
SOLITON INTERACTION WITH SLOWLY VARYING POTENTIALS

JUSTIN HOLMER AND MACIEJ ZWORSKI

Abstract. We study the Gross-Pitaevskii equation with a slowly varying smooth poten-
tial, V (x) = W (hx). We show that up to time log(1/h)/h and errors of size h2 in H1,
the solution is a soliton evolving according to the classical dynamics of a natural effective
Hamiltonian, (ξ2 + sech2 ∗ V (x))/2. This provides an improvement (h → h2) compared to
previous works, and is strikingly confirmed by numerical simulations – see Fig.1.

1. Introduction

The Gross-Pitaevskii equation is the nonlinear Schrödinger equation with an external
potential:

(1.1)

{
i∂tu + 1

2
∂2

xu− V (x)u + u|u|2 = 0

u(x, 0) = eiv0xsech(x− a0) ,

In [9] we investigated the case of V (x) = h2W (x) where 0 < h � 1 and W ∈ H−1(R; R).
Because of our earlier work on high velocity scattering [7],[8], which is potential specific, the
paper presented the case of W (x) = δ0(x), but as was pointed out there the method applies
verbatim to the more general case, W ∈ H−1. Motivated by the approach of [9] we now
revisit the case of slowly varying potentials, V = W (hx), and show that using the effective
Hamiltonian approach we can describe the evolution of the soliton with errors of size h2. In
particular, in this setting, we improve the results of Fröhlich-Gustafson-Jonsson-Sigal [4].

Theorem 1. Suppose that in (1.1), V (x) = W (hx), where W ∈ C3(R; R). Let δ ∈ (0, 1/2).
Then on the time interval

0 ≤ t ≤ δ log(1/h)

Ch
,

we have

(1.2) ‖u(t, •)− ei•v(t)eiγ(t)sech(• − a(t))‖H1(R) ≤ Ch2−δ , 0 < h < h0 ,

where a, v, γ, solve the following system of equations

ȧ = v , v̇ = −1

2
sech2 ∗ V ′(a) ,

γ̇ =
1

2
+

v2

2
− sech2 ∗ V (a) + (x sech2x tanh x) ∗ V (a) ,

(1.3)

with initial data (a0, v0, 0). The constants C and h0 depend on ‖W (k)‖L∞, 0 ≤ k ≤ 3, and
|v0| only.
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Figure 1. Comparison of the dynamics of the center of motion of the soliton
for the Gross-Pitaevskii equation with a slowly varying potential,

iut = −1

2
uxx − |u|2u− sech2(hx)u , h = 1/5 , h = 1/4 ,

and initial condition in (1.1) with v0 = 0, a0 = −3. The dashed red curve
shows the solution to Newton’s equations used in [1] and [4], the blue curve
shows the center of the approximate soliton u, and the black dashed curve is
given by the equations of motion of the effective Hamiltonian

1

2

(
v2 + sech2(h•) ∗ sech2(a)

)
.

The improvement of the approximation given by the effective Hamiltonian
is remarkable even in the case of h = 1/4 in which we already see radiative
dissipation in the first cycle.
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As in [9] the proof of our theorem follows the long tradition of the study of stability of
solitons which started with the work of M.I. Weinstein [14]. The interaction of solitons
with external potentials was studied in the stationary semiclassical setting by Floer and A.
Weinstein [3] and Oh [12], and the first dynamical result belongs to Bronski and Jerrard
[1], see also [2],[11]. The semiclassical regime is equivalent to considering slowly varying
potentials, and the dynamics in that case was studied in [4],[5],[6],[13] (see also numerous
references given there).

The results of [4] in the special case of (1.1) give

(1.4) ‖u(t, •)− ei•v(t)eiγ(t)sech(• − a(t))‖H1(R) ≤ Ch1−δ , 0 ≤ t ≤ δ log(1/h)/h ,

where

ȧ = v +O(h2) , v̇ = −V ′(a) +O(h2) ,

γ̇ = 1/2 + v2/2− V (a) +O(h2) ,
(1.5)

with initial data (a0, v0, 0). In other words, the motion of the soliton is approximately given
by Newton’s equations, ȧ = v, v̇ = −V ′(a). However it is not clear if, as in (1.3), the errors
O(h2) in (1.5) can be removed without affecting (1.4) – see §6. Since (1.3) imply equations
(1.5), Theorem 1 shows that we can replace h1−δ by h2−δ in (1.4), keeping (1.5).

When V (x) = h2W (x), and W ∈ H−1(R; R) [9], Newton’s equations are clearly not
applicable. To describe evolution up to time log(1/h)/h we introduced a natural effec-
tive Hamiltonian. A numerical experiment shown in [9, Fig.2] and reproduced here in
Fig.1 suggested that the effective Hamiltonian approach gives a dramatic improvement for
slowly varying potentials. Theorem 1 (and a more precise Theorem 2 below) quantify that
improvement by changing the errors from h in (1.4) to h2 in (1.2).

To describe the natural effective Hamiltonian we recall that the Gross-Pitaevski equation
(1.1) is the equation for the Hamiltonian flow of

(1.6) HV (u)
def
=

1

4

∫
(|∂xu|2 − |u|4)dx +

1

2

∫
V |u|2 ,

with respect to the symplectic form on H1(R, C) (considered as a real Hilbert space):

(1.7) ω(u, v) = Im

∫
uv̄ , u, v ∈ H1(R, C) .

When V ≡ 0, η = sech is a minimizer of H0 with the prescribed L2 norm (‖η‖2
L2 = 2):

(1.8) dEη = 0 , E(u)
def
= H0(u) +

1

4
‖u‖2

L2 .

Here dEη is the differential of E : H1 → R, see §2.1.

The flow of H0 is tangent to the manifold of solitons,

M = {eiγeiv(x−a)µ sech(µ(x− a)) , a, v, γ ∈ R , µ ∈ R+} ,
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which of course corresponds to the fact that the solution of (1.1) with V = 0 and u0(x, 0) =
eiγ0+iv0(x−a0)µsech(µ(x− a0)), is

u(x, t) = g(t) · η def
= eiγ+iv0(x−a0)+i(µ2−v2)t/2µ sech(µ(x− a0 − v0t)) ,

g(t)
def
= (a0 + v0t, v0, γ0 + (µ2 + v2)/2, µ) .

(1.9)

The symplectic form (1.7) restricted to M is

(1.10) ω�M= µdv ∧ da + vdµ ∧ da + dγ ∧ dµ ,

see §2.3. The evolution of the parameters (a, v, γ, µ) in the solution (1.9) follows the
Hamilton flow of

H0�M=
µv2

2
− µ3

6
,

with respect to the symplectic form ω�M .

The system of equations (1.3) is obtained using the following basic idea: if a Hamilton
flow of H, with initial condition on a symplectic submanifold, M , stays close to M , then
the flow is close to the Hamilton flow of H�M . In our case M is the manifold of solitons
and H is given by (1.6)

(1.11) HV �M (a, v, γ, µ) =
µv2

2
− µ3

6
+

1

2
µ2(V ∗ sech2)(µa) .

The equations (1.3) are simply the equations of the flow of HV �M – see §2.4. They are
easily seen to imply (1.5) but some h corrections are built into the classical motion leading
to the improvement in Theorem 1, see also Fig.1.

