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Abstract. We prove local well-posedness of the initial-boundary value problem for
the Korteweg-de Vries equation on right half-line, left half-line, and line segment, in
the low regularity setting. This is accomplished by introducing an analytic family
of boundary forcing operators.
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1. Introduction

We shall study the following formulations of the initial-boundary value problem

for the Korteweg-de Vries (KdV) equation. On the right half-line R+ = (0,+∞), we

consider

(1.1)


∂tu+ ∂3

xu+ u∂xu = 0 for (x, t) ∈ (0,+∞)× (0, T )

u(0, t) = f(t) for t ∈ (0, T )

u(x, 0) = φ(x) for x ∈ (0,+∞)

On the left half-line R− = (−∞, 0), we consider

(1.2)


∂tu+ ∂3

xu+ u∂xu = 0 for (x, t) ∈ (−∞, 0)× (0, T )

u(0, t) = g1(t) for t ∈ (0, T )

∂xu(0, t) = g2(t) for t ∈ (0, T )

u(x, 0) = φ(x) for x ∈ (−∞, 0)

The presence of one boundary condition in the right half-line problem (1.1) versus two

boundary conditions in the left half-line problem (1.2) can be motivated by uniqueness

calculations for smooth decaying solutions to the linear equation ∂tu + ∂3
xu = 0.

Indeed, for such u and T > 0, we have

(1.3)

∫ +∞

x=0

u(x, T )2 dx =

∫ +∞

x=0

u(x, 0)2 dx

+ 2

∫ T

t=0

(u(0, t)∂2
xu(0, t)− ∂xu(0, t)

2) dt

and

(1.4)

∫ 0

x=−∞
u(x, T )2 dx =

∫ 0

x=−∞
u(x, 0)2 dx

− 2

∫ T

t=0

(u(0, t)∂2
xu(0, t) + ∂xu(0, t)

2) dt.

Assuming u(x, 0) = 0 for x > 0 and u(0, t) = 0 for 0 < t < T , we can conclude from

(1.3) that u(x, T ) = 0 for x > 0. However, the existence of u(x, t) 6= 0 for x < 0

such that u(x, 0) = 0 for x < 0 and u(0, t) = 0 for 0 < t < T is not precluded by

(1.4). In fact, such nonzero solutions do exist (see §2.1). On the other hand, (1.4)

does show that assuming u(x, 0) = 0 for x < 0, u(0, t) = 0 for 0 < t < T , and

∂xu(0, t) = 0 for 0 < t < T forces u(x, t) = 0 for x < 0, 0 < t < T . These uniqueness

considerations carry over to the nonlinear equation ∂tu+ ∂3
xu+ u∂xu = 0, at least in

the high regularity setting.
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Given the formulations (1.1) and (1.2), it is natural to consider the following con-

figuration for the line segment 0 < x < L problem:

(1.5)



∂tu+ ∂3
xu+ u∂xu = 0 for (x, t) ∈ (0, L)× (0, T )

u(0, t) = f(t) for t ∈ (0, T )

u(L, t) = g1(t) for t ∈ (0, T )

∂xu(L, t) = g2(t) for t ∈ (0, T )

u(x, 0) = φ(x) for x ∈ (0, L)

Now we discuss appropriate spaces for the initial and boundary data, again ex-

amining the behavior of solutions to the linear problem on R for motivation. On

R, we define the L2-based inhomogeneous Sobolev spaces Hs = Hs(R) by the norm

‖φ‖Hs = ‖〈ξ〉sφ̂(ξ)‖L2
ξ
, where 〈ξ〉 = (1 + |ξ|2)1/2. Let e−t∂

3
x denote the linear homoge-

neous solution group on R, defined by

(1.6) e−t∂
3
xφ(x) = 1

2π

∫
ξ

eitξ
3

φ̂(ξ) dξ,

so that (∂t+∂
3
x)e

−t∂3
xφ(x) = 0 and e−t∂

3
xφ(x)

∣∣
t=0

= φ(x). The local smoothing inequal-

ities of [KPV91] for the operator (1.6) are

‖θ(t)e−t∂3
xφ‖

L∞x H
s+1
3

t

≤ c‖φ‖Hs

‖θ(t)∂xe−t∂
3
xφ‖

L∞x H
s
3
t

≤ c‖φ‖Hs ,

which can be deduced directly from the definition (1.6) by a change of variable. These

are sharp in the sense that the Sobolev exponents s+1
3

and s
3

cannot be replaced by

higher numbers. In §4, we shall define analogues of the inhomogeneous Sobolev

spaces on the half-line, Hs(R+), Hs(R−), and on the line segment, Hs(0, L). We are

thus motivated to consider initial-boundary data pairs (φ, f) ∈ Hs(R+)×H
s+1
3 (R+)

for (1.1), (φ, g1, g2) ∈ Hs(R−) × H
s+1
3 (R+) × H

s
3 (R+) for (1.2), and (φ, f, g1, g2) ∈

Hs(0, L) × H
s+1
3 (R+) × H

s+1
3 (R+) × H

s
3 (R+) for (1.5). From these motivations, we

are inclined to consider this configuration optimal in the scale of L2-based Sobolev

spaces.

Local well-posedness (LWP), i.e. existence, uniqueness, and uniform continuity of

the data-to-solution map, of the initial-value problem (IVP)

(1.7)

{
∂tu+ ∂3

xu+ u∂xu = 0 for (x, t) ∈ R× R
u(x, 0) = φ(x) for (x, t) ∈ R

has been studied by a number of authors over the past three decades. For s > 3
2
, an a

priori bound can be obtained by the energy method and a solution can be constructed

via the artificial viscosity method. To progress to rougher spaces, it is necessary to

invoke techniques of harmonic analysis to quantitatively capture the dispersion of
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higher frequency waves. For s > 3
4
, [KPV91] proved LWP of (1.7) by the contraction

method in a space built out of various space-time norms, using oscillatory integral

and local smoothing estimates. For s > −3
4
, [Bou93] [KPV93] [KPV96] proved LWP

of (1.7) via the contraction method in Bourgain spaces (denoted in the literature as

Xs,b), which are constructed to delicately analyze the interaction of waves in different

frequency zones. LWP for s = −3
4

is proved in [CCT03] by using the Miura transform

to convert KdV to mKdV (nonlinearity u2∂xu) where the corresponding endpoint

result is known. These authors also prove local ill-posedness of (1.7) for s < −3
4

in the sense that the data-to-solution map fails to be uniformly continuous. If one

only requires that the data-to-solution map be continuous (C0 well-posedness), and

not uniformly continuous, then the regularity requirements can possibly be relaxed

further. Although this has not yet been shown for the KdV equation on the line,

[KT03] have proved, for the KdV equation on the circle T, C0 local well-posedness in

H−1(T), whereas it has been shown by [CCT03] that the data-to-solution map cannot

be uniformly continuous in Hs(T) for s < −1
2
.

Our goal in studying (1.1) is to obtain low regularity results. It therefore seems

reasonable to restrict to −3
4
< s < 3

2
. We shall omit s = 1

2
due to difficulties in

formulating the compatibility condition (see below). A Dini integral type compati-

bility condition would probably suffice at this point, although we have decided not

to explore it. We have also decided not to explore the case s = −3
4

or the likely

ill-posedness result for (1.1) and (1.2) when s < −3
4
.

Note that the trace map φ→ φ(0) is well-defined on Hs(R+) when s > 1
2
. If s > 1

2
,

then s+1
3

> 1
2
, and both φ(0) and f(0) are well-defined quantities. Since φ(0) and

f(0) are both meant to represent u(0, 0), they must agree. On the other hand, if

s < 3
2
, then s− 1 < 1

2
and s

3
< 1

2
, so in (1.2), neither ∂xu ∈ Hs−1 nor g2 ∈ H

s
3 have a

well-defined trace at 0.

Therefore, we consider (1.1) for −3
4
< s < 3

2
, s 6= 1

2
in the setting

(1.8) φ ∈ Hs(R+), f ∈ H
s+1
3 (R+), and if 1

2
< s < 3

2
, φ(0) = f(0).

We consider (1.2) for −3
4
< s < 3

2
, s 6= 1

2
in the setting

(1.9)
φ ∈ Hs(R−), g1 ∈ H

s+1
3 (R+), g2 ∈ H

s
3 (R+)

and if 1
2
< s < 3

2
, φ(0) = g1(0)

We consider (1.5) for −3
4
< s < 3

2
, s 6= 1

2
in the setting

(1.10)
φ ∈ Hs(0, L), f ∈ H

s+1
3 (R+), g1 ∈ H

s+1
3 (R+), g2 ∈ H

s
3 (R+)

and if 1
2
< s < 3

2
, φ(0) = f(0), φ(L) = g1(0)

The solutions we construct shall have the following characteristics.
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Definition 1.1. u(x, t) will be called a distributional solution of (1.1), (1.8) [resp.

