∧ da + vdµ ∧ da + dγ ∧ dµ

Now let f be a function defined on M , f = f(a, v, γ, µ). The associated Hamiltonian
vectorfield, Ξf , is defined by

ω(·, Ξf ) = df = fada + fvdv + fµdµ + fγdγ .

Using (2.14) we obtain

(2.15) Ξf =
fv

µ
∂a +

(
−fa

µ
− vfγ

µ

)
∂v + fγ∂µ +

(
v
fv

µ
− fµ

)
∂γ .

The Hamilton flow is obtained by solving

v̇ = −fa

µ
− vfγ

µ
, ȧ =

fv

µ
, µ̇ = fγ , γ̇ = v

fv

µ
− fµ .

The restriction of

H(u) =
1

4

∫
|∂xu|2 −

1

4

∫
|u|4
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to M is given by computing by

(2.16) f(a, v, γ, µ) = H(g · η) =
µv2

2
− µ3

6
, g = (a, v, γ, µ) .

The flow of (2.15) for this f describes the evolution of a soliton.

2.5. The Gross-Pitaevski Hamiltonian restricted to the manifold of solitons. We
now consider the Gross-Pitaevski Hamiltonian for the delta function potential

(2.17) Hq(u)
def
=

1

4

∫
(|∂xu|2 − |u|4)dx +

1

2
q|u(0)|2 ,

and its restriction to M = G · η:

(2.18) Hq�M= f(a, v, γ, µ) =
µv2

2
− µ3

6
+

1

2
qµ2sech2(µa) .

This is obtained from (2.16) and from calculating

1

2
q|(g · η)|(0) =

1

2
qµ2η2(−µa) =

1

2
qµ2sech2(µa) .

The flow of (Hq)�M can be read off from (2.15):

v̇ = −fa

µ
− vfγ

µ
= µ2q sech2(µa) tanh(µa)

ȧ =
fv

µ
= v

µ̇ = fγ = 0

γ̇ = v
fv

µ
− fµ =

1

2
v2 +

1

2
µ2 − qµ sech2(µa)− 1

2
qµ2a sech2(µa) tanh(µa)

(2.19)

This are the same equations as (1.3). The evolution of a and v is simply the Hamiltonian
evolution of (v2 + qµ2sech2(µa))/2, µ = const. The more mysterious evolution of the phase
γ is now explained by (2.18).

Since µ is constant by the third equation, solving this system reduces to solving the first
two equations. The turning position, aturn, is given by

|aturn| = sech−1

(
v
√

q

)
and Fig.3 gives a comparison between aturn and the numerically computed turning point of
the center of the soliton.
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0.05 0.1 0.15
−3

−2.5

−2

−1.5

−1

−0.5

0

velocity

q=0.04

classical turning point
soliton turning point

0.15 0.2 0.25
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

velocity

q=0.09

classical turning point
soliton turning point

Figure 3. Two plots with q = 0.04 and q = 0.09, respectively, and a0 =
−10. The blue line is the theoretical prediction of the turning point of the
soliton, |aturn| = sech−1

(
v/
√

q
)
, and the red dashed line is the actual soliton

turning point. For smaller values of q the agreement is outstanding.

3. Reparametrized evolution

To see the effective dynamics described in §2.5 we write the solution of (1.1) as

u(t) = g(t) · (η + w(t)) , w(t) ∈ H1(R, C) ,

where w(t) satisfies

ω(w(t), Xη) = 0 , ∀X ∈ g .
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To see that this decomposition is possible, initially for small times, we apply the follow-
ing consequence of the implicit function theorem and the nondegeneracy of ω�M (see [6,
Proposition 5.1] for a more general statement):

Lemma 3.1. For Σ b G/Z (where the topology on G/Z is given by the identification with
R× R× S1 × R+) let

UΣ,δ = {u ∈ H1 : inf
g∈Σ

‖u− g · η‖H1 < δ} .

If δ ≤ δ0 = δ0(Σ) then for any u ∈ UΣ,δ, there exists a unique g(u) ∈ Σ such that

ω(g(u)−1 · u− η, X · η) = 0 ∀X ∈ g .

Moreover, the map u 7→ g(u) is in C1(UΣ,δ, Σ).

Proof. We define the transformation

F : H1(R, C)×G −→ g∗ , [F (u, h)](X)
def
= ω(h · u− η, X · η) .

We want to solve F (u, h) = 0 for h = h(u) and by the implicit fuction theorem that follows
for u near G · η if for any g0 ∈ G the linear transformation

dhF (g0 · η, g0) : Tg0G −→ g∗ ,

is invertible. Clearly we only need to check it for g0 = e, that is that dhF (η, e) : g → g∗ ,
is invertible. But as an element of g∗⊗g∗, dhF (η, e) = (ω�M)η, which is nondegenerate. �

For §§2.1 and 2.5 we recall that the equation for u (1.1) can be written as

(3.1) ∂tu = ΞHq(u) , Hq(u)
def
=

1

4

∫
(|∂xu|2 − |u|4)dx +

1

2
q|u(0)|2 .

Using Lemma 3.1 we define

(3.2) w(t) = g(t)−1u(t)− η , g(t)
def
= g(u(t)) ,

and we want to to derive an equation for w(t).