As in previous works all of this hinges on the proximity of u(x, t) to the manifold of
solitons, M . In [9] we followed [4] and used Weinstein’s Lyapunov function [14],

L(w)
def
= E(w + η)− E(η) ,

where E is given by (1.8). Here, in the notation similar to (1.9),

u(t) = g(t) · (η + w(t)) ,

for an optimally chosen g(t) = (a(t), v(t), γ(t), µ(t)) – see Lemma 2.3.

The use of L(w) seems essential for the all-time orbital stability of solitons. Up to times
h−1 log(1/h) we found that it is easier to use its quadratic approxition

(1.12) L0
def
= 〈Lw,w〉 , Lw

def
= E ′′η (w) = −1

2
∂2

xw − 2η2w − η2w̄ +
1

2
w .

Rather than use conservation of energy, HV (u), we use the nonlinear equation for w(t)
in estimating L0(w) – see §5. That involves solving a nonhomogeneous linear equation
approximately using the spectral properties of L – see (5.2) and Proposition 4.2. The
fact that the solution of that equation is of size h2 in H1 gives the first indication of
the improvement based on using the effective Hamiltonian. Ultimately, this makes the
argument simpler than in the case of W ∈ H−1 (or the special case of W = δ0).
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The paper is organized as follows. In §2 we recall the Hamiltonian structure of the
nonlinear flow of (1.1) and describe the manifold of solitons. As in [9], its identification
with the Lie group G = H3 n R+, where H3 is the Heisenberg group, provides useful
notational shortcuts. In §3 we describe the reparametrized evolution. The starting point
there is an application of the implicit function theorem and a decomposition of the solution
into symplectically orthogonal components. That method has a long tradition in soliton
stability and we learned it from [4]. The analysis of the orthogonal component using an
approximate solution to a linear equation and a bootstrap argument are presented in §5.
This results in a somewhat more precise version of Theorem 1 – see Theorem 2. The
ODE estimates needed for the exact evolution (1.3) are given in §6. Finally we show how
Theorem 2 implies Theorem 1. Except for basic material such as properties of Sobolev
spaces or elementary symplectic geometry, and a reference to the proof of Proposition 4.1,
the paper is meant to be self contained.

Acknowledgments. The work of the first author was supported in part by an NSF
postdoctoral fellowship, and that of the second second author by the NSF grant DMS-
0654436.

2. The Hamiltonian structure and the manifold of solitons

In this section we recall the well known facts about the Hamiltonian structure of the
nonlinear Schrödinger equation. The manifold of solitons is given as an orbit of a semidirect
product of the Heisenberg group and R+.

2.1. Symplectic structure. In our work, we consider

V
def
= H1(R, C) ⊂ L2(R, C) ,

viewed as a real Hilbert space. The inner product and the symplectic form are given by

(2.1) 〈u, v〉 def
= Re

∫
uv̄ , ω(u, v)

def
= 〈iu, v〉 = Im

∫
uv̄ ,

Let H : V → R be a function, a Hamiltonian. The associated Hamiltonian vector field is a
map ΞH : V → TV , which means that for a particular point u ∈ V , we have (ΞH)u ∈ TuV .
The vector field ΞH is defined by the relation

(2.2) ω(v, (ΞH)u) = duH(v) ,

where v ∈ TuV , and duH : TuV → R is defined by

duH(v) =
d

ds

∣∣∣
s=0

H(u + sv) .

In the notation above

(2.3) dHu(v) = 〈dHu, v〉 , (ΞH)u =
1

i
dHu .
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If we take V = H1(R, C) with the symplectic form (2.1), and

H(u) =

∫
1

4
|∂xu|2 −

1

4
|u|4

then we can compute

duH(v) = Re

∫
((1/2)∂xu∂xv̄ − |u|2uv̄)

= Re

∫
(−(1/2)∂2

xu− |u|2u)v̄ .

Thus, in view of (2.3) and (2.2),

(ΞH)u =
1

i

(
−1

2
∂2

xu− |u|2u
)

The flow associated to this vector field (Hamiltonian flow) is

(2.4) u̇ = (ΞH)u =
1

i

(
−1

2
∂2

xu− |u|2u
)

.

For future reference we state two general lemmas of symplectic geometry. The simple
proofs can be found in [9, §2].

Lemma 2.1. Suppose that g : V → V is a diffeomorphism such that g∗ω = µ(g)ω, where
µ(g) ∈ C∞(V ; R). Then for f ∈ C∞(V, R),

(2.5) (g−1)∗Ξf (g(ρ)) =
1

µ(g)
Ξg∗f (ρ) , ρ ∈ V .

Suppose that f ∈ C∞(V ; R) and that df(ρ0) = 0. Then the Hessian of f at ρ0, f ′′(ρ0) :
TρV 7→ T ∗

ρ V , is well defined. We can identify TρV with T ∗
ρ V using the innner product, and

define the Hamiltonian map F : TρV → TρV by

(2.6) F =
1

i
f ′′(ρ0) , 〈f ′′(ρ0)X, Y 〉 = ω(Y, FX) .

In this notation we have

Lemma 2.2. Suppose that N ⊂ V is a finite dimensional symplectic submanifold of V ,
and f ∈ C∞(V, R) satisfies

Ξf (ρ) ∈ TρN ⊂ TρV , ρ ∈ N .

If at ρ0 ∈ N , df(ρ0) = 0, then the Hamiltonian map defined by (2.6) satisfies

F (TρN) ⊂ TρN .
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The Hamiltonian map, F , is simply the linearization of Ξf at a critical point of f . An
example relevant to this paper is

f(u) = E(u)
def
= H0(u) +

1

4
‖u‖2 ,

see (1.8). The soliton η is a critical point of E and the Hessian of E is given by L in
(1.12). The Hamiltonian map F = (1/i)L is the linearization of Ξf at η. In other words,
(1/i)(L − 1/2) is the linearization of (1.1) (with V = 0) at η. The 1/2 term comes from
‖u‖2/4 in the definition of E .

In Lemma 2.2 we can take N to be the four dimensional manifold of solitons and ρ = η.
It then says that (1/i)L preserves the symplectic orthogonality of w ∈ TηV to TηM .

2.2. Manifold of solitons as an orbit of a group. For g = (a, v, γ, µ) ∈ R3 × R+ we
define the following map

(2.7) H1 3 u 7−→ g · u ∈ H1 , (g · u)(x)
def
= eiγeiv(x−a)µu(µ(x− a)) .

This action gives a group structure on R3 × R+ and it is easy to check that this transfor-
mation group is a semidirect product of the Heisenberg group H3 and R+:

G = H3 n R+ , µ · (a, v, γ) = (
a

µ
, µv, γ) .

Explicitly, the group law on G is given by

(a, v, γ, µ) · (a′, v′, γ′, µ′) = (a′′, v′′, γ′′, µ′′) ,

where

v′′ = v + v′µ , a′′ = a +
a′

µ
, γ′′ = γ + γ′ +

va′

µ
, µ′′ = µµ′

The action of G is not symplectic but it is conformally symplectic in the sense that

(2.8) g∗ω = µ(g)ω , g = (h(g), µ(g)) , µ(g) ∈ R+ ,

as is easily seen from (2.1).