(1.2), (1.9)] on [0, T ] if

(a) Well-defined nonlinearity: u belongs to some space X with the property that

u ∈ X =⇒ ∂xu
2 is a well-defined distribution.

(b) u(x, t) satisfies the equation (1.1) [resp. (1.2)] in the sense of distributions on

the set (x, t) ∈ (0,+∞)× (0, T ) [resp. (x, t) ∈ (−∞, 0)× (0, T )].

(c) Space traces: u ∈ C([0, T ]; Hs
x) and in this sense u(·, 0) = φ in Hs(R+) [resp.

u(·, 0) = φ in Hs(R−)].

(d) Time traces: u ∈ C(Rx;H
s+1
3 (0, T )) and in this sense u(0, ·) = f in H

s+1
3 (0, T )

[resp. u(0, ·) = g1 in H
s+1
3 (0, T )].

(e) Derivative time traces: ∂xu ∈ C(Rx;H
s
3 (0, T )) and only for (1.2),(1.9) we

require that in this sense, u(0, ·) = g2 in H
s
3 (0, T ).

In our case, X shall be the modified Bourgain space Xs,b ∩ Dα with b < 1
2

and

α > 1
2
, where

(1.11)

‖u‖Xs,b
=

(∫∫
ξ,τ

〈ξ〉2s〈τ − ξ3〉2b|û(ξ, τ)|2 dξ dτ
)1/2

,

‖u‖Dα =

(∫∫
|ξ|≤1

〈τ〉2α|û(ξ, τ)|2 dξ dτ
)1/2

.

The spaceXs,b, with b > 1
2
, is typically employed in the study of the IVP (1.7). For b >

1
2
, the bilinear estimate (Lemma 5.10) holds without the low frequency modification

Dα, and thus Dα is not necessary in the study of the IVP. The introduction of the

Duhamel boundary forcing operator in our study of the IBVP, however, forces us to

take b < 1
2
, and then Dα must be added in order for Lemma 5.10 to hold.

A definition for (1.5), (1.10) can be given in the obvious manner. We shall next

introduce the concept of mild solution used by [BSZ04].

Definition 1.2. u(x, t) is a mild solution of (1.1) [resp. (1.2)] on [0, T ] if ∃ a

sequence {un} in C([0, T ]; H3(R+
x )) ∩ C1([0, T ]; L2(R+

x )) such that

(a) un(x, t) solves (1.1) in L2(R+
x ) [resp. (1.2) in L2(R−

x )] for 0 < t < T .

(b) lim
n→+∞

‖un − u‖C([0,T ];Hs(R+
x )) = 0 [resp. lim

n→+∞
‖un − u‖C([0,T ];Hs(R−x )) = 0].

(c) lim
n→+∞

‖un(0, ·) − f‖
H

s+1
3 (0,T )

= 0 [resp. lim
n→+∞

‖un(0, ·) − g1‖
H

s+1
3 (0,T )

= 0,

lim
n→+∞

‖∂xun(0, ·)− g2‖H s
3 (0,T )

= 0].

[BSZ05] have recently introduced a method for proving uniqueness of mild solutions

for (1.1), (1.8).

Our main result is the following existence statement.

Theorem 1.3. Let −3
4
< s < 3

2
, s 6= 1

2
.
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(a) Given (φ, f) satisfying (1.8), ∃ T > 0 depending only on the norms of φ, f

in (1.8) and ∃ u(x, t) that is both a mild and distributional solution to (1.1),

(1.8) on [0, T ].

(b) Given (φ, g1, g2) satisfying (1.9), ∃ T > 0 depending only on the norms of φ,

g1, g2 in (1.9) and ∃ u(x, t) that is both a mild and distributional solution to

(1.2), (1.9) on [0, T ].

(c) Given (φ, f, g1, g2) satisfying (1.10), ∃ T > 0 depending only on the norms

of φ, f , g1, g2 in (1.10) and ∃ u(x, t) that is both a mild and distributional

solution to (1.5), (1.10) on [0, T ].

In each of the above cases, the data-to-solution map is analytic as a map from the

spaces in (1.8), (1.9), (1.10) to the spaces in Definition 1.1.

The proof of Theorem 1.3 involves the introduction of an analytic family of bound-

ary forcing operators extending the single operator introduced by [CK02] (further

comments in §2).

The main new feature of our work is the low regularity requirements for φ and f .

Surveys of the literature are given in [BSZ02] [BSZ03] and [CK02]. Here, we briefly

mention some of the more recent contributions. The problem (1.5)(1.10) for s ≥ 0

is treated in [BSZ03] and (1.1) (1.8) for s > 3
4

in [BSZ02] by a Laplace transform

technique. In a preprint appearing after this paper was submitted, [BSZ06] have

shown LWP of the problem (1.1) for s > −1 with Hs(R+) in (1.8) replaced by the

weighted space

Hs(R+) = {φ ∈ Hs(R+) | eνxφ(x) ∈ Hs(R+) }

for ν > 0. They further show LWP of the problem (1.5),(1.10) for s > −1, thus

improving Theorem 1.3(c). In both of these results, the data-to-solution map is ana-

lytic, in contrast to the results of [KT03] mentioned above. A global well-posedness

result for the problem (1.1)(1.8) is obtained by [Fam04] for s ≥ 0. Inverse scattering

techniques have been applied to the problem (1.2) by [Fok02] and the linear analogue

of the problem (1.5) in [FP01] for Schwartz class data.

I have carried out similar results for the nonlinear Schrödinger equation [Hol05].

Acknowledgements. I would like to thank my Ph.D. advisor Carlos Kenig for

invaluable guidance on this project. I would also like to thank the referee for a

careful reading and helpful suggestions.

2. Overview

In this section, after giving some needed preliminaries, we introduce the Duhamel

boundary forcing operator of [CK02] and first apply it and a related operator to solve

linear versions of the problems (1.1), (1.2). Then we explain the need for considering a
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more general class of operators to address the nonlinear versions inHs for−3
4
< s < 3

2
,

s 6= 1
2
.

Since precise numerical coefficients become important, let us set down the conven-

tion

f̂(ξ) =

∫
x

e−ixξf(x) dx.

Also, define C∞
0 (R+) as those smooth functions on R with support contained in

[0,+∞). Let C∞
0,c(R+) = C∞

0 (R+)∩C∞
c (R). The tempered distribution

tα−1
+

Γ(α)
is defined

as a locally integrable function for Re α > 0, i.e.〈
tα−1
+

Γ(α)
, f

〉
=

1

Γ(α)

∫ +∞

0

tα−1f(t) dt.

Integration by parts gives, for Re α > 0, that

(2.1)
tα−1
+

Γ(α)
= ∂kt

[
tα+k−1
+

Γ(α+ k)

]
for all k ∈ N. This formula can be used to extend the definition (in the sense of

distributions) of
tα−1
+

Γ(α)
to all α ∈ C. In particular, we obtain

tα−1
+

Γ(α)

∣∣∣∣
α=0

= δ0(t).

A change of contour calculation shows that

(2.2)

[
tα−1
+

Γ(α)

]
(̂τ) = e−

1
2
πiα(τ − i0)−α

where (τ − i0)−α is the distributional limit. If f ∈ C∞
0 (R+), we define

Iαf =
tα−1
+

Γ(α)
∗ f.

Thus, when Re α > 0,

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s) ds

and I0f = f , I1f(t) =
∫ t

0
f(s) ds, and I−1f = f ′. Also IαIβ = Iα+β, which follows

from (2.2). For further details on the distribution
tα−1
+

Γ(α)
, see [Fri98].

Lemma 2.1. If f ∈ C∞
0 (R+), then Iαf ∈ C∞

0 (R+), for all α ∈ C.

Proof. By (2.1) and integration by parts, it suffices to consider the case Reα > 1. In

this case, it is clear that supp Iαf ⊂ [0,+∞) and it remains only to show that Iαf(t)

is smooth. By a change of variable

Iαf(t) =
1

Γ(α)

∫ t

0

sα−1f(t− s) ds.
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Smoothness of Iαf(t) follows by the fundamental theorem of calculus, differentiation

under the integral sign, and that ∂kt f(0) = 0 for all k. �

The Airy function is

A(x) =
1

2π

∫
ξ

eixξeiξ
3

dξ.