By the chain rule and Lemma 2.3

∂tu(t) = ∂t(g(t) · (η + w(t))) = g(t) · (Y (t)(η + w(t)) + ∂tw(t)) ,

Y (t)
def
= ȧ(t)µ(t)e1 +

v̇(t)

µ(t)
e2 + (γ̇(t)− ȧ(t)v(t))e3 +

µ̇(t)

µ(t)
e4 ,

g(t) = (a(t), v(t), γ(t), µ(t)). Combined with (3.1) this gives

(3.3) ∂tw(t) = −Y (t)η − Y (t)w + g(t)−1ΞHq((g(t) · (η + w(t)))) .

To make this more explicit we apply Lemma 2.1 to see that

g(t)−1ΞHqg(t) =
1

µ(t)
Ξg(t)∗Hq
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(since the action of g(t) is linear on H1, g(t)−1 and (g(t)−1)∗ are identified). We compute

g∗Hq(ũ) =
1

4

∫
(µ|∂x(e

ixvũ(µx))|2 − µ4|ũ(µx)|4)dx +
1

2
qµ2|ũ(−µa)|2

=
1

4

∫
(µ3|∂xũ(x)|2 − 2vµ2 Im ∂xũ(x)ũ(x) + Re v2µ|ũ(x)|2 − µ3|ũ(x)|4)dx

+
1

2
µ2q|ũ(−µa)|2 ,

(3.4)

so that

1

µ(g)
Ξg∗Hq(ũ) =

1

i

(
−µ2

2
ũxx + vµũx − µ2|ũ|2ũ +

v2

2
ũ + µqδ(•+ µa)ũ

)
.

For us ũ(t) = η + w(t) and we expand the nonlinear term

|η + w|2(η + w) = η3 + 2η2w + η2w̄︸ ︷︷ ︸
linear

+ 2|w|2η + ηw2︸ ︷︷ ︸
quadratic

+ |w|2w︸ ︷︷ ︸
cubic

Inserting this in (3.3) gives

Lemma 3.2. If w(t) is given by (3.2) then

(3.5) ∂tw = X(t)w + X(t)η − iµ2Lw + iµ2Nw − iqµδ0(x + µa)η − iqµδ0(x + µa)w ,

where X(t) ∈ g is given by

(3.6) X(t)
def
= (−µȧ + vµ) e1 −

v̇

µ
e2 +

(
−γ̇ + vȧ− v2

2
+

µ2

2

)
e3 −

µ̇

µ
e4 ,

and

Lw = −1

2
∂2

xw − 2η2w − η2w̄ +
1

2
w , Nw = 2|w|2η + ηw2 + |w|2w .

We now want to estimate the coefficients of X(t) in (3.5) using the symplectic orthogo-
nality of Y η, Y ∈ g and w. For that we define

P : S ′(R, C) −→ g

as the unique linear map satisfying

ω(u− P (u)η, Y η) = 0 ∀Y ∈ g .

We will need the following
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Lemma 3.3. Let ‖•‖ be a norm on g obtained by using the standard R4 norm in the basis
given by (2.10). Then for w ∈ H1, and Y ∈ g,

‖P (Y w)‖ ≤ C‖Y ‖‖w‖L2 ,

‖P (iNu)‖ ≤ C‖w‖2
L2

(
1 + ‖w‖

1
2

H1‖w‖
1
2

L2

)
,

‖P ((iδ0(x− x0)w)‖ ≤ C‖w‖
1
2

H1‖w‖
1
2

L2 ,

with the constant independent of x0.

Proof. We start with an explicit expression for P which follows from (2.13):

P =
4∑

j=1

ejPj , Pj : S ′ −→ R ,

P1(u) = −ω(u, e2η) = Re

∫
u(x)xη(x)dx ,

P2(u) = ω(u, e1η) = − Im

∫
u(x)∂xη(x)dx ,

P3(u) = ω(u, e4η) = Im

∫
u(x)∂x(xη(x))dx ,

P4(u) = −ω(u, e3η) = Re

∫
u(x)η(x)dx .

(3.7)

We now recall that ‖u‖2
L∞(R) ≤ C‖u‖L2(R)‖u‖H1(R) and the estimates follow. �

We defined the following modified curve in g:

X1(t)
def
= X(t)− qµP (iδ0(•+ aµ)η) ,(3.8)

which is estimated in

Proposition 3.4. Suppose that w(t) is given in Lemma 3.2 and that X1(t) is given by
(3.8). Then

(3.9) ‖X1(t)‖ ≤ Cq‖w‖H1 + C(‖w‖2
L2 + ‖w‖3

H1) .

Proof. Since Pwt = ∂tPw = 0, (3.5) gives

X1(t) =− P (X1(t)w)− qµP (P (iδ0(•+ aµ)η)w)

+ µ2P (iLw)− µ2P (iNw) + qµP (iδ0(x + µa)w) .

The linear operator L is the Hessian of E , given in (1.9), at the critical point η. The fact
that ΞE is tangent to M and Lemma 2.2 (or a direct computation) show that

P (iLw) = 0 ,
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and hence that term can be dropped from the right hand side. We can then use Lemma
3.3 to obtain

‖X1(t)‖ ≤ C‖w‖L2‖X1(t)‖+ Cqµ(‖w‖L2 + ‖w‖
1
2

H1‖w‖
1
2

L2) + C‖w‖2
L2

(
1 + ‖w‖

1
2

H1‖w‖
1
2

L2

)
.