The Lie algebra of G, denoted by g, is generated by e1, e2, e3, e4,

exp(te1) = (t, 0, 0, 1) , exp(te2) = (0, t, 0, 1) ,

exp(te3) = (0, 0, t, 1) , exp(te4) = (0, 0, 0, et) ,

and the bracket acts as follows:

(2.9) [e1, e4] = e1, [e2, e4] = −e2, [e1, e2] = −e3, [e3, •] = 0 ,

so e3 is in the center. The infinitesimal representation obtained from (2.7) is given by

(2.10) e1 = −∂x , e2 = ix , e3 = i , e4 = ∂x · x .

It acts, for instance on S(R) ⊂ H1, and by X ∈ g we will denote a linear combination of
the operators ej.
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The proof of the following standard lemma can be again found in [9, §2]:

Lemma 2.3. Suppose R 3 t 7→ g(t) is a C1 function and that u ∈ S(R). Then, in the
notation of (2.7),

d

dt
g(t) · u = g(t) · (X(t)u) ,

where X(t) ∈ g is given by

(2.11) X(t) = ȧ(t)µ(t)e1 +
v̇(t)

µ(t)
e2 + (γ̇(t)− ȧ(t)v(t))e3 +

µ̇(t)

µ(t)
e4 ,

where g(t) = (a(t), v(t), γ(t), µ(t)).

The manifold of solitons is an orbit of this group, G · η, to which ΞH , defined in (2.2), is
tangent. In view of (2.4) that means that

i

(
1

2
∂2

xη + |η|2η
)

= X · η ,

for some X ∈ g. The simplest choice is given by taking X = λi, λ ∈ R, so that η solves a
nonlinear elliptic equation

−1

2
η′′ − η3 + λη = 0 .

This has a solution in H1 if λ = µ2/2 > 0 and it then is η(x) = µsech(µx). We will fix
µ = 1 so that

η(x) = sechx .

Using Lemma 2.1 we can check that G · η is the only orbit of G to which ΞH is tangent.

We define the submanifold of solitons, M ⊂ H1, as the orbit of η under G,

M = G · η ⊂ H1

and thus we have the identifications

(2.12) M = G · η ' G/Z , TηM = g · η ' g .

The quotient corresponds to the Z-action

(a, v, γ, µ) 7→ (a, v, γ + 2πk, µ) , k ∈ Z

2.3. Symplectic structure on the manifold of solitons. We first compute the sym-
plectic form ω�M on TηM using the identification (2.12):

(ω�M)η(ei, ej) = Im

∫
(ei · η)(x)(ej · η)(x) .

Since ∫
η2(x)dx = 2 ,

∫
η(x)∂xη(x) = 0 ,

∫
∂xη(x)xη(x)dx = −1 ,
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we obtain from (2.10) that

(2.13) (ω�M)η(e2, e1) = 1 , (ω�M)η(e3, e4) = 1 ,

and all the other (ω�M)η(ei, ej)’s vanish. In other words,

(ω�M)η = (dv ∧ da + dγ ∧ dµ)(0,0,0,1) = (d(vda + γdµ))(0,0,0,1) .

Using (2.12) we conclude that

(2.14) ω�M= µdv ∧ da + vdµ ∧ da + dγ ∧ dµ ,

see [9, Lemma 2.3].

Now let f be a function defined on M , f = f(a, v, γ, µ). The associated Hamiltonian
vectorfield, Ξf , is defined by

ω(·, Ξf ) = df = fada + fvdv + fµdµ + fγdγ .

Using (2.14) we obtain

(2.15) Ξf =
fv

µ
∂a +

(
−fa

µ
− vfγ

µ

)
∂v + fγ∂µ +

(
v
fv

µ
− fµ

)
∂γ .

The Hamilton flow is obtained by solving

v̇ = −fa

µ
− vfγ

µ
, ȧ =

fv

µ
, µ̇ = fγ , γ̇ = v

fv

µ
− fµ .

The restriction of

H(u) =
1

4

∫
|∂xu|2 −

1

4

∫
|u|4

to M is given by computing by

(2.16) f(a, v, γ, µ) = H(g · η) =
µv2

2
− µ3

6
, g = (a, v, γ, µ) .

The flow of (2.15) for this f describes the evolution of a soliton.

2.4. The Gross-Pitaevski Hamiltonian restricted to the manifold of solitons. We
now consider the Gross-Pitaevski Hamiltonian,

(2.17) Hq(u)
def
=

1

4

∫
(|∂xu|2 − |u|4)dx +

1

2

∫
V (x)|u|2dx ,

and its restriction to M = G · η:

(2.18) Hq�M= f(a, v, γ, µ) =
µv2

2
− µ3

6
+

µ2

2
V ∗ (sech2(µ•))(a) .
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The flow of (Hq)�M can be read off from (2.15):

v̇ = −fa

µ
− vfγ

µ
= −µ2

2
V ′ ∗ (sech2(µ•))(a) , ȧ =

fv

µ
= v , µ̇ = fγ = 0 ,

γ̇ = v
fv

µ
− fµ =

1

2
v2 +

1

2
µ2 − µV ∗ (sech2(µ•))(a) + µV ∗ (x sech2(x) tanh(x)�x=µ•)(a) .

(2.19)

This are the same equations as (1.3). The evolution of a and v is simply the Hamiltonian
evolution of (v2 + µ2V ∗ sech2(µ•)(a))/2, µ = const. The more mysterious evolution of the
phase γ is now explained by (2.18).

We can also rewrite (2.19) as follows:

f =
µv2

2
− µ3

6
+

µ

2

∫
V
(x

µ
+ a
)
η2(x)dx ,

so that

γ̇ =
v2

2
+

µ2

2
− 1

2

∫
V
(x

µ
+ a
)
η2(x) dx +

1

2

∫
V ′
(x

µ
+ a
)x

µ
η2(x) dx

=
v2

2
+

µ2

2
− V (a) +

V ′′(a)π2

24µ2
+O(h4)

and

v̇ = −1

2

∫
V ′
(x

µ
+ a
)
η2(x) dx = −V ′(a)− V ′′′(a)π2

24µ2
+O(h5) ,

where we used that
∫

η2 = 2 and
∫

x2η2 = π2/6 in the Taylor expansions. Here for the
purpose of presentation we assumed that W ∈ C5 but we will never use Taylor’s formula
with more than four terms, for which C3 is only needed.

3. Reparametrized evolution

To see the effective dynamics described in §2.4 we write the solution of (1.1) as

u(t) = g(t) · (η + w(t)) , w(t) ∈ H1(R, C) ,

where w(t) satisfies
ω(w(t), Xη) = 0 , ∀X ∈ g .

To see that this decomposition is possible, initially for small times, we apply the follow-
ing consequence of the implicit function theorem and the nondegeneracy of ω�M (see [4,
Proposition 5.1] for a more general statement):

Lemma 3.1. For Σ b G/Z (where the topology on G/Z is given by the identification with
R× R× S1 × R+) let

UΣ,δ = {u ∈ H1 : inf
g∈Σ

‖u− g · η‖H1 < δ} .
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If δ ≤ δ0 = δ0(Σ) then for any u ∈ UΣ,δ, there exists a unique g(u) ∈ Σ such that

(3.1) ω(g(u)−1 · u− η, X · η) = 0 ∀X ∈ g .