A(x) is a smooth function with the asymptotic properties

A(x) ∼ c1x
−1/4e−c2x

3/2

(1 +O(x−3/4)) as x→ +∞

A(−x) ∼ c2x
−1/4 cos(c2x

3/2 − π
4
)(1 +O(x−3/4)) as x→ +∞

for specific c1, c2 > 0 (see, e.g. [SS03], p. 328). We shall below need the values of

A(0), A′(0), and
∫ +∞

0
A(y) dy, and so we now compute them.

A(0) =
1

2π

∫
ξ

eiξ
3

dξ =
1

6π

∫
η

η−2/3eiη dη =

√
3

2
Γ(1

3
)

3π
=

1

3Γ(2
3
)

by a change of contour calculation, and in the final step, an application of the identity

Γ(z)Γ(1− z) = π/ sin πz. Similarly one finds

A′(0) =
1

2π

∫
ξ

iξeiξ
3

dξ = − 1

3Γ(1
3
)
.

Also, ∫ +∞

y=0

A(y) dy =
1

2π

∫
ξ

∫ +∞

y=0

eiyξ dy eiξ
3

dξ =
1

2π

∫
ξ

Ĥ(−ξ)eiξ3 dξ

where H(y) = 0 for y < 0, H(y) = 1 for y > 0 is the Heaviside function. Now (see

[Fri98], p. 101) Ĥ(ξ) = p.v. 1
iξ

+ πδ0(ξ), which inserted above and combined with the

identity (p.v.1/x) (̂ξ) = −iπsgn ξ yields∫ +∞

0

A(y) dy =
1

3
.

2.1. Linear versions. We define the Airy group as

(2.3) e−t∂
3
xφ(x) =

1

2π

∫
ξ

eixξeitξ
3

φ̂(ξ) dξ

so that

(2.4)

{
(∂t + ∂3

x)[e
−t∂3

xφ](x, t) = 0 for (x, t) ∈ R× R

[e−t∂
3
xφ](x, 0) = φ(x) for x ∈ R
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We now introduce the Duhamel boundary forcing operator of [CK02]. For f ∈
C∞

0 (R+), let

(2.5)

L0f(x, t) = 3

∫ t

0

e−(t−t′)∂3
xδ0(x)I−2/3f(t′) dt′

= 3

∫ t

0

A

(
x

(t− t′)1/3

)
I−2/3f(t′)

(t− t′)1/3
dt′

so that

(2.6)

{
(∂t + ∂3

x)L0f(x, t) = 3δ0(x)I−2/3f(t) for (x, t) ∈ R× R
L0f(x, 0) = 0 for x ∈ R

We begin with the spatial continuity and decay properties of L0f , ∂xL0f , and ∂2
xL0f ,

for f ∈ C∞
0 (R+).

Lemma 2.2. Let f ∈ C∞
0 (R+). Then for fixed 0 ≤ t ≤ 1, L0f(x, t) and ∂xL0f(x, t)

are continuous in x for all x ∈ R and satisfy the spatial decay bounds

(2.7) |L0f(x, t)|+ |∂xL0f(x, t)| ≤ ck‖f‖Hk+1〈x〉−k ∀ k ≥ 0.

For fixed 0 ≤ t ≤ 1, ∂2
xL0f(x, t) is continuous in x for x 6= 0 and has a step dis-

continuity of size 3I2/3f(t) at x = 0. Also, ∂2
xL0f(x, t) satisfies the spatial decay

bounds

(2.8) |∂2
xL0f(x, t)| ≤ ck‖f‖Hk+2〈x〉−k ∀ k ≥ 0

Proof. To establish (2.7), it suffices to show that ‖〈ξ〉∂kξ L̂0f(ξ, t)‖L1
ξ
≤ ck‖f‖Hk ,

∀ k ≥ 0. Let φ(ξ, t) =
∫ t

0
ei(t−t

′)ξh(t′) dt′ for some (yet to be prescribed) h ∈ C∞
0 (R+).

We have

(2.9) ∂kξφ(ξ, t) = ik
∫ t

0

(t− t′)kei(t−t
′)ξh(t′) dt′.

By integration by parts in t′,

(2.10) ∂kξφ(ξ, t) =
i(−1)k+1k!

ξk+1

∫ t

0

ei(t−t
′)ξ∂t′h(t

′) dt′ +
i(−1)kk!

ξk+1
h(t)

+
i(−1)k+1

ξk+1

∫ t

0

ei(t−t
′)ξ∂t′

∑
α+β=k
α≤k−1

cα,β∂
α
t′(t− t′)k∂βt′h(t

′) dt′

By (2.9), (2.10) and the time localization, |∂kξφ(ξ, t)| ≤ ck‖h‖Hk〈ξ〉−k−1. Since

L̂0f(ξ, t) = φ(ξ3, t) with h = 3I−2/3f , we have by Lemma 5.3 that |∂kξ L̂0f(ξ, t)| ≤
ck‖f‖Hk+1〈ξ〉−k−3, establishing (2.7). By integration by parts in t′ in (2.5),

(2.11) ∂3
xL0f(x, t) = 3δ0(x)I−2/3f(t)− L0(∂tf)(x, t).
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This, together with the continuity properties of L0(∂tf), shows that ∂2
xL0f(x, t) is

continuous in x for x 6= 0 and has a step discontinuity of size 3I−2/3f(t) at x = 0. To

see that ∂2
xL0f(x, t) → 0 as x → ±∞, we first note that for x < −1, ∂2

xL0f(x, t) =

∂2
xL0f(−1, t) −

∫ −1

x
∂3
yL0f(y, t) dy. By (2.11) and (2.7), we can send x → −∞ and

obtain that ∂2
xL0f(x, t) → c, for some constant c, as x → −∞. Since ∂xL0f(0, t) =∫ 0

−∞ ∂2
xL0f(y, t) dy, we must have c = 0. We can similarly show that ∂2

xL0f(x, t) → 0

as x → +∞. For x < 0, use ∂2
xL0f(x, t) =

∫ x
−∞ ∂3

yL0f(y, t) dy, and for x > 0,

use ∂2
xL0f(x, t) = −

∫ +∞
x

∂3
yL0f(y, t) dy, together with (2.7) and (2.11) to obtain the

bound (2.8). �

By Lemma 2.2, if f ∈ C∞
0 (R+), then L0f(x, t) is continuous in x on R. Since

A(0) = (3Γ(2
3
))−1, the second representation of L0f(x, t) in (2.5) gives

(2.12) L0f(0, t) = f(t).

It is thus clear that if we set

u(x, t) = e−t∂
3
xφ(x) + L0

(
f − e−·∂

3
xφ
∣∣
x=0

)
(t)

then u(x, t) solves the linear problem
(∂t + ∂3

x)u(x, t) = 0 for x 6= 0

u(x, 0) = φ(x) for x ∈ R
u(0, t) = f(t) for t ∈ R

This would suffice, then, to solve the linear analogue of the right half-line problem

(1.1), which has only one boundary condition.

Now we consider the linear analogue of the left half-line problem (1.2), which has

two boundary conditions. Consider, in addition to L0, the second boundary forcing

operator

(2.13)

L−1f(x, t) = ∂xL0I1/3f(x, t)

= 3

∫ t

0

A′
(

x

(t− t′)1/3

)
I−1/3f(t′)

(t− t′)2/3
dt′

By Lemma 2.2, if f ∈ C∞
0 (R+), then L−1f(x, t) is continuous in x for all x ∈ R and,

since A′(0) = −(3Γ(1
3
))−1, the second representation of L−1f(x, t) in (2.13) gives

(2.14) L−1f(0, t) = −f(t).

By (2.6), L−1 satisfies{
(∂t + ∂3

x)L−1f(x, t) = 3δ′0(x)I−1/3f(t) for (x, t) ∈ R× R
L−1f(x, 0) = 0 for x ∈ R
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By Lemma 2.2, ∂xL0f(x, t) is continuous in x for all x ∈ R and since A′(0) =

−(3Γ(1
3
))−1,

(2.15) ∂xL0f(0, t) = −I−1/3f(t).

Again by Lemma 2.2, ∂xL−1f(x, t) = ∂2
xL0I1/3f(x, t) is continuous in x for x 6= 0 and

has a step discontinuity of size 3I−1/3f(t) at x = 0. Since

lim
x↓0

∂2
xL0f(x, t) = −

∫ +∞

0

∂3
yL0f(y, t) dy

= +

∫ +∞

0

L0(∂tf)(y, t) dy by (2.11)

= 3

∫ +∞

y=0

A(y) dy

∫ t

0

∂tI−2/3f(t′) dt′ by (2.5) and Fubini

= I−2/3f(t)

we have

(2.16) lim
x↑0

∂xL−1f(x, t) = −2I−1/3f(t), lim
x↓0

∂xL−1f(x, t) = I−1/3f(t).

