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CHAPTER 1

INTRODUCTION

In Chapter 1, we derive estimates for the 1D Zakharov system, a PDE system consist-

ing of a nonlinear Schrödinger (NLS) equation and a nonlinear wave equation, that

are uniform as the wave speed approaches ∞. Let u0 : R → C, and n0, n1 : R → R

be given initial data. The 1D Zakharov system (1D ZSε) is:

1D ZSε =




∂tuε = i∂2
xuε ∓ inεuε (1.1)

ε2∂2
t nε − ∂2

xnε = ∂2
x|uε|2 (1.2)

uε
∣∣
t=0 = u0

nε
∣∣
t=0 = n0

∂tnε
∣∣
t=0 = n1

where uε : R × [0, T ] → C, and nε : R × [0, T ] → R.

The modern method of applying the contraction principle in suitably defined Bour-

gain spaces has been used to prove local wellposedness of 1D ZSε by [BC96], [GTV97]

on a time interval [0, Tε] whose length depends on ε.

As a formal exercise, if we send ε → 0 in 1D ZSε, and assume that uε → v for

some v, then by setting ε = 0 in (1.2), we expect that v solves the cubic nonlinear

Schrödinger equation

1D NLS =




∂tv = i∂2
xv ± iv|v|2

v
∣∣
t=0 = u0

(1.3)

In order to prove rigorous results concerning the convergence uε → v as ε → 0,

uniform in ε bounds on uε on some fixed time interval [0, T ] are needed. Some such

uniform estimates were obtained by [AA88] from energy identities, and were applied

by [AA88] and [OT92] to obtain results on the aforementioned convergence. Our
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objective is to obtain improved uniform bounds in order to enhance the convergence

results of [OT92].

The method examined exploits local smoothing properties for the Schrödinger

group eit∂
2
x and uniform estimates for the inverse reduced wave operators P±, defined

so that (ε∂t ± ∂x)P±z(x, t) = z(x, t), P±z(x, 0) = 0. By applying these estimates

directly and employing a contraction argument in a suitable Banach space, [KPV95]

obtained uniform estimates under a smallness assumption ‖〈x〉u0‖L2
x
≤ 1

10 . The main

result of this chapter removes the smallness assumption of [KPV95] by employing a

different technique, previously developed by [Chi96], [KPV98] to treat NLS equations

having an order 1 nonlinearity. We introduce a pseudodifferential operator B with

symbol b(x, ξ) ∈ S0 depending on a constant M and satisfying

e−M ≤ b(x, ξ) ≤ eM

and apply it to the k-th derivative of (1.1) in the form

∂tu = i∂2
xu± 1

2 iuP±∂x(uū)− ifu (1.4)

where

f(x, t) = 1
2n0(x+

t
ε) +

1
2n0(x− t

ε) +
1
2ε

∫ x+ t
ε

x− t
ε

n1(y) dy

The commutator [B, i∂2
x] generates a first order term that is negative and whose size

can be controlled by the constant M . In fact, by selecting M = c‖〈x〉u0‖L2
x
, this com-

mutator is sufficiently negative to absorb the first order terms B∂k
x(±1

2 iuP±∂x(uū)).

The key obstacle in showing this is that [B,P±] is not of lower order in x (nor can

it be made small by any other device). It would instead suffice if the composition

BP±B−1 were bounded independently of M ; however, this turns out to be false as

well. This problem is resolved by observing that BP±B−1 is in fact bounded inde-

pendently of M if we restrict to certain spatial frequency ranges, and that BP ∗±B−1

is bounded independently of M on the complementary spatial frequency ranges. The

“error terms” obtained by replacing P± by −P ∗± are handled using positivity proper-
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ties of the operators U± = P± + P ∗±, and using once again that u solves (1.4).

Theorem 1. Let k ≥ 4, (u0, n0, n1) ∈ Hk ∩ H1(〈x〉2dx) × Hk−1
2 × Hk−3

2 , and set

M ∼ ‖〈x〉u0‖H1
x
. Then ∃ T > 0 with

T ∼
(
e2M + ‖u0‖Hk

x
+ ‖n0‖

H
k−1

2
x

+ ‖n1‖
H

k−3
2

x

)−N

(independent of ε) and a solution (u, n) to 1D ZSε on [0, T ] such that ∀ ε, 0 < ε ≤ 1,

‖u‖
L∞

T Hk
x
+ ‖〈x〉−1D

1/2
x ∂k

xu‖L2
xL2

T
≤ ce2M‖u0‖Hk

x
(1.5)

with c independent of ε.