Moreover, the map u 7→ g(u) is in C1(UΣ,δ, Σ).

Proof. We define the transformation

F : H1(R, C)×G −→ g∗ , [F (u, h)](X)
def
= ω(h · u− η, X · η) ,

and want to solve F (u, h) = 0 for h = h(u). By the implicit fuction theorem that follows
for u near G · η if for any g0 ∈ G the linear transformation

dhF (g0 · η, g0) : Tg0G −→ g∗ ,

is invertible. Clearly we only need to check it for g0 = e, that is that dhF (η, e) : g → g∗ ,
is invertible. But as an element of g∗⊗g∗, dhF (η, e) = (ω�M)η, which is nondegenerate. �

From §§2.1 and 2.4 we recall that the equation for u (1.1) can be written as

(3.2) ∂tu = ΞHq(u) , Hq(u)
def
=

1

4

∫
(|∂xu|2 − |u|4)dx +

1

2

∫
V (x)|u|2dx .

Using Lemma 3.1 we define

(3.3) g(t)
def
= g(u(t)) , ũ

def
= g(t)−1u(t) , w(t)

def
= ũ− η ,

and we want to to derive an equation for w(t).

Let

α = α(a, µ)
def
=

1

2

∫
V
(x

µ
+ a
)
η2(x)dx− 1

2

∫
V ′
(x

µ
+ a
)x

µ
η2(x) dx ,

β = β(a, µ)
def
=

1

2µ

∫
V ′
(x

µ
+ a
)
η2(x) dx .

(3.4)

Note that dependence on a, µ makes α, β into time-dependent parameters. They are
however independent of x. The proper motivation for the choice of α and β will come in
Lemma 3.3 below.

Set

(3.5) X = (−ȧ + v)µe1 +
(
− v̇

µ
− β

)
e2 +

(
− γ̇ + ȧv − 1

2
v2 +

1

2
µ2 − α

)
e3 −

µ̇

µ
e4 ,

where ej’s are given by (2.10). Let also

(3.6) Nw = 2|w|2η + ηw2 + |w|2w .

We now have
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Lemma 3.2. The equation for w, defined by (3.3), is

∂tw = Xη + i
[
− V

(x

µ
+ a
)

+ α + βx
]
η

+ Xw + i
[
− V

(x

µ
+ a
)

+ α + βx
]
w − iµ2Lw + iµ2Nw ,

where X is given by (3.5), L by (1.12), N by (3.6).

Proof. We compute, by the chain rule

∂tu = ∂t(g · (η + w)) = g · Y (η + w) + g · ∂tw

where

Y = ȧµe1 +
v̇

µ
e2 + (γ̇ − ȧv)e3 +

µ̇

µ
e4 .

From this, and the fact that the equation for u can be written ∂tu = ΞH(u), we get

∂tw = −Y ũ + g−1∂tu = −Y ũ + g−1ΞHgũ

We apply Lemma 2.1 to obtain

∂tw = −Y ũ +
1

µ
Ξg∗H ũ

We compute

(g∗H)(ũ) = H(gũ) =
1

4
v2µ‖ũ‖2

L2 +
1

4
µ3‖∂xũ‖2

L2 +
1

2
vµ2 Im

∫
¯̃u∂xũ dx

− 1

4
µ3‖ũ‖4

L4 +
1

2
µ

∫
V
(x

µ
+ a
)
|ũ(x)|2 dx

Therefore,

Ξg∗H ũ =
1

i

(1

2
v2µũ− 1

2
µ3∂2

xũ− µ3|ũ|2ũ + µV
(x

µ
+ a
)
ũ
)
− vµ2∂xũ

Substituting and expanding the cubic term,

∂tw = − Y (η + w)− 1

2
iv2(η + w) +

1

2
iµ2∂2

x(η + w) + iµ2[η3 + 2η2w + η2w̄

+ 2|w|2η + ηw2 + |w|2w]− iV
(x

µ
+ a
)
(η + w)− vµ∂x(η + w)

Using that −1
2
η + 1

2
η′′ + η3 = 0, we obtain

∂tw = − Y η − 1

2
iv2η +

1

2
iµ2η − iV

(x

µ
+ a
)
η − vµ∂xη

− Y w − 1

2
iv2w +

1

2
iµ2w − iµ2Lw + iµ2Nw − iV

(x

µ
+ a
)
w − vµ∂xw
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Now set

X = −Y + vµe1 − βe2 +
[
− 1

2
v2 +

1

2
µ2 − α

]
e3

From this, we get the claimed equation. �

Let us make some remarks about the lemma. First, note that if X = 0, then

v̇ = −βµ , γ̇ = ȧv − 1

2
v2 +

1

2
µ2 − α , ȧ = v , bµ̇ = 0 ,

which are exactly the equations of motion of the effective Hamiltonian – see §2.4.

Second, note that the term

i
[
− V

(x

µ
+ a
)

+ α + βx
]
η

projects symplectically to 0 (used in the next lemma), in the sense that

(3.7) P (i(−V (•/µ + a) + α + β•)η) = 0 ,

where P : S ′(R, C) → g is defined by the condition that

ω(u− P (u)η, Y η) = 0 , ∀Y ∈ g

see [9, (3.7)] for an explicit expression of P . To see (3.7) we use the following simple

Lemma 3.3. Let P be the symplectic projection defined above and f ∈ S ′(R; R) (that is f
is real valued tempered distribution). Then,

P (if(x)η) = αe3 · η + βe2 · η = iαη + iβxη ,

α =
1

2

∫
f(x)η2(x)− 1

2

∫
f ′(x)xη2(x)dx , β =

1

2

∫
f ′(x)η2(x)dx .

(3.8)

Proof. This follows from a straightforward calculation based on (2.13). If f(x) = V (x/µ +
a), we obtain (3.7) with α and β given by (3.8). �

Finally, note the following Taylor expansions:

V
(x

µ
+ a
)

= V (a) + V ′(a)
x

µ
+ V ′′(a)

x2

2µ2
+O(h3) ,

α = V (a)− V ′′(a)π2

24µ2
+O(h3) ,

β =
V ′(a)

µ
+O(h3) ,

and thus

(3.9) −V
(x

µ
+ a
)

+ α + βx = −V ′′(a)π2

24µ2
− V ′′(a)

2µ2
x2 +O(h3) = O(h2) ,
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where all the errors are polynomially bounded in x. If we assumed that W ∈ C4 then he
expansions for α would be valid with an error O(h4).

Lemma 3.4. Let w be given by (3.3), with g obtained from Lemma 3.1, and X by (3.5).
Suppose 1

2
≤ µ ≤ 1. Then

|X| ≤ c(h2‖w‖H1 + ‖w‖2
H1 + ‖w‖3

H1)

Proof. We use the symplectic orthogonality of Y η, Y ∈ g and w.

Since Pwt = ∂tPw = 0, Lemma 3.2 gives

X = P (i(V (•/µ + a)− α− β•)η) + P (i(V (•/µ + a)− α− β•)w)− P (Xw)

+ µ2P (iNw) + µ2P (iLw) .