By (2.12), (2.14), (2.15), (2.16), for yet to be assigned h1 and h2, we have

L0h1(0, t) + L−1h2(0, t) = h1(t)− h2(t)(2.17)

lim
x↑0

I1/3∂x(L0h1(x,−) + L−1h2(x,−))(t) = −h1(t)− 2h2(t)(2.18)

lim
x↓0

I1/3∂x(L0h1(x,−) + L−1h2(x,−))(t) = −h1(t) + h2(t)(2.19)

If we are given g1(t), g2(t), φ, and set[
h1

h2

]
=

1

3

[
2 −1

−1 −1

] [
g1 − e·∂

3
xφ
∣∣
x=0

I1/3(g2 − ∂xe
−·∂3

xφ
∣∣
x=0

)

]
then by letting u(x, t) = e−t∂

3
xφ(x) + L0h1(x, t) + L−1h2(x, t), we have

(∂t + ∂3
x)u(x, t) = 0 for x 6= 0

u(x, 0) = φ(x) for x ∈ R
u(0, t) = g1(t) for t ∈ R
lim
x↑0

∂xu(x, t) = g2(t) for t ∈ R

Owing to the degeneracy in the right-hand limits (2.17), (2.19), we see that we can-

not specify both boundary data u(0, t) and derivative boundary data limx↓0 ∂xu(x, t)

for the right half-line problem, which is consistent with the uniqueness calculation

(1.3).
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2.2. Nonlinear versions. We define the Duhamel inhomogeneous solution operator

D as

(2.20) Dw(x, t) =

∫ t

0

e−(t−t′)∂3
xw(x, t′) dt′

so that

(2.21)

{
(∂t + ∂3

x)Dw(x, t) = w(x, t) for (x, t) ∈ R× R
Dw(x, 0) = 0 for x ∈ R

For the right half-line problem (1.1), let

(2.22) Λ+w = e−t∂
3
xφ− 1

2
D(∂xw

2) + L0h

where

h(t) = f(t)− e−t∂
3
xφ
∣∣
x=0

+ 1
2
D(∂xw

2)(0, t)

and observe that if u is such that Λ+u = u, then u solves (1.1). For the left half-line

problem (1.2), let

(2.23) Λ−w = e−t∂
3
xφ− 1

2
D(∂xw

2) + L0h1 + L−1h2

where [
h1(t)

h2(t)

]
=

[
2 1

−1 −1

] [
g1(t)− e−t∂

3
x

∣∣
x=0

+ 1
2
D(∂xw

2)(0, t)

I1/3(g2(·)− ∂xe
−·∂3

xφ
∣∣
x=0

+ 1
2
∂xD(∂xw

2)(0, ·))

]
and observe that if u is such that Λ−u = u, then u solves (1.2). One approach, then,

to solving (1.1) and (1.2) is to prove that Λ+, Λ− (or actually time-truncated versions

of them) are contraction mappings in suitable Banach spaces. As is the case for the

IVP, we need the auxiliary Bourgain space (1.11).

Remark 2.3. In order to prove Lemma 5.8(d), we shall need to take b < 1
2
. The

Dα norm is a low frequency correction for the Xs,b norm that is needed in order for

the bilinear estimates (Lemma 5.10) to hold for b < 1
2
. This problem is particular to

our treatment of initial-boundary value problems and does not arise in the standard

treatment of the initial-value problem (IVP) using the Xs,b spaces (see [KPV96]). In

treating the IVP, one does not need the Duhamel boundary forcing operators and is

thus at liberty to take b > 1
2
, and the bilinear estimate Lemma 5.10 holds in this case

without the low frequency modification Dα.

Consider the space Z consisting of all w such that w ∈ C(Rt;H
s
x)∩C(Rx;H

s+1
3

t )∩
Xs,b∩Dα and ∂xw ∈ C(Rx;H

s
3
t ). Suppose we wanted to show that the maps Λ± above

are contractions in a ball in Z with radius determined by the norms of the initial and

boundary data. (This was done by [CK02] for Λ+ with s = 0 without the estimates

on ∂xu in C(Rx;H
s
3
t ), and their arguments easily extend to −1

2
< s < 1

2
.) The needed

estimates for such an argument appear below in §5 as Lemma 5.5 for e−t∂
3
x , Lemma
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5.6 for D, Lemma 5.8 with λ = 0 for L0, and Lemma 5.8 with λ = −1 for L−1. The

constraints in Lemma 5.8(d) for λ = 0 are −1
2
< s ≤ 1, and the constraints in Lemma

5.8(d) for λ = −1 are −3
2
< s ≤ 0, thus restricting us to −1

2
< s ≤ 0. In order to

achieve the results in the wider range −3
4
< s < 3

2
, s 6= 1

2
, we next introduce (in §3)

two analytic families of operators Lλ+ and Lλ− such that L0
± = L0, L−1

± = L−1. The

solution properties are:
(∂t + ∂3

x)Lλ+f(x, t) = 3
xλ−1
−

Γ(λ)
I− 2

3
−λ

3
f(t)

Lλ+f(x, 0) = 0

Lλ+f(0, t) = eπiλf(t)

and 
(∂t + ∂3

x)Lλ−f(x, t) = 3
xλ−1

+

Γ(λ)
I− 2

3
−λ

3
f(t)

Lλ−f(x, 0) = 0

Lλ−f(0, t) = 2 sin(π
3
λ+ π

6
)f(t)

Due to the support properties of
xλ−1
−

Γ(λ)
and

xλ−1
+

Γ(λ)
, (∂t + ∂3

x)Lλ+f(x, t) = 0 for x > 0 and

(∂t + ∂3
x)Lλ−f(x, t) = 0 for x < 0. For any −3

4
< s < 3

2
, s 6= 1

2
, we will be able to

address the right half-line problem (1.1) by replacing L0 in (2.22) with Lλ+ for suitable

λ = λ(s) and address the left half-line problem (1.2) by replacing L0, L−1 in (2.23)

with Lλ1
− , Lλ2

− for suitable λ1 6= λ2 chosen in terms of s.

After the classes Lλ± have been defined and examined in §3, some properties of the

half-line Sobolev spaces Hs
0(R+), Hs(R+) will be given in §4. The needed estimates

for the contraction arguments are given in §5. Finally in §6-8, we prove the local

well-posedness results in Theorem 1.3.

3. The Duhamel boundary forcing operator class

Define, for Re λ > 0, and f ∈ C∞
0 (R+)

(3.1)

Lλ−f(x, t) =

[
xλ−1

+

Γ(λ)
∗ L0(I−λ/3f)(−, t)

]
(x)

=
1

Γ(λ)

∫ x

−∞
(x− y)λ−1L0(I−λ/3f)(y, t) dy

and, with
xλ−1
−

Γ(λ)
= eiπλ

(−x)λ−1
+

Γ(λ)
, define

(3.2)

Lλ+f(x, t) =

[
xλ−1
−

Γ(λ)
∗ L0(I−λ/3f)(−, t)

]
(x)

=
eiπλ

Γ(λ)

∫ +∞

x

(y − x)λ−1L0(I−λ/3f)(y, t) dy
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By integration by parts in (3.1), the decay bounds provided by Lemma 2.2, and (2.11),

Lλ−f(x, t) =

[
x

(λ+3)−1
+

Γ(λ+ 3)
∗ ∂3

xL0f(−, t)

]
(x)

= 3
x

(λ+3)−1
+

Γ(λ+ 3)
I− 2

3
−λ

3
f(t)

−
∫ x

−∞

(x− y)(λ+3)−1

Γ(λ+ 3)
L0(∂tI−λ

3
f)(y, t) dy

(3.3)

For Re λ > −3, we may thus take (3.3) as the definition for Lλ−f . By integration by

parts in (3.2), the decay bounds provided by Lemma 2.2, and (2.11),

Lλ+f(x, t) =

[
x

(λ+3)−1
−

Γ(λ+ 3)
∗ ∂3

xLf(−, t)

]
(x)

= 3
x

(λ+3)−1
−

Γ(λ+ 3)
I− 2

3
−λ

3
f(t)

+ eiπλ
∫ x

−∞

(−x+ y)(λ+3)−1

Γ(λ+ 3)
L0(∂tI−λ

3
f)(y, t) dy

(3.4)

For Re λ > −3, we may thus take (3.4) as the definition for Lλ+f . It is staightforward

from these definitions that, in the sense of distributions

(∂t + ∂3
x)Lλ−f(x, t) = 3

xλ−1
+

Γ(λ)
I− 2

3
−λ

3
f(t)

and

(∂t + ∂3
x)Lλ+f(x, t) = 3

xλ−1
−

Γ(λ)
I− 2

3
−λ

3
f(t)

Lemma 3.1 (Spatial continuity and decay properties for Lλ±f(x, t)). Let f ∈ C∞
0 (R+),

and fix t ≥ 0. We have

L−2
± f = ∂2

xL0I 2
3
f, L−1

± f = ∂xL0I 1
3
f, L0

±f = Lf

Also, L−2
± f(x, t) has a step discontinuity of size 3f(t) at x = 0, otherwise for x 6= 0,

L−2
± f(x, t) is continuous in x. For λ > −2, Lλ±f(x, t) is continuous in x for all x ∈ R.