The estimate (3.9) follows from the assumed smallness of ‖w‖L2 . �

Finally we interpret the coefficients of X1(t). First we use (3.7) to see that

P (iδ0(•+ aµ)η) =
1

2
∂x(η

2)(aµ)e2 +

(
η2(aµ) +

1

2
aµ∂x(η

2)(aµ)

)
e3 .

Then we combine this with (3.6) and (3.8) to obtain

X1(t) = (−µȧ + vµ) e1 +

(
−1

2
qµ∂x(η

2)(aµ)− v̇

µ

)
e2

+

(
−µqη2(aµ)− 1

2
qaµ2∂x(η

2)(aµ)− γ̇ + vȧ− v2

2
+

µ2

2

)
e3 −

µ̇

µ
e4 .

(3.10)

We now see that

X1(t) = 0 ⇐⇒ equations (2.19) hold.

4. Spectral estimates

In this section we will recall the now standard estimates on the operator L which arises
as Hessian of E at η:

Lw = −1

2
∂2

xw − 2η2w − η2w̄ +
1

2
w ,

or

Lw =

[
L+ 0
0 L−

] [
Re w
Im w

]
, L± = −1

2
∂2

x − (2± 1)η2 +
1

2
.

In our special case we can be more precise than in the general case (see [16], and also [6,
Appendix D]). The self-adjoint operators L± belong the class of Schrödinger operators with
Pöschl-Teller potentials and their spectra can be explicitly computed using hypergeometric
functions – see for instance [10, Appendix]. This gives

σ(L−) = {0} ∪ [1/2,∞) , σ(L+) = {0,−3/2} ∪ [1/2,∞) .

The eigenfuctions can computed by the same method but a straightforward verification is
sufficient to see that

L−η = 0 , L+(∂xη) = 0 , L+(η2) = −3

2
η2 .

We now have
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Proposition 4.1. Suppose that for every X ∈ g

ω(w, X · η) = 0 , w ∈ H1(R, C) .

Then, with 〈w, v〉 def
= Re

∫
wv on H1(R, C) (considered as a real Hilbert space),

(4.1) 〈Lw, w〉 ≥ ρ0‖w‖2
L2 , ρ0 =

9

2(12 + π2)
' 0.2058 .

We need the following elementary

Lemma 4.2. Let V be a real vector space with an inner product 〈•, •〉, and let L be a
symmetric operator on V . Suppose that for v0, v1 ∈ V , ‖vj‖ = 1, we have

Lv0 = −c0v0 , c0 ≥ 0 , 〈v0, v1〉2 = c2 ,

〈w, v0〉 = 0 =⇒ 〈Lw, w〉 ≥ c1‖w‖2 , c1 ≥ 0 .
(4.2)

Then

(4.3) 〈v, v1〉 = 0 =⇒ 〈Lv, v〉 ≥ c3‖v‖2 , c3
def
= c1c2 − c0(1− c2) .

Proof. For reader’s convenience we present the straightforward argument in which we can
assume that 0 < c2 < 1. For v ∈ V we write v = αv0 + w, 〈v0, w〉 = 0. The condition
〈v, v1〉 = 0 gives

(4.4) α2 =
1

c2

〈w, v1〉2 =
1

c2

〈w, v1 − c
1
2
2 v0〉2 ≤

1− c2

c2

‖w‖2 .

Hence

〈Lv, v〉 ≥ c1‖w‖2 − c0α
2

≥ c1δ‖w‖2 +

(
c1(1− δ)

c2

1− c2

− c0

)
α2

= (c1c2 − c0(1− c2))‖v‖2 ,

if we choose c1δ = (c1c2 − c0(1− c2)). �

Proof of Proposition 4.1: The assumption means that

Im

∫
w


iη
∂xη
ixη
∂x(xη)

 dx = 0 .

Working with real and imaginary parts the proof reduces to lower bounds on L±:

〈v, η〉 = 〈v, xη〉 = 0 =⇒ 〈L+v, v〉 ≥ ρ0‖v‖2
L2 ,

〈v, ∂xη〉 = 〈v, (x∂x + 1)η〉 = 0 =⇒ 〈L−v, v〉 ≥ ρ0‖v‖2
L2 ,

(4.5)
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where now v ∈ H1(R; R). Noting that

〈η, ∂xη〉 = 〈xη, η2〉 = 〈∂xη, η2〉 = 0

we can apply Lemma 4.2 in the following three cases:

V = (∂xη)⊥ ∩H2(R, R) , v0 =

√
3

2
η2 , v1 =

1√
2
η , L = L+

c1
0 =

3

2
, c1

1 =
1

2
, c1

2 =
3π2

32
,

V = (η2)⊥ ∩H2(R, R) , v0 =

√
3√
2
∂xη , v1 =

√
6

π
xη , L = L+

c2
0 = 0 , c2

1 =
1

2
, c2

2 =
9

π2
,

V = H2(R, R) , v0 =
1√
2
η , v1 =

2
√

2√
12 + π2

∂x(xη) , L = L− ,

c3
0 = 0 , c3

1 =
1

2
, c3

2 =
9

12 + π2
.

Here we used∫
R

sech2(x)dx = 2 ,

∫
R

sech4(x)dx =
4

3
,

∫
R

sech3(x)dx =
π

2
,

∫
R

x2sech2(x)dx =
π2

6
,∫

R
tanh2(x)sech2(x)dx =

2

3
,

∫
R
(∂x(xsech(x)))2dx =

1

18
(12 + π2) .