We recall from [9, Lemma 3.3] the following straightforward estimates:

(3.10) ‖P (Y w)‖ ≤ C|Y |‖w‖L2 , ‖P (iNu)‖ ≤ C‖w‖2
L2

(
1 + ‖w‖

1
2

H1‖w‖
1
2

L2

)
.

We already observed in (3.7) that the first term on the right hand side vanishes†. From
(3.9) we see that the second term is O(h2)‖w‖L2 . The third and fourth term are estimated
using (3.10) by

C(|X|‖w‖L2 + ‖w‖2
H1 + ‖w‖3

H1) .

The last term vanishes: the linear operator L is the Hessian of E , given in (1.8), at the
critical point η. The fact that ΞE is tangent to M and Lemma 2.2 (or a direct computation)
show that

P (iLw) = 0 ,

Summarizing,
|X| ≤ C‖w‖L2|X|+ C(h2‖w‖H1 + ‖w‖2

H1 + ‖w‖3
H1) .

The smallness of ‖w‖L2 concludes the proof. �

We conclude this section which two lemmas which effectively eliminate µ from the coef-
ficients of X.

Lemma 3.5. Suppose that w ∈ H1(R, C) and that ω(w,X · η) = 0, for every X ∈ g. Then

(3.11) ‖w‖2
L2 = 2(1− µ)/µ .

Proof. We first compute

‖η + w‖2
L2 = ‖g−1u‖2

L2 = ‖u‖2
L2/µ(g) = 2/µ(g) ,

where we used the conservation of the L2 norm. By the symplectic orthogonality assump-
tion statement of the lemma Re〈w, η〉 = 0 and hence

‖η + w‖2
L2 = 2 + ‖w‖2

L2 ,

†This is the significant bonus of using the effective Hamiltonian.
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from which the conclusion follows. �

From this we immediately deduce the following

Lemma 3.6. Suppose 1 − µ � 1 and 0 < h ≤ 1. Let X0 = X|µ=1 where X is given by
(3.5):

(3.12) X0
def
= (−ȧ + v)e1 +

(
− v̇ − β

)
e2 +

(
− γ̇ + ȧv − 1

2
v2 +

1

2
− α

)
e3 − µ̇e4 ,

where α and β are given by (3.4) (and depend on µ). The the conclusions of Lemma 3.4
hold for X0:

|X0| ≤ c(h2‖w‖H1 + ‖w‖2
H1 + ‖w‖3

H1) .

4. Spectral estimates

In this section we will recall the now standard estimates on the operator L which arises
as Hessian of E at η:

Lw = −1

2
∂2

xw − 2η2w − η2w̄ +
1

2
w ,

or

Lw =

[
L+ 0
0 L−

] [
Re w
Im w

]
, L± = −1

2
∂2

x − (2± 1)η2 +
1

2
.

In our special case we can be more precise than in the general case (see [14], and also [4,
Appendix D]). The self-adjoint operators L± belong to the class of Schrödinger operators
with Pöschl-Teller potentials and their spectra can be explicitly computed:

σ(L−) = {0} ∪ [1/2,∞) , σ(L+) = {0,−3/2} ∪ [1/2,∞) .

The eigenfuctions can computed by the same method but a straightforward verification is
sufficient to see that

L−η = 0 , L+(∂xη) = 0 , L+(η2) = −3

2
η2 .

From §[9, §4] we recall the following

Proposition 4.1. Let w ∈ H1(R, C) and suppose that for any X ∈ g, ω(w,X · η) = 0.
Then,

〈Lw,w〉 ≥ 2ρ0

7 + 2ρ0

‖w‖2
H1 ' 0.0555‖w‖2

H1 , ρ0 =
9

2(12 + π2)
.(4.1)

The next proposition will be useful in solving a linear equation for an approximation of
w.
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Proposition 4.2. The equation

(4.2) L+f =

(
π2

12
+ x2

)
η(x)

has a unique solution in L2(R). In addition,

e(1−ε)|x|f (k)(x) ∈ L∞(R) , ∀ ε > 0 , k ∈ N ,

and

(4.3) ω(f, Xη) = 0 , ∀ X ∈ g .

Proof. Since 0 is an isolated point of the spectrum of L+ and L+ is self-adjoint, L+ has a
bounded inverse on

(ker L+)⊥ = (span{∂xη})⊥ .

Hence,

(ker L+)⊥ 3
(

π2

12
+ x2

)
η

L−1
+7−→ f ∈ (ker L+)⊥ .

By elliptic regularity, f is smooth. Moreover, since L+ commutes with g(x) 7→ g(−x)

and (π2

12
+ x2)η(x) is even, we conclude that f is even.

Next we argue that f has exponential decay. For that we conjugate the equation by eσx:

eσxL+e−σx = L+ + σ∂x − σ2/2 ,

and apply both sides to eσxf(x):

eσx
(π2

12
+ x2

)
η =

(
− ∂2

x + 2σ∂x −
σ2

2
+

1

2

)
eσxf + 3η2eσxf .

Taking the Fourier transform this means that we have(
1

2
ξ2 +

1

2
− 1

2
σ2 + iσξ

)
êσxf(ξ) =

[
3eσxη2f + eσx

(π2

12
+ x2

)
η
]b

(ξ),

which makes sense if |σ| < 1 as then the right hand side is in L2. Since the multiplier
on the left-hand side is bounded away from 0, we can invert the expression to obtain that
eσxf ∈ H2. From this, we deduce by Sobolev embedding that eσxf ∈ L∞. By applying
derivatives to (4.2) and then repeating this argument, we in fact obtain that all derivatives
are pointwise exponentially localized in space.

Finally, we prove the orthogonality condition (4.3), that is, ω(f, ej · η) = 0 where ej’s are
given by (2.10). Since f is real, we clearly have

ω(f, η′) = ω(f, (xη)′) = 0 .
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Since f is even, we also have ω(f, ixη) = 0. It remains to show that ω(f, iη) = 0, that is
that

∫
fη = 0. Note that L+[(xη)′] = η (by direct computation or from the structure of

the generalized kernel of iL). Hence∫
fη =

∫
fL+[(xη)′] dx =

∫
L+f (xη)′ dx =

∫ (π2

12
+ x2

)
η(η + xη′) dx .

Integration by parts and
∫

η2 = 2,
∫

x2η2 = π2/6, show that this is 0. �

5. Proof of the main estimate

In the arguments that follow, we will assume that g(u) satisfying (3.1) is always defined
on any time interval under consideration, and thus w given by (3.3) is also always defined.
This is, however, not known a priori and Lemma 3.1 must be considered as part of the
bootstrap argument, together with the lemmas that follow. However, since this aspect of
the argument is standard in papers on this subject, we will not make mention of it.

Recall from Lemma 3.2 that the equation for w is

(5.1) ∂tw = Xη + i
[
− V

(x

µ
+ a
)

+ α + βx
]
η

+ Xw + i
[
− V

(x

µ
+ a
)

+ α + βx
]
w − iµ2Lw + iµ2Nw ,

where α and β are time dependent parameters given by (3.4). Note that by Taylor’s
theorem the forcing term in this equation has second-order expansion

−i
[
V
(x

µ
+ a
)

+ α + βx
]
η = −i

V ′′(a)

2µ2

(π2

12
+ x2

)
η + h3〈x〉3ηf2

where, provided‡ 1/2 ≤ µ ≤ 1, we have |f2(x, t)| ≤ c.