For −2 ≤ λ ≤ 1, 0 ≤ t ≤ 1, Lλ−f(x, t) satisfies the decay bounds

|Lλ−f(x, t)| ≤ ck,λ,f〈x〉−k ∀ x ≤ 0, ∀ k ≥ 0

|Lλ−f(x, t)| ≤ cλ,f〈x〉λ−1 ∀ x ≥ 0

For −2 ≤ λ ≤ 1, 0 ≤ t ≤ 1, Lλ+f(x, t) satisfies the decay bounds

|Lλ+f(x, t)| ≤ ck,λ,f〈x〉−k ∀ x ≥ 0, ∀ k ≥ 0

|Lλ+f(x, t)| ≤ cλ,f〈x〉λ−1 ∀ x ≤ 0
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Proof. We only prove the bounds for Lλ−f , since the corresponding results for Lλ+f are

obtained similarly. For x ≤ −2, the result follows by direct estimation in (3.3) using

|L0(∂tI−λ
3
f)(y, t)| ≤ ck,f〈y〉−k〈x〉−k obtained from (2.7) (since |y| ≥ |x|). Assume

x ≥ 2. Let ψ ∈ C∞(R) be such that ψ(y) = 1 for y ≤ 1
4

and ψ(y) = 0 for y ≥ 3
4
.

Then

Lλ−f(x, t) =
x

(λ+3)−1
+

Γ(λ+ 3)
∗ ∂3

xL0I−λ
3
f(−, t)

=

∫ x

−∞

(x− y)λ+2

Γ(λ+ 3)
ψ
(y
x

)
∂3
yLf 0I−λ

3
(y, t) dy

+

∫ x

−∞

(x− y)λ+2

Γ(λ+ 3)

[
1− ψ

(y
x

)]
∂3
yL0I−λ

3
f(y, t) dy

= I + II

In I, y ≤ 3
4
x, integrate by parts,

I = −
∫ x

−∞
∂3
y

[
(x− y)λ+2

Γ(λ+ 3)
ψ
(y
x

)]
L0I−λ

3
f(y, t) dy

=

∫ x

−∞

(x− y)λ−1

Γ(λ)
ψ
(y
x

)
L0I−λ

3
f(y, t) dy

+
3∑
j=1

cj

∫ x

−∞

(x− y)λ+j−1

Γ(λ+ j)

1

xj
ψ(j)

(y
x

)
L0I−λ

3
f(y, t) dy

In the first of these terms, since y ≤ 3
4
x, (x−y)λ−1 ≤ (1

4
)λ−1xλ−1. In the second term,

1
4
x ≤ y ≤ 3

4
x, and thus we can use the decay of L0I−λ/3f(y, t). In II, y ≥ 1

4
x, apply

(2.11),

II =

∫ x

−∞

(x− y)λ+2

Γ(λ+ 3)

[
1− ψ

(y
x

)]
(3δ0(y)I−2/3f(t)− L0(∂tI−2/3f)(y, t)) dy

= −
∫ x

−∞

(x− y)λ+2

Γ(λ+ 3)

[
1− ψ

(y
x

)]
L0(∂tI−2/3f)(y, t) dy

Since y ≥ 1
4
x, we have by Lemma 2.2,

|L0(∂tI−2/3f)(y, t)| ≤ ck‖f‖H2k+1〈x〉−k〈y〉−k,

which establishes the bound. �

Lemma 3.2 (Values of Lλ±f(x, t) at x = 0). For Re λ > −2,

(3.5) Lλ−f(0, t) = 2 sin(π
3
λ+ π

6
)f(t)

(3.6) Lλ+f(0, t) = eiπλf(t)



16 JUSTIN HOLMER

In order to prove this, we need to compute the Mellin transform of each side of the

Airy function.

Lemma 3.3 (Mellin transform of the Airy function). If 0 < Re λ < 1
4
, then

(3.7)

∫ +∞

0

xλ−1A(−x) dx = 1
3π

Γ(λ)Γ(−1
3
λ+ 1

3
) cos(2π

3
λ− π

6
)

If Re λ > 0, then

(3.8)

∫ +∞

0

xλ−1A(x) dx = 1
3π

Γ(λ)Γ(1
3
− 1

3
λ) cos(π

3
λ+ π

6
)

Note that although Γ(1
3
− 1

3
λ) has poles at λ = 1, 4, 7, · · · , cos(π

3
λ + π

6
) vanishes at

these positions.

Proof. We shall only carry out the computation leading to (3.7), since the one for

(3.8) is similar. Owing to the decay of the Airy function A(−x) ≤ c〈x〉−1/4 for

x ≥ 0, the given expression is defined as an absolutely convergent integral. In the

calculation, we assume that λ is real and 0 < λ < 1
4
, and by analyticity, this suffices

to establish (3.7). Let A1(x) = 1
2π

∫ +∞
0

eixξeiξ
3
dξ, so that A(x) = 2Re A1(x). Let

A1,ε(x) = 1
2π

∫ +∞
ξ=0

eixξeiξ
3
e−εξ dξ. Then, by dominated convergence and Fubini∫ +∞

0

xλ−1A1(−x) dx(3.9)

= lim
ε↓0

lim
δ↓0

∫ +∞

x=0

xλ−1e−δxA1,ε(−x) dx

= lim
ε↓0

lim
δ↓0

1

2π

∫ +∞

ξ=0

eiξ
3

e−εξ
∫ +∞

x=0

xλ−1e−δxe−ixξ dx dξ.(3.10)

By a change of contour,

(3.11)

∫ +∞

x=0

xλ−1e−δxe−ixξ dx = ξ−λe−λ
π
2 Γ(λ, δ/ξ)

where Γ(λ, z) =
∫ +∞
r=0

rλ−1eirze−r dr. By dominated convergence,

lim
δ↓0

∫ +∞

x=0

xλ−1e−δxe−ixξ dx = ξ−λe−λ
π
2 Γ(λ)

Since (3.11) is bounded independently of δ > 0, we have by dominated convergence

(3.10) =
1

2π
Γ(λ)e−iλ

π
2 lim
ε↓0

∫ +∞

ξ=0

eiξ
3

e−εξξ−λ dξ

Change variable η = ξ3 and change contour, this becomes

1

6π
Γ(λ)e−

2πλi
3 e

πi
6 lim

ε↓0

∫ +∞

0

e−re−ε(
√

3
2

+i 1
2
)r1/3

r−
2
3
−λ

3 dr
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Finally, dominated convergence yields∫ +∞

0

xλ−1A1(−x) dx = 1
6π
e−

2πλi
3 e

πi
6 Γ(λ)Γ(1

3
− λ

3
)

Using A(x) = 2Re A1(x), we obtain (3.7) �

Now we return to the proof of Lemma 3.2.

Proof of Lemma 3.2. From (3.3),

(3.12) Lλ−f(0, t) =

∫ 0

−∞

(−y)λ+2

Γ(λ+ 3)
L0(∂tI−λ

3
f)(y, t) dy

and from (3.4),

(3.13) Lλ+f(0, t) = eiπλ
∫ +∞

0

yλ+2

Γ(λ+ 3)
L0(∂tI−λ

3
f)(y, t) dy

By complex differentiation under the integral sign, (3.12) demonstrates that Lλ−f(0, t)

is analytic in λ for Re λ > −2. We shall only compute (3.5) for 0 < λ < 1
4
, λ real. By

analyticity, the result will extend to the full range Re λ > −2. For the computation

in the range 0 < λ < 1
4
, we use the representation (3.1) in place of (3.12) to give

Lλ−f(0, t) =

∫ 0

y=−∞

(−y)λ−1

Γ(λ)
L0f(y, t) dy

By the decay for A(−y), y ≥ 0, we can apply Fubini to the above equation after

inserting (2.5) and then apply (3.7) to obtain

Lλ−f(0, t) = 1
π
Γ
(
−1

3
λ+ 1

3

)
Γ
(

1
3
λ+ 2

3

)
cos
(

2π
3
λ− π

6

)
I 1

3
λ+ 2

3
(I−λ

3
− 2

3
f)(t)