It follows that we can take

ρ0 = min
j=1,2,3

(cj
1c

j
2 − cj

0(1− cj
2)) = min

(
3π2

16
− 3

2
,

9

2π2
,

9

2(12 + π2)

)
=

9

2(12 + π2)
,

completing the proof.

Proposition 4.1 gives a slightly stronger statement:

〈Lw, w〉 ≥ (1− δ)〈Lw, w〉+ δρ0‖w‖2
L2

≥ (1− δ)

(
1

2
‖∂xw‖2 − 5

2
‖w‖2

)
+ δρ0‖w‖2

L2

≥ 2ρ0

5 + 2ρ0

‖∂xw‖2 ' 0.0760‖∂xw‖2 , δ =
5

5 + 2ρ0

.

In addition,

(4.6) 〈Lw,w〉 ≥ 2ρ0

7 + 2ρ0

‖w‖2
H1 ' 0.0555‖w‖2

H1 .
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Remark. The smallness of these constants gives a possible explanation of the size of q’s
for which the asymptotic result agrees with numerical simulations. The implicit constants
in §5 are closely related to the constants above.

5. Estimates on the Lyapunov function

Suppose u = u(x, t) solves (1.1) with‡ |q| � 1 and initial data

(5.1) u0(x) = eixv0η(x− a0), |v0| � 1

Let T > 0 be the maximal time such that on [0, T ], the smallness condition δ ≤ δ0 in
Lemma 3.1 is met. From Lemma 3.1, obtain the C1 parameters µ = µ(t), γ = γ(t),
v = v(t), a = a(t) satisfying the symplectic orthogonality conditions stated there. Let
ũ = ũ(x, t) be defined by

(5.2) u(x, t) = g(t) · ũ(x, t)
def
= eiγeixvµũ(µ(x− a), t) ,

and let
w(x, t) = ũ(x, t)− η(x) .

The Lyapunov function of [16] and [6] is given by

(5.3) L(w)
def
= E(η + w)− E(η) .

The lower bound on L(w) follows from the spectral estimates of §4, and in particular
from (4.6). For the upper bound we will use the conservation of Hq(u) and its relation to
E(η + w).

For future reference we state the following crucial consequence of the orthogonality con-
ditions on w, and in particular of the condition that Im

∫
iηw̄ = Re

∫
w̄η = 0:

Lemma 5.1. Suppose that for every X ∈ g

ω(w, X · η) = 0 , w ∈ H1(R, C) .

Then

(5.4) ‖w‖2
L2 =

2

µ
(1− µ) ,

Proof. We first compute

‖η + w‖2
L2 = ‖g−1u‖2

L2 =
1

µ(g)
‖u‖2

L2 =
2

µ(g)
,

where we used the conservation of the L2 norm. As noted before the statement of the
lemma Re〈w, η〉 = 0 and hence

‖η + w‖2
L2 = 2 + ‖w‖2

L2 ,

‡The symbol� 1 means smaller than an absolute positive constant, i.e. one independent of all parameters
in this problem.
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from which the conclusion follows. �

As a consequence, we can dispense with µ in the estimates of Proposition 3.4, and we
reformulate it as

Proposition 5.2. Suppose 1− µ � 1 and |q| ≤ 1. Then

|v − ȧ|+ |v̇ + q∂xη
2(a)/2|+ | − qη2(a)− qa∂xη

2(a)/2− γ̇ + v2/2 + 1/2|
≤ C(|q|‖w‖2

H1 + ‖w‖2
H1 + ‖w‖3

H1) .

Proof. We use (5.4) in (3.9). For example,∣∣∣1
2
q∂xη

2(a) + v̇
∣∣∣ ≤ µ

∣∣∣1
2

q

µ
∂xη

2(a) +
v̇

µ

∣∣∣
≤ µ

∣∣∣1
2
qµ∂xη

2(aµ) +
v̇

µ

∣∣∣+ c|q||1− µ|

≤ 2
∣∣∣1
2
qµ∂xη

2(aµ) +
v̇

µ

∣∣∣+ c|q|‖w‖2
L2

We also use the estimate for |v − ȧ| to replace vȧ by v2 in the equation for γ̇. �

We adopt the following notational convention: denote the initial (time t = 0) configu-
ration of the system by 0-subscripts – u0 = u(0), w0 = w(0), and a0 = a(0), v0 = v(0),
µ0 = µ(0), γ0 = γ(0). Similarly, denote the configuration of the system at some fixed time
ti by i-subscripts. Finally, the configuration at any arbitrary time t we denote without
subscripts – w = w(t), u = u(t) and a = a(t), v = v(t), µ = µ(t), γ = γ(t).

With this notation we now state

Lemma 5.3. Suppose µ0 = 1 and w0 = 0 (equivalently, suppose (5.1) holds), and suppose
that T > 0 is the maximal time for which the smallness condition in Lemma 3.1 holds.
Suppose that for an interval of time [ti, ti+1] ⊂ [0, T ], the following conditions hold

(5.5)

0 ≤ 1− µ � 1, max
ti≤s≤ti+1

|v(s)| � 1, ‖wi‖H1 ≤ 1 ,

|q||ti+1 − ti| � 1, |ti+1 − ti| max
ti≤s≤ti+1

|v(s)| � 1 .