We first consider the forced linear evolution obtained from (5.1) by discarding all terms
we expect will be of order h3 or higher:

(5.2) ∂tw̃ = −iµ2Lw̃ − i
V ′′(a)

2µ2

(π2

12
+ x2

)
η

We now introduce a natural approximate solution to this forced linear equation. Let

(5.3) w̃ = −V ′′(a)

2µ4
f , f

def
= L−1

+

(
π2

12
+ x2

)
η ,

where f is given in Proposition 4.2. Then w̃ satisfies (5.2) to second-order, i.e.

(5.4) ∂tw̃ = −iµ2Lw̃ − i
V ′′(a)

2µ2

(π2

12
+ x2

)
η + h3θf

‡This will follow easily from the bootstrap assumption.
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where

θ(t)
def
=

1

h3

[
− V ′′′(a)ȧ

2µ4
+

2V ′′(a)µ̇

µ5

]
Lemma 5.1. Suppose there is a constant c1 such that

(5.5) ‖w‖L∞
[t1,t2]

H1
x
≤ c1h

3/2

Then provided |t2 − t1| ≤ h−2, we have

sup
t1≤t≤t2

|θ(t)| ≤ c ,

where c is a constant depending only upon c1, ‖W (k)‖L∞ for k = 0, 1, 2, 3 and |v(t1)|.

Proof. By (5.5), Lemma 3.6 and Taylor expansions (see (3.9)), we have

(5.6) |v̇ + V ′(a)|+ |µ̇|+ | − ȧ + v| ≤ ch3

By integrating the first bound, we obtain the following rough estimate

(5.7) sup
t1≤t≤t2

|v(t)| ≤ |v(t1)|+ ch‖W ′‖L∞(t2 − t1) + ch3(t2 − t1) .

We have
|v̇v + V ′(a)ȧ| ≤ |v̇ + V ′(a)||v|+ |V ′(a)||ȧ− v|

and thus, by (5.6) and (5.7),

sup
t1≤t≤t2

|v̇v + V ′(a)ȧ| ≤ ch3|v(t1)|+ ch4‖W ′‖L∞〈t2 − t1〉+ ch6(t2 − t1)

Integrating this bound, we obtain a near conservation of classical energy,∣∣∣(v2

2
+ V (a)

)
−
(v(t1)

2

2
+ V (a(t1))

)∣∣∣
≤ ch3|v(t1)|(t2 − t1) + ch4‖W ′‖L∞〈t2 − t1〉(t2 − t1) + ch6(t2 − t1)

2

from which we obtain supt1≤t≤t2 |v(t)| ≤ c. This and (5.6) imply that

sup
t1≤t≤t2

|ȧ(t)| ≤ c ,

and thus |θ(t)| ≤ c. �

This approximate solution w̃ provides heuristic evidence that w should be of order h2,
but it will also play a key rôle in our rigorous argument establishing this fact.

Lemma 5.2 (Lyapunov energy estimate). Suppose that, for some constant c1,

(5.8) ‖w‖L∞
[t1,t2]

H1
x
≤ c1h

3/2

Then, provided

(5.9) |t2 − t1| ≤
c

h
,
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we have,

(5.10) ‖w‖L∞
[t1,t2]

H1 ≤ 4
√

c2‖w(t1)‖H1 + ch2

The constants c in (5.9) and (5.10) depend upon c1, ‖W (k)‖L∞ for k = 0, 1, 2, 3, and |v(t1)|,
although are independent of ‖w(t1)‖H1. The constant c2

def
= (7 + 2ρ0)/(2ρ0) ≈ 18.02, with

ρ0 the absolute constant appearing in (4.1).

We will postpone the proof of Lemma 5.2 to the end of the section. In the next theorem
we iterate the above bound, and close the bootstrap argument.

Theorem 2. Let 0 ≤ δ < 1
4
. Let w0 = w(0), and suppose that there is a constant c1 such

that
‖w0‖H1 ≤ c1h

3
2
+3δ .

Then, provided

(5.11) |t| ≤ c(1 + δ| log h|)
h

and 0 < h ≤ ε ,

we have

(5.12) ‖w‖L∞
[0,t]

H1
x
≤ 4

√
c2h

−2δ‖w0‖H1 + ch2(1−δ)

The constant c in (5.11) and (5.12) and the constant ε in (5.11) depend upon c1, ‖W (k)‖L∞

for k = 0, 1, 2, 3, and |v(0)|, although are independent of δ and ‖w0‖H1. The constant

c2
def
= (7 + 2ρ0)/(2ρ0) ≈ 18.02, with ρ0 the absolute constant appearing in (4.1).

Proof. We apply Lemma 5.2 k times on successive intervals each of size c/h (where c is as
given in Lemma 5.2) to obtain the bound

‖w‖L∞
[0,ck/h]

H1
x
≤ (4

√
c2)

k‖w0‖H1 +

(
k−1∑
j=0

(4
√

c2)
j

)
ch2

This is only valid provided that the hypothesis of Lemma 5.2 is satisfied over the whole
collection of time intervals:

(4
√

c2)
k‖w0‖H1 +

(
k−1∑
j=0

(4
√

c2)
j

)
ch2 ≤ c1h

3/2 ,

By taking

k = 1 +
2δ| log h|
log(4

√
c2)

we obtain that

(4
√

c2)
k‖w0‖H1 +

(
k−1∑
j=0

(4
√

c2)
j

)
ch2 ≤ (4

√
c2)h

−2δ‖w0‖H1 + ch2(1−δ)
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Thus, it suffices to ensure that

(4
√

c2)h
−2δ‖w0‖H1 + ch2(1−δ) ≤ c1h

3/2 ,

and this is accomplished provided h ≤ ε, for a suitable ε with the dependence as stated in
the proposition. We note that the constant c from Lemma 5.2 did not change from one
iteration to the next, since |v(t1)| remains uniformly bounded by Lemma 5.1, which applies
on a time interval of size h−2. �

We now conclude the section with the proof of Lemma 5.2.

Proof of Lemma 5.2. For the proof, we shall assume, in place of (5.8), the bound

‖w‖L∞
[t1,t2]

H1 ≤ c1h
2(1−δ′)

We will conclude at the end that it suffices to take δ′ = 1
4
. Let

w1
def
= w − w̃ ,

where w̃ is an approximate solution to (5.2) given by (5.3).

From (5.1) and (5.4), we derive the equation satisfied by w1:

∂tw1 = − iµ2Lw1 + Xη + i
[
− V

(x

µ
+ a
)

+ α + βx +
V ′′(a)

2µ2

(π2

12
+ x2

)]
η − h3θf

+ Xw + i
[
− V

(x

µ
+ a
)

+ α + βx
]
w + iµ2Nw .

By grouping forcing terms of size O(h3), we rewrite the above as

∂tw1 = −iµ2Lw1 + h3f1 + Xw + i
[
− V

(x

µ
+ a
)

+ α + βx
]
w + iµ2Nw

where ‖f1(x, t)‖H1
x
≤ c (uniformly in t). Note that here we have applied Lemma 5.1 to

conclude that |θ(t)| ≤ c.