We remark that the proof of this result can probably be adapted to yield a bound

for any given time T > 0, provided 0 < ε ≤ ε0, where

ε0 = ε0(T, ‖u0‖Hk
x
, ‖〈x〉u0‖H1

x
, ‖n‖

H
k−1

2
x

, ‖n1‖
H

k−3
2

x

)

By enhancing the argument of [OT92] in places, and using in the uniform bounds

furnished by Theorem 1 in place of the energy estimates of [AA88], we obtain

Theorem 2. For given initial data (u0, n0, n1), let uε be the solution to 1D ZSε on a

time interval [0, T ], and let v be the solution to 1D NLS with initial data u0. In the

noncompatible case (n0 + u0ū0) �= 0, if

(u0, n0, n1) ∈ (Hk+1 ∩H1(〈x〉2dx))× (Hk+1
2 ∩ L1)× (Hk−1

2 ∩ L1) (1.6)

then

‖uε − v‖
L∞

T Hk
x
≤ cε

where c depends on the norms of the spaces in (1.6). In the compatible case (n0 +

u0ū0) = 0, if

(u0, n0, n1) ∈ (Hk+2 ∩H1(〈x〉2dx))× (Hk+3
2 ∩ L1)× (Hk+1

2 ∩ Ḣ−1 ∩ L1) (1.7)
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then

‖uε − v‖
L∞

T Hk
x
≤ cε2

where c depends on the norms of the spaces in (1.7).

In Chapter 2, we consider the initial-boundary value problem (IBVP) for the

Korteweg de-Vries (KdV) equation on the half-line and line-segment. Let

S(t)φ =

∫
eixξeitξ

3
φ̂(ξ) dξ (1.8)

so that (∂t + ∂3
x)S(t)φ = 0 and S(0)φ = φ, and thus u(x, t) = S(t)φ(x) solves the

initial-value problem for the linear KdV equation. By a change of variable in the

definition (1.8), one obtains the sharp smoothing properties

‖S(t)φ(x)‖
L∞

x H
s+1
3

t

≤ c‖φ‖Hs
x

‖∂xS(t)φ(x)‖
L∞

x H
s/3
t

≤ c‖φ‖Hs
x

Therefore, time traces of solutions can be taken in H
s+1
3

t and derivative time traces

can be taken in H
s/3
t . Thus it makes sense to consider the following formulation of

IBVP for KdV on the right half-line: For f(t) ∈ H
s+1
3 (R+

t ), φ(x) ∈ Hs(R+
x ), find u

solving 


∂tu+ ∂3
xu+ u∂xu = 0 for (x, t) ∈ (0,+∞)× (0, T )

u(0, t) = f(t) for t ∈ (0, T )

u(x, 0) = φ(x) for x ∈ (0,+∞)

(1.9)

One can similarly formulate IBVP for KdV on the left-half line: For f(t) ∈ H
s+1
3 (R+

t ),
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g(t) ∈ Hs/3(R+
t ), φ(x) ∈ Hs(R−

x ), find u solving




∂tu+ ∂3
xu+ u∂xu = 0 for (x, t) ∈ (−∞, 0)× (0, T )

u(0, t) = f(t) for t ∈ (0, T )

∂xu(0, t) = g(t) for t ∈ (0, T )

u(x, 0) = φ(x) for x ∈ (−∞, 0)

(1.10)

[CK02] introduce a new versatile method for treating problems of this type. In one

section of their paper, they prove existence and uniqueness of a solution u to problem

(1.9) in the case s = 0. Their method is to introduce a Duhamel forcing operator

L(h)(x, t), for h(t) ∈ H
s+1
3

0 (Rt), with the properties



(∂t + ∂3

x)L(h)(x, t) = 0 for x �= 0

L(h)(0, t) = 1
3h(t)

L(h)(x, 0) = 0

Thus, u(x, t) = S(t)φ(x) + 3L(f − S(t)φ
∣∣
x=0)(x, t) solves the linear homogeneous

problem 


∂tu+ ∂3
xu = 0 for x �= 0

u(0, t) = f(t)

u(x, 0) = φ(x)

(1.11)

[CK02] prove suitable estimates on u solving (1.11) in terms of f(t) and φ(t), and a

solution to (1.9) for s = 0 is obtained by the contraction principle.

The goal of this chapter is to adapt the techniques of [CK02] to address (1.9)

for −3
4 < s < 3

2 (some estimates in [CK02] fail outside −1
2 < s < 1

2), and to

address (1.10), where an additional boundary condition appears, for −3
4 < s < 3

2 . To

accomplish this, we introduce analytic families of operators Lλ−(h)(x, t), Lλ
+(h)(x, t),
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for −2 < Re λ < 1, with the properties



(∂t + ∂3

x)Lλ−(h)(x, t) = 0 for x < 0

Lλ−(h)(0, t) = 2
3 sin(

π
3λ+

π
6 )h(t)

Lλ−(h)(x, 0) = 0

and 

(∂t + ∂3

x)Lλ
+(h)(x, t) = 0 for x > 0

Lλ
+(h)(0, t) =

1
3e

πiλh(t)

Lλ
+(h)(x, 0) = 0

The operator used by [CK02] is L = L0
+ = L0−. (1.9) is solved by appropriately se-

lecting an operator from the class Lλ
+, while (1.10) is solved by appropriately selecting

two operators from the family Lλ−. Constraints on the eligible values of λ come from

the required estimates.