Then there is an absolute constant c∗ > 1 such that

sup
ti≤s≤ti+1

‖w(s)‖2
H1 ≤ c∗‖wi‖2

H1 + c∗|q|2 .

We remark that the inequality, 0 ≤ 1−µ, in (5.5) is not an assumption but follows from
Lemma 5.1.

The main result of this section is the following consequence of this:
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Proposition 5.4. Suppose µ0 = 1 and w0 = 0, and suppose that T > 0 is the maximal
time for which the smallness condition in Lemma 3.1 holds. Let

n ≤ δ log(1/|q|)
log c∗

− 1

and suppose there is a partition of the time axis

0 = t0 < t1 < · · · < tn ≤ T

such that on each subinterval [ti, ti+1], (5.5) in Lemma 5.3 holds. Then,

sup
0≤s≤tn

‖w(s)‖2
H1 ≤ |q|2−δ

Proof of Lemma 5.3. We start by noting that in the argument that follows, we will not use
any information about w or the parameters µ, γ, a, and v for times 0 < t < ti; only that
µ0 = 1 and w0 = 0.

We will conveniently reexpress L(w) given by (5.3) using the conserved Hamiltonian and
mass. Since u = g · ũ, we recall (3.4) to obtain:

(5.6) Hq(u) = g∗Hq(ũ) =
1

4
µv2

∫
|ũ|2 +

1

2
µ2v Im

∫
∂xũ ¯̃u +

1

4
µ3

∫
|∂xũ|2

− 1

4
µ3

∫
|ũ|4 +

1

2
qµ2|ũ(−µa, t)|2

The expression for the mass, M(u) =
∫
|u|2, becomes M(u) = µ

∫
|ũ|2. Using this and

(5.6), we obtain

E(ũ) =
1

µ3
Hq(u) +

1

4µ
M(u)− v2

4µ3
M(u)− v

2µ
Im

∫
¯̃u∂xũ−

q

2µ
|ũ(−µa)|2

Now substitute ũ = η + w and use the orthogonality condition Im
∫

w∂xη = 0 to obtain

(5.7) E(η + w) =
1

µ3
Hq(u) +

1

4µ
M(u)−

( v2

4µ3
M(u) +

q

2µ
η(−µa)2

)
− v

2µ
Im

∫
w̄∂xw −

q

µ
η(−µa) Re w(−µa)− q

2µ
|w(−µa)|2

Note that the classical energy term (with the µ terms dropped)

E(u)
def
=

1

4
v2M(u) +

1

2
qη(a)2 ,

has appeared in this expression. Evaluate (5.7) at t = ti to obtain

(5.8) E(η + wi) =
1

µ3
i

Hq(u) +
1

4µi

M(u)−
( v2

i

4µ3
i

M(u) +
q

2µi

η(−µiai)
2
)

− vi

2µi

Im

∫
w̄i∂xwi −

q

µi

η(−µiai) Re w(−µiai)−
q

2µi

|w(−µiai)|2
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By taking the difference of the right hand sides of (5.7) and (5.8), we obtain

(5.9)

E(η + w)− E(η)

=
( 1

µ3
− 1

µ3
i

)
Hq(u) +

1

4

( 1

µ
− 1

µi

)
M(u)

−
( v2

4µ3
M(u) +

q

2µ
η(−µa)2

)
+
( v2

i

4µ3
i

M(u) +
q

2µi

η(−µiai)
2
)

− v

2µ
Im

∫
w̄∂xw −

q

µ
η(−µa) Re w(−µa)− q

2µ
|w(−µa)|2

+
vi

2µi

Im

∫
w̄i∂xw̄i +

q

µi

η(−µiai) Re wi(−µiai) +
q

2µi

|wi(−µiai)|2

+ (E(η + wi)− E(η))

= I + II + III + IV + V

where each line has been labeled by a Roman numeral. From the spectral estimate Propo-
sition 4.1 (see (4.6)), we have

(5.10) c1‖w‖2
H1 − ‖w‖3

H1 −
1

4
‖w‖4

H1 ≤ E(η + w)− E(η)

We next estimate the right-hand side of (5.9), line by line. For ti ≤ t ≤ ti+1, let

ε(t)2 = sup
ti≤s≤t

‖w(s)‖2
H1

Estimate of the 1st line of (5.9). By the assumption w0 = 0 and µ0 = 1, we have

(5.11) M(u) = M(η) = 2

and

(5.12) Hq(u) = −1

6
+

1

2
v2

0 +
q

2
η2(a0)

By substituting (5.11) and (5.12) into Term I, we obtain I = Ia + Ib, where

Ia = −1

6

( 1

µ3
− 1

µ3
i

)
+

1

2

( 1

µ
− 1

µi

)
and

Ib =
( 1

µ3
− 1

µ3
i

)(1

2
v2

0 +
|q|
2

η2(a0)
)
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Inserting (5.4) in Term Ia, gives

Ia =
1

6

( 1

µ
− 1

µi

)(
3− 1

µ2
− 1

µµi

− 1

µ2
i

)
=

1

6

( 1

µ
− 1

µi

)[(
1− 1

µ2

)
+
(
1− 1

µµi

)
+
(
1− 1

µ2
i

)]
=

1

6

(
− 1

2
‖w‖2

L2 +
1

2
‖wi‖2

L2

)[(1

2

(
1 +

1

µ

)
‖w‖2

L2

)
+
(1

2
‖w‖2

L2 +
1

2µ
‖wi‖2

L2

)
+
(1

2

(
1 +

1

µ i

)
‖wi‖2

L2

)]
and thus

|Ia| ≤
1

6
(‖w‖2

L2 + ‖wi‖2
L2)2

For Term Ib, we have

Ib =
( 1

µ
− 1

µi

)( 1

µ2
+

1

µµi

+
1

µ2
i

)(1

2
v2

0 +
|q|
2

η2(a0)
)

and thus

|Ib| ≤
3

4
(v2

0 + |q|)(‖w‖2 + ‖wi‖2)