We recall that L is self-adjoint with respect to

〈u, v〉 = Re

∫
uv̄ ,

and hence, writing Xw = Xw1 + Xw̃, we compute

1

2
∂t〈Lw1, w1〉 = 〈Lw1, ∂tw1〉

= − µ2〈Lw1, iLw1〉+ 〈Lw1, h
3f1〉+ 〈Lw1, Xw1〉+ 〈Lw1, Xw̃〉

+ 〈Lw1, i
[
− V

(x

µ
+ a
)

+ α + βx
]
w1〉

+ 〈Lw1, i
[
− V

(x

µ
+ a
)

+ α + βx
]
w̃〉+ µ2〈Lw1, iNw〉

= I + II + III + IV + V + VI + VII
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Now we analyse these terms one-by-one. First,

(5.13) I = 0.

For II, we use integration by parts for the ∂2
x term to move one ∂x onto f1 and then

apply the Cauchy-Schwarz inequality; for the other terms we use a direct application of the
Cauchy-Schwarz inequality, and together these give

(5.14) |II| ≤ 4h3‖w1‖H1‖f1‖H1
x
≤ ch3‖w1‖H1

The next term, III, requires more care:

III = 〈Lw1, Xw1〉

=
1

2
〈(w1 − ∂2

xw1 − 4η2w1 − 2η2w̄1), (−a1∂xw1 + a2ixw1 + a3iw1 + a4∂x(xw1))〉

where aj, the components of X, are time dependent but space independent. By the boot-
strap assumption (5.8) and Lemma 3.4, |aj| ≤ ch4−4δ′ . To proceed, we do some further
calculations:

〈w1, Xw1〉 = a4〈w1, (w1 + x∂xw1)〉 =
1

2
a4‖w1‖2

L2

〈∂2
xw1, Xw1〉 = a2〈∂2

xw1, ixw1〉+ a4〈∂2
xw1, w1 + x∂xw1〉

= a2〈∂xw1, iw1〉 −
3

2
a4‖∂xw1‖2

L2

and thus the above two terms are bounded by ch4−4δ′‖w1‖2
H1 . For the terms involving η,

we use the Cauchy-Schwarz inequality and the fact that η ∈ S:

|〈η2w1, Xw1〉|+ |〈η2w1, Xw̄1〉| ≤ (max |aj|)‖w1‖2
H1

Altogether then, we have

(5.15) |III| ≤ ch4−4δ′‖w1‖2
H1

Now we move on to IV:

IV = 〈Lw1, Xw̃〉

=
1

2
〈(w1 − ∂2

xw1 − 4η2w1 − 2η2w̄1), (−a1∂xw̃ + a2ixw̃ + a3iw̃ + a4∂x(xw̃))〉 .

For this term, we are forced to directly estimate by the Cauchy-Schwarz inequality (al-
though for the ∂2

xw1 term, we integrate by parts one ∂x factor). The bound that we get
is

|IV| ≤ ch4−4δ′‖w1‖H1(‖〈x〉w̃‖L2 + ‖〈x〉∂xw̃‖L2 + ‖〈x〉∂2
xw̃‖L2)

From the definition (5.3) of w̃ and Proposition 4.2, we obtain that all the norms involving
w̃ are bounded by h2. Thus,

(5.16) |IV| ≤ ch6−4δ′‖w1‖H1 .
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Next, we move on to V:

V = 〈Lw1, i
[
− V

(x

µ
+ a
)

+ α + βx
]
w1〉

=
1

2
〈(w1 − ∂2

xw1 − 4η2w1 − 2η2w̄1), i
[
− V

(x

µ
+ a
)

+ α + βx
]
w1〉

=
1

2
〈(−∂2

xw1 − η2w̄1), i
[
− V

(x

µ
+ a
)

+ α + βx
]
w1〉 .

To estimate the first term, we integrate by parts and use that∣∣∣− 1

µ
V ′
(x

µ
+ a
)

+ β
∣∣∣ ≤ ch

(note that other estimates are available, like cxh2, but we do not want an x coefficient
here). For the second term, we use (3.9), the Cauchy-Schwarz inequality and the rapid
decay of η2: ∣∣∣[− V

(x

µ
+ a
)

+ α + βx
]
η2
∣∣∣ ≤ ch2

This gives the bound‡

(5.17) |V| ≤ ch‖w1‖2
H1 .

Now we move on to the next term, VI.

VI = 〈Lw1, i
[
− V

(x

µ
+ a
)

+ α + βx
]
w̃〉

In the ∂2
x term of L, we integrate by parts one ∂x, and then estimate by the Cauchy-Schwarz

inequality. All other terms, are estimated by a direct application of the Cauchy-Schwarz
inequality. The bound obtained is

|VI| ≤ ‖w1‖H1

∥∥∥∥〈∂x〉
[
− V

(x

µ
+ a
)

+ α + βx
]
w̃

∥∥∥∥
L2

≤ ch2‖w1‖H1(‖〈x〉2w̃‖L2 + ‖〈x〉2∂xw̃‖L2)

≤ ch4‖w1‖H1(5.18)

by the localization of w̃. For the last term, VII, we use integration by parts once for
the ∂2

x term, and then apply the Cauchy-Schwarz inequality to all terms. Since we are in
one-dimension, we have the embedding ‖w‖L∞ ≤ c‖w‖H1 .

VII = −µ2〈Lw1, iNw〉

(5.19) =⇒ |VII| ≤ ‖w1‖H1(‖w‖2
H1 + ‖w‖3

H1) ≤ ch4−4δ′‖w1‖H1

by the bootstrap assumption.

‡It is unlikely that we can do better than h as a coefficient here, and thus this seems to be what limits
us ultimately to time 1/h.
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This completes the step-by-step estimation process, and the bound we get from (5.13),
(5.14), (5.15), (5.16), (5.17), (5.18), (5.19) is

|∂t〈Lw1, w1〉| ≤ c(h4−4δ′ + h3)‖w1‖H1 + c(h4−4δ′ + h)‖w1‖2
H1

We see that it suffices to take δ′ = 1
4
. Integrating in time, we get

(5.20) 〈Lw1(t), w1(t)〉 ≤ 〈Lw1(t1), w1(t1)〉+ c(t− t1)h
3‖w1‖L∞

[t1,t2]
H1

+ c(t− t1)h‖w1‖2
L∞

[t1,t2]
H1

By (3.1) and (4.3), w1(t) satisfies the hypothesis of Proposition 4.1, and we have

(5.21)
1

c2

‖w1(t)‖2
H1 ≤ 〈Lw1(t), w1(t)〉

By direct estimation, we have the upper bound

|〈Lw1(t1), w1(t1)〉| ≤ 4‖w1(t1)‖2
H1

Combining this with (5.20) we get the bound

‖w1(t)‖2
H1 ≤ 4c2‖w1(t1)‖2

H1 + c(t− t1)h
3‖w1‖L∞

[t1,t2]
H1

+ c(t− t1)h‖w1‖2
L∞

[t1,t2]
H1

From this, we infer from the monotonicity of the right side that

‖w1‖2
L∞

[t1,t2]
H1 ≤ 4c2‖w1(t1)‖2

H1 + c(t2 − t1)h
3‖w1‖L∞

[t1,t2]
H1

+ c(t2 − t1)h‖w1‖2
L∞

[t1,t2]
H1

Requiring that t2 − t1 ≤ c/h implies

‖w1‖2
L∞

[t1,t2]
H1 ≤ 8c2‖w1(t1)‖2

H1 + ch2‖w1‖L∞
[t1,t2]

H1

≤ 16c2‖w1(t1)‖2
H1 + ch4 .