Theorem 3. Suppose −3
4 < s < 1

2 . Then we have local wellposedness of (1.9)

for (φ, f) ∈ Hs(R+
x ) × H

s+1
3 (R+

t ) and local wellposedness of (1.10) for (φ, f, g) ∈
Hs(R−

x ) × H
s+1
3 (R+

t ) × Hs/3(R+
t ). Suppose 1

2 < s < 3
2 . Then we have local well-

posedness of (1.9) for (φ, f) ∈ Hs(R+
x )×H

s+1
3 (R+

t ), provided φ(0) = f(0) and local

wellposedness of (1.10) for (φ, f, g) ∈ Hs(R−
x ) × H

s+1
3 (R+

t ) × Hs/3(R+
t ), provided

φ(0) = f(0).

Finally, we consider the finite-length interval 0 < x < 1 problem:




∂tu+ ∂3
xu+ u∂xu = 0 for (x, t) ∈ (0, 1)× (0, T )

u(0, t) = g3(t) on (0, T )

u(1, t) = g1(t) on (0, T )

∂xu(1, t) = g2(t) on (0, T )

u(x, 0) = φ on (0, 1)

(1.12)

with φ(x) ∈ Hs((0, 1)), g1(t) ∈ H
s+1
3 (R+), g2 ∈ H

s
3 (R+), g3(t) ∈ H

s+1
3 (R+). This

is accomplished by making use of two operators of type Lλ− positioned at the right
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endpoint x = 1 and one operator of type Lλ
+ positioned at the left endpoint. The

equation relating the desired boundary functions to the needed “input” functions for

the forcing operators is a Fredholm equation.

Theorem 4. (1.12) is locally wellposeded for −3
4 < s < 3

2 , s �= 1
2 , for (φ, g3, g1, g2) ∈

Hs((0, 1)) × H
s+1
3 (R+) × H

s+1
3 (R+) × H

s
3 (R+), with the compatibility conditions

g3(0) = φ(0) and g1(0) = φ(1) for 1
2 < s < 3

2 .

In Chapter 3, we treat the initial-boundary value problem (IBVP) for the nonlinear

Schrödinger (NLS) equation on the half-line. We introduce an operator analogous to

the one used by [CK02], defined in terms of the Schrödinger group eit∂
2
x , to obtain a

solution to IBVP for NLS in the cases s = 0, s = 1. This problem, for the right-half

line, takes the form: Given f ∈ H
2s+1

4 (R+
t ), φ ∈ Hs(R+), find u solving




i∂tu+ ∂2
xu+ λu|u|α−1 = 0 for (x, t) ∈ (0,+∞)× (0, T )

u(0, t) = f(t) for t ∈ (0, T )

u(x, 0) = φ(x) for x ∈ (0,+∞)

(1.13)

The left half-line problem is actually the same problem since u(x, t) solves the

left-hand problem for φ(x) and f(t) iff u(−x, t) solves the right-hand problem for

φ(−x) and f(t).

The technique is a synthesis of the techniques in [CK02] with the standard proof

of local wellposedness for NLS on the line R using the Strichartz estimates. We take

the space traces and mixed norm estimates for the group eit∂
2
x and the Duhamel

inhomogeneous solution operator used in the standard proof and add to them local

smoothing or time traces estimates. We also need to introduce a Duhamel forcing

operator L(h)(x, t), satisfying


(i∂t + ∂2

xu)L(h)(x, t) = 0 for x �= 0

L(h)(0, t) = h(t)

L(h)(x, 0) = 0
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examine its continuity and decay properties for h ∈ C∞
0 (R), and prove space traces

estimates, time traces estimates, and mixed norm estimates for it. We then present

a solution to the problem (1.13) by the contraction method for s = 0, 1 < α < 5 and

s = 1, 1 < α < +∞. The L2-critical case s = 0 and α = 5 is also treated using the

method of [CW89].

Theorem 5. There is local wellposedness of (1.13) for (φ, f) ∈ L2(R+
x )×H1/4(R+

t )

and 1 < α < 5 and for (φ, f) ∈ H1(R+
x )×H3/4(R+

t ) and 1 < α < +∞.

The primary new feature of the results obtained here, in comparison with ear-

lier work on the problem [SB01], [Fok02], is the limited regularity required on the

boundary data f(t).
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