Collecting these estimates, we obtain

(5.13) |I| ≤ ε4 + 2(v2
0 + |q|)ε2

Remark: This direct calculation is in fact the consequence of dEη = 0. We are using

E(µ · η)− E(η) = O((1− µ)2) ,

which follows from
∂µE(µ · η)�µ=1= 0 .

Estimate of the 2nd line of (5.9) (classical energies). We compute

∂t

(v2

2
+

q

2
η2(a)

)
= vv̇ +

1

2
q∂xη

2(a)ȧ

=
(
v̇ +

1

2
q∂xη

2(a)
)
v +

1

2
q∂xη

2(a)(ȧ− v)

and thus by Proposition 5.2,∣∣∣∂t

(v2

2
+

q

2
η2(a)

)∣∣∣ ≤ c(‖w‖2
H1 + |q|‖w‖H1 + ‖w‖3

H1)(|v|+ |q|)

By the fundamental theorem of calculus,∣∣∣(v2

2
+

q

2
η2(a)

)
−
(v2

i

2
+

q

2
η2(ai)

)∣∣∣ ≤ c(ε2 + |q|ε + ε3)
(
|t− ti| max

ti≤s≤t
|v(s)|+ |q||t− ti|

)
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As in the proof of Proposition 5.2, we can install µ’s in this expression using (5.4) to obtain

(5.14) |II| ≤ c(ε2 + |q|ε)
(
|t− ti| max

ti≤s≤t
|v(s)|+ |q||t− ti|+ v2 + |q|

)
Estimate of the 3rd and 4th lines of (5.9). By the Cauchy-Schwarz inequality and the
Sobolev embedding theorem,

|III| ≤ |v|‖w‖2
H1 + |q|‖w‖H1 + |q|‖w‖2

H1

Similarly,

|IV| ≤ |v|‖wi‖2
H1 + |q|‖wi‖H1 + |q|‖wi‖2

H1

and thus

(5.15) |III|+ |IV| ≤ 2(|v|+ |q|)ε2 + 2|q|ε

Estimate of the 5th line of (5.9). By definition of E , we have

(5.16) E(η + wi) =
1

4

∫
|∂xη + ∂xwi|2 −

1

4

∫
|η + wi|4 +

1

4

∫
|η + wi|2

Substitute into (5.16) the three expansions:

|∂xη + ∂xwi|2 = |∂xη|2 + 2 Re ∂xη ∂xwi + |∂xwi|2

|η + wi|4 = η4 + 4 Re η3wi + 2η2(2(Re wi)
2 + |wi|2) + 4η(Re wi)|wi|2 + |wi|4

|η + wi|2 = η2 + 2η Re wi + |wi|2

and observe that the linear terms cancel since η solves −1
2
η+ 1

2
η′′+η3 = 0. Thus, we obtain

the estimate

(5.17) |V| ≤ 8‖wi‖2
H1 + 4‖wi‖3

H1 + ‖wi‖4
H1 ≤ 10‖wi‖2

H1

This completes the line-by-line estimation of the right-hand side of (5.9). By combining
(5.10), and the estimates (5.13),(5.14),(5.15),(5.17) for the right-hand side of (5.9), we
obtain

c1ε
2 ≤ ε3 +

1

4
ε4 + c(ε2 + |q|ε + ε3)(|t− ti| max

ti≤s≤t
|v(s)|+ |q||t− ti|+ v2 + |q|)

+ [ε4 + 2(v2
0 + |q|)ε2] + [2(|v|+ |q|)ε2 + 2|q|ε] + 10‖wi‖2

H1

By hypothesis, every ε2 term on the right side has a small coefficient, and thus can be
absorbed on the left side. Therefore, we obtain

ε2 ≤ c(|q|ε + ‖wi‖2
H1)

By applying the Peter-Paul inequality |q|ε ≤ 1
2
c|q|2+ ε2

2c
, we obtain the desired estimate. �
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Proof of Proposition 5.4. Now let

ε2(t) = sup
0≤s≤t

‖w(s)‖2
H1

On the first interval [0, t1], we apply Lemma 5.3 with i = 0, and since w0 = 0, we obtain

ε(t1)
2 ≤ c∗|q|2

On the second interval [t1, t2], we apply Lemma 5.3 with i = 1, and since ‖w1‖2
H1 ≤ c∗|q|2,

we obtain

ε(t2)
2 ≤ (c∗ + c2

∗)|q|2

We continue, and after the n applications, we obtain

ε(tn)2 ≤ c∗

(
n−1∑
j=0

cj
∗

)
|q|2 = c∗

(
cn
∗ − 1

c∗ − 1

)
|q|2 ≤ cn+1

∗ |q|2

Since we want cn+1
∗ q2 ≤ |q|2−δ, we require

n + 1 ≤ δ log(1/|q|)
log c∗

�

6. ODE analysis

The assumptions of Lemma 5.3 involve estimates on v(s). To control these we use
Proposition 5.2 and ODE estimates which we present in this section.