Since w = w1 + w̃ and ‖w̃‖H1 ≤ ch2,

(5.22) ‖w‖L∞
[t1,t2]

H1 ≤ 4
√

c2‖w(t1)‖H1 + ch2 ,

which is the claimed estimate. �

6. ODE analysis

To pass from an approximate equations for the parameters of the soliton, (a, v, γ, µ) given
in Lemma 3.6, to the ODEs (1.3) we need some elementary estimates which we present in
this section. They are similar to those in [9, §7].
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Lemma 6.1. Suppose that 0 < h � 1, and a = a(t), v = v(t), ε1 = ε1(t), ε2 = ε2(t) are
C1 real-valued functions. Suppose f : R → R is a C2 mapping such that |f | and |f ′| are
uniformly bounded. Suppose that on [0, T ],

(6.1)

{
ȧ = v + ε1

v̇ = hf(ha) + ε2
,

a(0) = a0

v(0) = v0

Let ā = ā(t) and v̄ = v̄(t) be the C1 real-valued functions satisfying the exact equations{
˙̄a = v̄

˙̄v = hf(hā)
,

ā(0) = a0

v̄(0) = v0

with the same initial data. Suppose that on [0, T ], we have |εj| ≤ h4−δ for j = 1, 2. Then
provided T ≤ δh−1 log(1/h), we have on [0, T ] the estimates

|a− ā| ≤ h2−2δ log(1/h), |v − v̄| ≤ h3−2δ log(1/h)

Before proceeding to the proof, we recall some basic tools.

Gronwall estimate. Suppose b = b(t) and w = w(t) are C1 real-valued functions, h is a
constant, and (b, w) satisfy the differential inequality:

(6.2)

{
|ḃ| ≤ |w|
|ẇ| ≤ h2|b|

,
b(0) = b0

w(0) = w0

Let x(t) = hb(t/h), y(t) = w(t/h). Then{ |ẋ| ≤ |y|
|ẏ| ≤ |x|

,
x(0) = x0 = hb0

y(0) = y0 = w0

Let z(t) = x2 + y2. Then |ż| = |2xẋ + 2yẏ| ≤ 2|x||y|+ 2|x||y| ≤ 2(x2 + y2) = 2z, and hence
z(t) ≤ z(0)e2t. Thus

|x(t)| ≤
√

2 max(|x0|, |y0|) exp(t)

|y(t)| ≤
√

2 max(|x0|, |y0|) exp(t)

Converting from (x, y) back to (b, w), we obtain the Gronwall estimate

(6.3)
|b(t)| ≤

√
2 max(h|b0|, |w0|)

exp(ht)

h

|w(t)| ≤
√

2 max(h|b0|, |w0|) exp(ht)

Duhamel’s formula. For a two-vector function X(t) : R → R2, a two-vector X0 ∈ R2, and a
2×2 matrix function A(t) : R → (2×2 matrices), let X(t) = S(t, t′)X0 denote the solution
to the ODE system Ẋ(t) = A(t)X(t) with X(t′) = X0:

d

dt
S(t, t′)X0 = A(t)S(t, t′)X0 , S(t′, t′)X0 = X0 .
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Then, for a given two-vector function f(t) : R → R2, the solution to the inhomogeneous
ODE system

(6.4) Ẋ(t) = A(t)X(t) + F (t)

with initial condition X(0) = 0 is given by Duhamel’s formula

(6.5) X(t) =

∫ t

0

S(t, t′)F (t′)dt′

Proof of Lemma 6.1. Let ã = a− ā and ṽ = v − v̄; these perturbative functions satisfy{
˙̃a = ṽ + ε1

˙̃v = h2gã + ε2

,
ã(0) = 0

ṽ(0) = 0

where g = g(t) is given by

g =


f(ha)− f(hā)

h(a− ā)
if ā 6= a

f ′(ha) if a = ā

which is C1 (in particular, uniformly bounded). Set

A(t) =

[
0 1

h2g(t) 0

]
, F (t) =

[
ε1(t)
ε2(t)

]
, X(t) =

[
ã(t)
ṽ(t)

]
in (6.4), and appeal to Duhamel’s formula (6.5) to obtain

(6.6)

[
ã(t)
ṽ(t)

]
=

∫ t

0

S(t, t′)

[
ε1(t

′)
ε2(t

′)

]
dt′

Apply the Gronwall estimate (6.3) with[
b(t)
w(t)

]
= S(t + t′, t′)

[
ε1(t

′)
ε2(t

′)

]
,

[
b0

w0

]
=

[
ε1(t

′)
ε2(t

′)

]
to conclude that∣∣∣∣S(t, t′)

[
ε1(t

′)
ε2(t

′)

]∣∣∣∣ ≤ √
2

[
h−1 exp(h(t− t′))

exp(h(t− t′))

]
max(h|ε1(t

′)|, |ε2(t
′)|)

Feed this into (6.6) to obtain that on [0, T ]

|ã(t)| ≤
√

2 T
exp(hT )

h
sup

0≤s≤T
max(h|ε1(s)|, |ε2(s)|)

|ṽ(t)| ≤
√

2 T exp(hT ) sup
0≤s≤T

max(h|ε1(s)|, |ε2(s)|)

Taking T ≤ δh−1 log(1/h), we obtain the claimed bounds. �
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7. Proof of Theorem 1

We can now put all the components of the proof together. Lemma 3.6 and Theorem 2
show that on the time interval 0 < t < cδ log(1/h)/h we have (1.2) with the parameters
satisfying

ȧ = v +O(h4(1−δ)) , v̇ = −sech2 ∗ V ′(a)/2 +O(h4(1−δ)) , µ̇ = O(h4(1−δ)) ,

γ̇ = 1/2 + v2/2− sech2 ∗ V (a) + (x sech2x tanh x) ∗ V (a) +O(h4(1−δ)) .

Lemma 6.1 can be applied to replace a and v with solutions of (1.3) and the direct inte-
gration of the error terms shows that the same is true for µ and γ. In particular we can
drop µ altogether.

We conclude the paper with some remarks. The proof above and Theorem 2 show that
the conclusions of Theorem 1 remain unchanged if instead of taking eixv0sech(x − x0) as
initial condition, we took

eixv0sech(x− x0) + r(x) , ‖r‖H1 ≤ Ch2−δ .

We could go down to ‖r‖H1 ≤ Ch3/2+3δ at the expense of complicating the final statement
to (5.12). A more general condition on the initial value would make the bootstrap argument
in §5 so unwieldy that we opted out of pursuing that technical issue.

In higher dimensions similar methods are clearly applicable for weaker nonlinearities and
under further spectral assumptions – see [4] for examples. At this early stage we restrict
ourselves to the physically relevant cubic nonlinearity which at the moment is tracktable
only in dimension one.
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