Using the identities Γ(z)Γ(1−z) =
π

sin πz
, cos x = sin(π

2
−x), and sin 2x = 2 cos x sin x,

Lλ−f(0, t) =
cos
(

2π
3
λ− π

6

)
sin
(
−π

3
λ+ π

3

)I 1
3
λ+ 2

3
(h)(t)

= 2 sin
(
π
3
λ+ π

6

)
I 1

3
λ+ 2

3
(I−λ

3
− 2

3
f)(t)

giving (3.5). By complex differentiation under the integral sign, (3.13) demonstrates

that f+(t, λ) is analytic in λ for Re λ > −3. We shall only compute (3.6) for 0 < λ,

λ real. By analyticity, the result will extend to the full range Re λ > −3. For the

computation in the range 0 < λ, we use the representation (3.2) in place of (3.13) to

give

Lλ+f(0, t) = eiπλ
∫ +∞

y=0

yλ−1

Γ(λ)
L0I−λ

3
f(y, t) dy

By the decay of A(y), y ≥ 0, we can apply Fubini to obtain

Lλ+f(0, t) = 1
3π

Γ(1
3
− 1

3
λ) cos(π

3
λ+ π

6
)eiπλI 1

3
λ+ 2

3
(I− 1

3
λ− 2

3
f)(t)
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Using the same identities as above, we obtain (3.6). �

4. Notations and some function space properties

We use the notation Hs to mean Hs(R) (and not Hs(R+) or Hs
0(R+)). The trace

operator φ 7→ φ(0) is defined for φ ∈ Hs(R) when s > 1
2
. For s ≥ 0, define φ ∈ Hs(R+)

if ∃ φ̃ ∈ Hs(R) such that φ̃(x) = φ(x) for x > 0; in this case we set ‖φ‖Hs(R+) =

inf φ̃ ‖φ̃‖Hs(R). For s ∈ R, define φ ∈ Hs
0(R+) if, when φ(x) is extended to φ̃(x) on R by

setting φ̃(x) = 0 for x < 0, then φ̃ ∈ Hs(R); in this case we set ‖φ‖Hs
0(R+) = ‖φ̃‖Hs(R).

For s < 0, define Hs(R+) as the dual space to H−s
0 (R+), and define Hs

0(R+) as the

dual space to H−s(R+). A definition for Hs(0, L) can be given analogous to that for

Hs(R+).

Define φ ∈ C∞
0 (R+) if φ ∈ C∞(R) with supp φ ⊂ [0,+∞) (so that, in particular,

φ and all of its derivatives vanish at 0), and C∞
0,c(R+) as those members of C∞

0 (R+)

with compact support. We remark that C∞
0,c(R+) is dense in Hs

0(R+) for all s ∈ R.

Lemma 4.1 ([CK02] Lemma 2.8). If 0 ≤ α < 1
2
, then ‖θh‖Hα ≤ c‖h‖Ḣα and

‖θh‖Ḣ−α ≤ c‖h‖H−α, where c = c(α, θ).

Lemma 4.2 ([JK95] Lemma 3.5). If −1
2
< α < 1

2
, then ‖χ(0,+∞)f‖Hα ≤ c‖f‖Hα,

where c = c(α).

Lemma 4.3 ([CK02] Prop. 2.4, [JK95] Lemma 3.7, 3.8). If 1
2
< α < 3

2
, then

Hα
0 (R+) = {f ∈ Hα(R+) | f(0) = 0}.

If 1
2
< α < 3

2
and f ∈ Hα(R+) with f(0) = 0, then ‖χ(0,+∞)f‖Hα

0 (R+) ≤ c‖f‖Hα(R+),

where c = c(α).

Lemma 4.4 ([CK02], Lemma 5.1). If s ∈ R and 0 < b < 1, 0 < α < 1 then

‖θ(t)w(x, t)‖Xs,b∩Dα ≤ c‖w‖Xs,b

where c = c(θ).

Lemma 4.5 ([CK02] Cor. 2.1, Prop. 2.2). For α ≥ 0, H−α
0 (R+) is a complex inter-

polation scale. For α ≥ 0, Hα
0 (R+) is a complex interpolation scale.

5. Estimates

5.1. Estimates for the Riemann-Liouville fractional integral. In this section,

we shall use the notation Jαf =
tα−1
+

Γ(α)
∗ f for f ∈ C∞

0 (R) (no restriction on support of

f to [0,+∞)). This is in distinction to the definition of Iα, where we are convolving

with a function f supported in [0,+∞).
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Lemma 5.1. Let α ∈ C. If µ1 ∈ C∞
0 (R) and µ2 ∈ C∞(R) such that µ2 = 1 on a

neighborhood of (−∞, b], where b = sup{ t | t ∈ supp µ1 }, then µ1Jαµ2h = µ1Jαh. If

µ2 ∈ C∞
0 (R) and µ1 ∈ C∞(R) such that µ1 = 1 on a neighborhood of [a,+∞), where

a = inf{ t | t ∈ supp µ2 }, then µ1Jαµ2h = Jαµ2h

Proof. The first identity is clear from the integral definition if Re α > 0. If Re α < 0,

let k ∈ N be such that −k < Re α ≤ −k+ 1 so that Jα = ∂kt Jα+k. Let U be an open

set such that

supp µ1 ⊂ (−∞, b] ⊂ U ⊂ { t |µ2(t) = 1 }

Then ∀ t ∈ U , Jα+kh = Jα+kµ2h, which implies that ∀ t ∈ (−∞, b], ∂kt Jα+kh =

∂kt Jα+kµ2h, which implies that ∀ t ∈ R, µ1∂
k
t Jα+kh = µ1∂

k
t Jα+kµ2h. The second

claim is clear by the integral definition if Re α > 0. If Re α < 0, let k ∈ N be such

that −k < Re α ≤ −k + 1 so that Jα = Jα+k∂
k
t . Since supp ∂jtµ2 ⊂ [a,+∞) ⊂

{ t |µ1(t) = 1 }, we have

µ1Jα+k(∂
j
tµ2)(∂

k−j
t h) = Jα+k(∂

j
tµ2)(∂

k−j
t h)

and thus µ1Jα+k∂
k
t µ2h = Jα+k∂

k
t µ2h. �

Lemma 5.2. For γ ∈ R, s ∈ R, ‖Jiγh‖Hs(R) ≤ cosh(1
2
πγ)‖h‖Hs(R)

Proof. From (1.11), we have(
xiγ−1

+

Γ(iγ)

)
(̂ξ) =

{
e

1
2
πγe−iγ ln |ξ| if ξ > 0

e−
1
2
πγe−iγ ln |ξ| if ξ < 0

and thus

∣∣∣∣(xiγ−1
+

Γ(iγ)

)
(̂ξ)

∣∣∣∣ ≤ 2 cosh(1
2
πγ). �

Lemma 5.3. If 0 ≤ Re α < +∞ and s ∈ R, then

‖I−αh‖Hs
0(R+) ≤ ce

1
2
Im α‖h‖Hs+α

0 (R+)(5.1)

‖J−αh‖Hs(R) ≤ ce
1
2
Im α‖h‖Hs+α(R)(5.2)

Proof. (5.2) is immediate from (2.2). (5.1) then follows from (5.2) by Lemma 2.1 and

a density argument. �

Lemma 5.4. If 0 ≤ Re α < +∞, s ∈ R, µ, µ2 ∈ C∞
0 (R)

‖µIαh‖Hs
0(R+) ≤ ce

1
2
Im α‖h‖Hs−α

0 (R+) c = c(µ)(5.3)

‖µJαµ2h‖Hs(R) ≤ ce
1
2
Im α‖h‖Hs−α(R) c = c(µ, µ2)(5.4)

where c = c(µ, µ2).
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Proof. We first explain how (5.3) follows from (5.4). Given µ, let b = sup{ t | t ∈
supp µ }. Take µ2 ∈ C∞

0 (R), µ2 = 1 on [0, b]. Then, when restricting to h ∈ C∞
0 (R+),

we have µIαh = µJαµ2h. By Lemma 2.1 and a density argument, we obtain (5.3).

Now we prove (5.4). We first need the special case s = 0.

Claim. If k ∈ Z≥0, then ‖µJkµ2h‖L2(R) ≤ c‖h‖H−k(R), where c = c(µ, µ2).