Lemma 6.1. Suppose q is a constant, |q| � 1, and a = a(t), v = v(t), ε1 = ε1(t), ε2 = ε2(t)
are C1 real-valued functions. Suppose f : R → R is a C2 mapping such that |f | and |f ′|
are uniformly bounded. Suppose that on [0, T ],

(6.1)

{
ȧ = v + ε1

v̇ = qf(a) + ε2
,

a(0) = a0

v(0) = v0

Let ā = ā(t) and v̄ = v̄(t) be the C1 real-valued functions satisfying the exact equations{
˙̄a = v̄

˙̄v = qf(ā)
,

ā(0) = a0

v̄(0) = v0

with the same initial data. Suppose that on [0, T ], we have |εj| ≤ |q|2−δ for j = 1, 2. Then
provided T ≤ δ|q|−1/2 log(1/|q|), we have on [0, T ] the estimates

|a− ā| ≤ |q|1−2δ log(1/|q|), |v − v̄| ≤ |q|
3
2
−2δ log(1/|q|)
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Before proceeding to the proof, we recall some basic tools.

Gronwall estimate. Suppose b = b(t) and w = w(t) are C1 real-valued functions, q is a
constant, and (b, w) satisfy the differential inequality:

(6.2)

{
|ḃ| ≤ |w|
|ẇ| ≤ |q||b|

,
b(0) = b0

w(0) = w0

Let x(t) = |q|1/2b(|q|−1/2t), y(t) = w(|q|−1/2t). Then{ |ẋ| ≤ |y|
|ẏ| ≤ |x|

,
x(0) = x0 = |q|1/2b0

y(0) = y0 = w0

Let z(t) = x2 + y2. Then |ż| = |2xẋ + 2yẏ| ≤ 2|x||y|+ 2|x||y| ≤ 2(x2 + y2) = 2z, and hence
z(t) ≤ z(0)e2t. Thus

|x(t)| ≤
√

2 max(|x0|, |y0|) exp(t)

|y(t)| ≤
√

2 max(|x0|, |y0|) exp(t)

Converting from (x, y) back to (b, w), we obtain the Gronwall estimate

(6.3)
|b(t)| ≤

√
2 max(|q|1/2|b0|, |w0|)

exp(|q|1/2t)

|q|1/2

|w(t)| ≤
√

2 max(|q|1/2|b0|, |w0|) exp(|q|1/2t)

Duhamel’s formula. For a two-vector function X(t) : R → R2, a two-vector X0 ∈ R2,
and a 2 × 2 matrix function A(t) : R → (2 × 2 matrices), let X(t) = S(t, t′)X0 denote
the solution to the ODE system Ẋ(t) = A(t)X(t) with X(t′) = X0. In other words,
d
dt

S(t, t′)X0 = A(t)S(t, t′)X0 and S(t′, t′)X0 = X0. Then, for a given two-vector function
f(t) : R → R2, the solution to the inhomogeneous ODE system

(6.4) Ẋ(t) = A(t)X(t) + F (t)

with initial condition X(0) = 0 is given by Duhamel’s formula

(6.5) X(t) =

∫ t

0

S(t, t′)F (t′)dt′

Proof of Lemma 6.1. Let ã = a− ā and ṽ = v − v̄; these perturbative functions satisfy{
˙̃a = ṽ + ε1

˙̃v = qgã + ε2

,
ã(0) = 0

ṽ(0) = 0

where g = g(t) is given by

g =


f(a)− f(ā)

a− ā
if ā 6= a

f ′(a) if a = ā
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which is C1 (in particular, uniformly bounded). Set

A(t) =

[
0 1

qg(t) 0

]
, F (t) =

[
ε1(t)
ε2(t)

]
, X(t) =

[
ã(t)
ṽ(t)

]
in (6.4), and appeal to Duhamel’s formula (6.5) to obtain

(6.6)

[
ã(t)
ṽ(t)

]
=

∫ t

0

S(t, t′)

[
ε1(t

′)
ε2(t

′)

]
dt′

Apply the Gronwall estimate (6.3) with[
b(t)
w(t)

]
= S(t + t′, t′)

[
ε1(t

′)
ε2(t

′)

]
,

[
b0

w0

]
=

[
ε1(t

′)
ε2(t

′)

]
to conclude that∣∣∣∣S(t, t′)

[
ε1(t

′)
ε2(t

′)

]∣∣∣∣ ≤ √
2

[
|q|−1/2 exp(|q|1/2(t− t′))

exp(|q|1/2(t− t′))

]
max(|q|1/2|ε1(t

′)|, |ε2(t
′)|)

Feed this into (6.6) to obtain that on [0, T ]

|ã(t)| ≤
√

2 T
exp(|q|1/2T )

|q|1/2
sup

0≤s≤T
max(|q|1/2|ε1(s)|, |ε2(s)|)

|ṽ(t)| ≤
√

2 T exp(|q|1/2T ) sup
0≤s≤T

max(|q|1/2|ε1(s)|, |ε2(s)|)

Taking T ≤ δ|q|−1/2 log(1/|q|), we obtain the claimed bounds. �

7. Main theorem and proof

Here we put all the components together and give a stronger version of Theorem 1. The
basic procedure is the iteration of Lemmas 5.3 and 6.1 which can roughly be described as
follows: if the conditions (5.5) hold, and the initial condition satisfies ‖wi‖H1 ≤ |q|1−δ, say,
then on the interval [ti, ti+1], ‖w(t)‖H1 ≤ 2‖q‖1−δ. That means that the evolution of the
parameters g(t) ∈ G is close to the evolution using the effective Hamiltonian, in the way
that makes Lemma 6.1 applicable. But that gives us a lower bound on ti+1 for which (5.5)
holds on [ti, ti+1], closing the bootstrap loop.

More precisely, we have

Theorem 2. Suppose |q| � 1 and |v0| � 1. Let u solve

i∂tu + ∂2
xu− qδ0(x)u + |u|2u = 0

with initial data u0(x) satisfying

‖u0 − ei•v0η(• − a0)‖H1 ≤ C|q| .
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Then, for times 0 ≤ t ≤ δ(v2
0 + |q|)−1/2 log(1/|q|), the smallness condition in Lemma 3.1

is met, and thus there are C1 parameters µ, v, γ, a satisfying the symplectic orthogonality
conditions stated there. Furthermore, we have

‖u− µeixveiγη(µ(x− a))‖H1 ≤ c|q|1−
1
2
δ

Moreover, if ā, v̄, γ̄ solve the ODE system

(7.1) ˙̄a = v̄ , ˙̄v = −1

2
q∂xη

2(ā) , ˙̄γ =
1

2
v̄2 +

1

2
− qη2(ā) +

1

2
qā∂xη

2(ā) .

with initial data (a0, v0, 0), then

|a− ā| ≤ c|q|1−3δ , |γ − γ̄|+ |v − v̄| ≤ c|q|
3
2
−3δ , |µ− 1| ≤ c|q|2−δ .

Proof. The equations (7.1) imply the conservation of energy

1

2
v̄2 +

1

2
qη2(ā) =

1

2
v2

0 +
1

2
qη2(a0)

from which we obtain the bound

(7.2) |v̄| ≤
√

v2
0 + 2|q| .

Let
ε(t)2 = sup

0≤s≤t
‖w(s)‖2

H1 .

By Proposition 5.2,

(7.3) |ȧ− v|+ |v̇ +
1

2
q∂xη

2(a)| ≤ c0(q‖w‖H1 + ‖w‖2
H1 + ‖w‖3

H1) .

Let t1 with T ≥ t1 > 0 be the maximal time for which the assumptions of Lemma 5.3
(5.5) hold with i = 0. Then by Proposition 5.4 with n = 1, we have ε2(t1) ≤ |q|2−δ. The
estimate (7.3) implies (6.1) in Lemma 6.1 for t ∈ [0, t1], with f(a) = −∂xη(a)/2. By Lemma
6.1 and (7.2), we have

max
0≤s≤t1

|v(s)| ≤ 2
√

v2
0 + 2|q| .

Reviewing (5.5), we now see that

T ≥ t1 ≥ c4(v
2
0 + 2|q|)−1/2 ,

where c4 depends only on the implicit absolute constant in (5.5).

Now let t2 with T ≥ t2 > t1 be the maximum time such that (5.5) holds with i = 1.
Then by Proposition 5.4 with n = 2, we have

ε2(t2) ≤ |q|2−δ .

By (7.3), we have that (6.1) in Lemma 6.1 holds on [0, t2]. By Lemma 6.1 and (7.2), we
have

max
0≤s≤t2

|v(s)| ≤ 2
√

v2
0 + 2|q| .
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Reviewing (5.5), we now see that

|t2 − t1| ≥ c4(v
2
0 + 2|q|)−1/2 ,

with the same c4 as in the previous paragraph.

Continue until the nth step is reached, where

n =
δ log(1/|q|)

log c∗
− 1 ,

which is the most allowed in Proposition 5.4. But now we know that

T ≥ tn ≥ cδ(v2
0 + 2|q|)−1/2 log(1/|q|) ,

and that on [0, tn],

|a− ā| ≤ |q|1−2δ log(1/|q|), |v − v̄| ≤ |q|
3
2
−2δ log(1/|q|)

We also have from Proposition 5.2,∣∣∣γ̇ − (1

2
v2 +

1

2
− qη2(a) +

1

2
qa∂xη(a)

)∣∣∣ ≤ 2‖w‖2
H1 + |q|‖w‖H1

Subtracting the equations for γ̇ and ˙̄γ and using that ‖w‖ ≤ |q|2−δ, we obtain

|γ̇ − ˙̄γ| ≤ |v2 − v̄2|+ |q||η2(a)− η2(ā)|+ |q||a− ā|η2(ā) + |q||ā||∂2
xη(a)− ∂2

xη(ā)|

≤
(
|q|1/2|q|

3
2
−2δ + |q||q|1−2δ + |q||q|1−2δ

)
log(1/|q|) + |q|3−4δ log2(1/|q|)

≤ |q|2−2δ log(1/|q|)

Since we restrict to times t ≤ δ|q|−1/2 log(1/|q|), we integrate to obtain |γ−γ̄| ≤ |q| 32−3δ. �

Remark. There remains the case of initial velocities, v0, which are not small. When
|q| → 0 and v0 > 0 is fixed, the dynamics is not interesting and the solution can be
approximated by the solution with q = 0, that is by the propagating soliton (1.10). The
proof of that follows from the arguments of [12, §3.1] and the details can be found in [4].
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