To prove this claim, consider k ∈ N. If g ∈ C∞
0 (R) with ‖g‖L2 ≤ 1, then

‖µJkµ2h‖L2 =
1

Γ(k)
sup
g

∫
t

µ(t)

∫ t

s=−∞
(t− s)k−1µ2(s)h(s) ds g(t) dt

=
1

Γ(k)
sup
g

∫
s

h(s)µ2(s)

∫ +∞

t=s

µ(t)(t− s)k−1g(t) dt ds

≤ 1

Γ(k)
‖h‖H−k

∥∥∥∥µ2(s)

∫ +∞

t=s

µ(t)(t− s)k−1g(t) dt

∥∥∥∥
Hk(ds)

≤ c‖h‖H−k‖g‖L2

The case k = 0 is trivial, concluding the proof of the claim.

To prove (5.4), we first take α = k ∈ Z≥0, s = m ∈ Z, h ∈ C∞
0 (R).

Case 1. m ≥ 0.

‖µJkµ2h‖Hm ≤ ‖µJkµ2h‖L2 +
m∑
j=0

‖µ(j)Jk−m+jµ2h‖L2

≤ c(‖h‖H−k +
m∑
j=0

‖h‖Hm−k−j) ≤ c‖h‖Hm−k

by appealing to the claim or Lemma 5.3.

Case 2. m < 0. Let µ3 = 1 on supp µ, µ3 ∈ C∞
0 (R+).

µJkµ2h = µ∂−mt Jk−mµ2h = µ∂−mt µ3Jk−mµ2h

and therefore

‖µJkµ2h‖Hm ≤ ‖µ3Jk−mµ2h‖L2

and we conclude by applying the claim.

Next, we extend to α = k+iγ for k, γ ∈ R, as follows. Let µ3 = 1 on a neighborhood

of (−∞, b], where b = sup{ t | t ∈ supp µ }, and let µ4 = 1 on a neighborhood of

[a,+∞), where a = inf{ t | t ∈ supp µ2 }, so that µ3µ4 ∈ C∞
0 (R). By Lemma 5.1,

µJk+iγµ2h = µJiγµ3µ4Jkµ2h

By Lemma 5.2,

‖µJk+iγµ2h‖Hm ≤ c cosh(1
2
πγ)‖µ3µ4Jkµ2h‖Hm

which is bounded as above. We can now apply interpolation to complete the proof. �
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5.2. Estimates for the group. The operator e−t∂
3
x was defined above in (2.3) sat-

isfying (2.4).

Lemma 5.5. Let s ∈ R. Then

(a) (Space traces) ‖e−t∂3
xφ(x)‖C(Rt;Hs

x) ≤ c‖φ‖Hs.

(b) (Time traces) ‖θ(t)e−t∂3
xφ(x)‖

C(Rx;H
s+1
3

t )
≤ c‖φ‖Hs.

(c) (Derivative time traces) ‖θ(t)∂xe−t∂
3
xφ(x)‖

C(Rx;H
s
3
t )
≤ c‖φ‖Hs.

(d) (Bourgain space estimate) If 0 < b < 1 and 0 < α < 1, then ‖θ(t)e−t∂3
xφ(x)‖Xs,b∩Dα ≤

c‖θ‖H1‖φ‖Hs, where c is independent of θ.

Proof. (a),(d) follow from the definition (2.3) and (b),(c) appear in [KPV91]. �

5.3. Estimates for the Duhamel inhomogeneous solution operator. The op-

erator D was defined above in (2.20) satisfying (2.21).

Let

‖u‖Ys,b
=

(∫∫
ξ,τ

〈τ〉2s/3〈τ − ξ3〉2b|û(ξ, τ)|2 dξ dτ
)1/2

Lemma 5.6. Let s ∈ R. Then

(a) (Space traces) If 0 ≤ b < 1
2
, then

‖θ(t)Dw(x, t)‖C(Rt;Hs
x) ≤ c‖w‖Xs,−b

.

(b) (Time traces) If 0 < b < 1
2
, then

‖θ(t)Dw(x, t)‖
C(Rx;H

s+1
3

t )

≤

{
c‖w‖Xs,−b

if − 1 ≤ s ≤ 1
2

c(‖w‖Xs,−b
+ ‖w‖Ys,−b

) for any s

If s < 7
2
, then ‖θ(t)Dw(x, t)‖

C(Rx;H
s+1
3

0 (R+
t ))

has the same bound.

(c) (Derivative time traces) If 0 < b < 1
2
, then

‖θ(t)∂xDw(x, t)‖
C(Rx;H

s
3
t )

≤

{
c‖w‖Xs,−b

if 0 ≤ s ≤ 3
2

c(‖w‖Xs,−b
+ ‖w‖Ys,−b

) for any s

If s < 9
2
, then ‖θ(t)∂xDw(x, t)‖

C(Rx;H
s
3
0 (R+

t ))
has the same bound.

(d) (Bourgain space estimate) If 0 ≤ b < 1
2

and α ≤ 1−b, then ‖θ(t)Dw(x, t)‖Xs,b∩Dα ≤
c‖w‖Xs,−b

.

Remark 5.7. The need for the Ys,b (time-adapted) Bourgain space arises here in

Lemma 5.6(b)(c) in order the cover the full interval −3
4
< s < 3

2
(s 6= 1

2
). It is,
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however, only an intermediate device since the bilinear estimate in Lemma 5.10(b)

enables us to avoid carrying out the contraction argument in Ys,b.

Proof. (d) is Lemma 5.4 in [CK02] (although Yb has a different definition from ours)

and (a) is a standard estimate (see the techniques of Lemmas 5.4, 5.5 in [CK02]). (b)

is Lemma 5.5 in [CK02] and the proof of (c) is modelled on the proof of Lemma 5.5

in [CK02]. �

5.4. Estimates for the Duhamel boundary forcing operator class. The oper-

ators Lλ± were defined above in (2.5) solving (2.6), (2.12).

Lemma 5.8. Let s ∈ R. Then

(a) (Space traces) If s − 5
2
< λ < s + 1

2
, λ < 1

2
, and supp f ⊂ [0, 1], then

‖Lλ±f(x, t)‖C(Rt;Hs
x) ≤ c‖f‖

H
s+1
3

0 (R+)
.

(b) (Time traces) If −2 < λ < 1, then

‖θ(t)Lλ±f(x, t)‖
C(Rx;H

s+1
3

0 (R+
t ))

≤ c‖f‖
H

s+1
3

0 (R+)
.

(c) (Derivative time traces) If −1 < λ < 2, then

‖θ(t)∂xLλ±f(x, t)‖
C(Rx;H

s
3
0 (R+

t ))
≤ c‖f‖

H
s+1
3

0 (R+
t )
.

(d) (Bourgain space estimate) If s − 1 ≤ λ < s + 1
2
, λ < 1

2
, α ≤ s−λ+2

3
, and

0 ≤ b < 1
2
, then ‖θ(t)Lλ±f(x, t)‖Xs,b∩Dα ≤ c‖f‖

H
s+1
3

0 (R+
t )

.

Remark 5.9. The restrictions on s, λ in Lemma 5.8(a)(d) are the primary purpose

for introducing the analytic families Lλ± and not simply using L0 for the right half-

line problem and L0, L−1 for the left half-line problem. Note that by the assumption

λ < s+ 1
2
, we have s−λ+2

3
> 1

2
, and thus we may take 1

2
< α ≤ s−λ+2

3
, which is needed

in order to meet the hypotheses of the bilinear estimates in Lemma 5.10.

Proof. We restrict to Lλ− for notational convenience. Also, we assume in the proof

that f ∈ C∞
0 (R+). The estimates, of course, extend by density. To prove (a), we use

( ̂ denoting the Fourier transform in x alone)

(Lλf) (̂ξ, t) = (ξ − i0)−λ
∫ t

0

ei(t−t
′)ξ3I−λ

3
− 2

3
f(t′) dt′

By the change of variable η = ξ3 and the support properties of I−λ
3
− 2

3
f(t′),

‖φ‖2
Hs ≤

∫
η

|η|−
2λ
3
− 2

3 〈η〉
2s
3

∣∣∣∣∫ t

0

ei(t−t
′)ηI−λ

3
− 2

3
f(t′) dt′

∣∣∣∣2 dη
=

∫
η

|η|−
2λ
3
− 2

3 〈η〉
2s
3 |(χ(−∞,t)I−λ

3
− 2

3
f) (̂η)|2 dη
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noting that λ < 1
2

=⇒ −2
3
λ− 2

3
and s− 5

2
< λ < s+ 1

2
=⇒ −1 < −2λ

3
− 2

3
+ 2s

3
< 1. By

Lemma 4.1 (to replace |η|− 2λ
3
− 2

3 by 〈η〉− 2λ
3
− 2

3 ), Lemma 4.2 (to remove the time cutoff

factor χ(−∞,t)), and Lemma 5.3 (to estimate I−λ
3
− 2

3
) we obtain the estimate in (a).

To prove (b), we first note that the change of variable t′ → t− t′ shows that

(I − ∂2
t )

s+1
6

∫ t

−∞
e−(t−t′)∂3

xh(t′) dt′ =

∫ t

−∞
e−(t−t′)∂3

x(I − ∂2
t )

s+1
6 h(t′) dt′

and thus (b) is equivalent to∥∥∥∥∫
ξ

eixξ(ξ − i0)−λ
∫ t

−∞
e+i(t−t

′)ξ3(I−λ
3
− 2

3
f)(t′) dt′ dξ

∥∥∥∥
L2

t

≤ c‖f‖L2
t

Using that χ(−∞,t) = 1
2
sgn (t− t′) + 1

2
,∫

ξ

eixξ(ξ − i0)−λ
∫ t

−∞
e+i(t−t

′)ξ3(I−λ
3
− 2

3
f)(t′) dt′ dξ

=

∫
τ

eitτ

[
lim
ε↓0

∫
|τ−ξ3|>ε

eixξ
(τ − i0)

λ
3
+ 2

3 (ξ − i0)−λ

τ − ξ3
dξ

]
f̂(τ) dτ

+

∫
ξ

eixξ(ξ − i0)−λ
∫ +∞

−∞
e+i(t−t

′)ξ3(I−λ
3
− 2

3
f)(t′) dt′ dξ

= I + II

We can rewrite II as

II =

∫
ξ

eixξ(I−λ
3
− 2

3
f) (̂ξ3)(ξ − i0)−λeitξ

3

dξ

The substitution η = ξ3 and (2.2) gives

II =

∫
η

eitηeixη
1/3

(η − i0)
λ
3
+ 2

3 (η1/3 − i0)−λη−2/3f̂(η) dη

which is clearly L2
t → L2

t bounded. In addressing term I, it suffices to show that

(5.5) lim
ε↓0

∫
|τ−ξ3|>ε

eixξ
(τ − i0)

λ
3
+ 2

3 (ξ − i0)−λ

τ − ξ3
dξ

is bounded independently of τ . Changing variable ξ → τ 1/3ξ, and using that

(τ 1/3ξ − i0)−λ = τ
−λ/3
+ (c1ξ

−λ
+ + c2ξ

−λ
− ) + τ

−λ/3
− (c1ξ

−λ
− + c2ξ

−λ
+ )

we get

(5.5) = χτ>0

∫
ξ

eiτ
1/3xξ c1ξ

−λ
+ + c2ξ

−λ
−

1− ξ3
dξ + χτ<0

∫
ξ

eiτ
1/3xξ c1ξ

−λ
− + c2ξ

−λ
+

1− ξ3



24 JUSTIN HOLMER

The treatment of both integrals is similar, so we will only consider the first of the

two. Let ψ(ξ) = 1 near ξ = 1, and 0 outside [1
2
, 3

2
]. Then this term breaks into

c1

∫
ξ

eixτ
1/3ξψ(ξ)ξ−λ+

1− ξ3
dξ +

∫
ξ

eixτ
1/3ξ (1− ψ(ξ))(c1ξ

−λ
+ + c2ξ

−λ
− )

1− ξ3
dξ = Ia + Ib

The integrand in term Ib is an L1 function (provided λ > −2), so |Term Ib| ≤ c. Term

Ia is

c1

∫
ξ

eixτ
1/3ξ ψ(ξ)ξ−λ+

1 + ξ + ξ2

1

1− ξ
dξ

This becomes convolution of a Schwartz class function with a phase shifted sgn x

function, which is bounded on L2
t , completing the proof of (b).

Part (c) of the theorem is a corollary of (b) and the fact that ∂xLλ± = Lλ−1
± I1/3.

To prove (d), first note that by (2.2)

(Lλ−f) (̂ξ, t) = (ξ − i0)−λ
∫
τ

eitτ − eitξ
3

τ − ξ3
(τ − i0)

λ
3
+ 2

3 f̂(τ) dτ

Let ψ(τ) ∈ C∞(R) such that ψ(τ) = 1 for |τ | ≤ 1 and ψ(τ) = 0 for |τ | ≥ 2. Set

û1(ξ, t) = (ξ − i0)−λ
∫
τ

eitτ − eitξ
3

τ − ξ3
ψ(τ − ξ3)(τ − i0)

λ
3
+ 2

3 f̂(τ) dτ

û2,1(ξ, t) = (ξ − i0)−λ
∫
τ

eitτ

τ − ξ3
(1− ψ(τ − ξ3))(τ − i0)

λ
3
+ 2

3 f̂(τ) dτ

û2,2(ξ, t) = (ξ − i0)−λ
∫
τ

eitξ
3

τ − ξ3
(1− ψ(τ − ξ3))(τ − i0)

λ
3
+ 2

3 f̂(τ) dτ

so that Lλ−f = u1 + u2,1 + u2,2. For −1 < λ < 1
2
, both (ξ − i0)−λ, (τ − i0)

λ
3
+ 2

3 are

square integrable functions and thus

(5.6) ‖u2,1‖2
Xs,b

≤ c

∫
τ

|τ |
2λ
3

+ 4
3

(∫
ξ

|ξ|−2λ〈ξ〉2s

〈τ − ξ3〉2−2b
dξ

)
|f̂(τ)|2 dτ

Since −1 < λ < 1
2
, we have −1 < −2λ

3
− 2

3
< 0 and

(5.7)

∫
ξ

|ξ|−2λ〈ξ〉2s

〈τ − ξ3〉2−2b
dξ =

∫
η

|η|−
2λ
3
− 2

3 〈η〉
2s
3 〈τ − η〉−2+2b dη ≤ c〈τ〉−

2λ
3
− 2

3
+ 2s

3

This is obtained by separately considering the cases |η| ≤ 1, |τ | << |η|, and |η| << |τ |,
and using that s− 1 ≤ λ < s+ 1

2
implies −1 < 2s

3
− 2λ

3
− 2

3
≤ 0. Combining (2.2) and

(5.6) gives the appropriate bound for ‖u2,1‖Xs,b
. To address the term u2,2, we first

note that u2,2(x, t) = θ(t)e−t∂
3
xφ(x), where

(5.8) φ̂(ξ) = (ξ − i0)−λ
∫
τ

1− ψ(τ − ξ3)

τ − ξ3
(I−λ

3
− 2

3
f) (̂τ) dτ
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Taking h = I−λ
3
− 2

3
f (so that h ∈ C∞

0 (R+) by Lemma 2.1), we claim that

(5.9)

∫
τ

ĥ(τ)
1− ψ(τ − ξ3)

τ − ξ3
dτ =

∫
τ

ĥ(τ)β(τ − ξ3) dτ

where β ∈ S(R). This follows from the fact that supp h ⊂ [0,+∞) as follows: Let

ĝ1(τ) = 1−ψ(−τ)
τ

. Then

g1(t) = i
2
sgn t− i

4π

∫
s

sgn(t− s)ψ̂(s) ds

Let α ∈ C∞(R) be such that α(t) = 1 for t > 0 and α(t) = −1 for t < −1, and set

g2(t) = i
2
α(t)− i

4π

∫
s

sgn(t− s)ψ̂(s) ds

To show that g2 ∈ S(R), note that by the definition and the fact that ψ̂ ∈ S, we have

g2 ∈ C∞(R). If t > 0, then since 1
2π

∫
ψ̂(τ) dτ = ψ(0) = 1, we have

g2(t) = i
2
− i

4π

∫
s

sgn(t− s)ψ̂(s) ds = i
2π

∫
s>t

ψ̂(s) ds

If t < −1, then likewise we have

g2(t) = − i
2
− i

4π

∫
s

sgn(t− s)ψ̂(s) ds = i
2π

∫
s<t

ψ̂(s) ds

which provide the decay at ∞ estimates for g2 and all of its derivatives, establishing

that g2 ∈ S(R). Since g1(t) = g2(t) for t > 0 and h ∈ C∞
0 (R+) we have∫

τ

ĥ(τ)
1− ψ(τ − ξ3)

τ − ξ3
dτ = −(ĥ ∗ ĝ1)(ξ

3) = −2πĥg1(ξ
3)

= −2πĥg2(ξ
3) =

∫
τ

ĥ(τ)β(τ − ξ3) dτ

where β(τ) = −ĝ2(−τ), and β ∈ S(R) since g2 ∈ S(R), thus establishing (5.9). To

complete the treatment of u2,2, it suffices to show, by Lemma 5.5(d), that ‖φ‖Hs ≤
c‖f‖

H
s+1
3

. By (5.8), (5.9), Cauchy-Schwarz and the fact that |β(τ−ξ3)| ≤ c〈τ−ξ3〉−N
for N >> 0,

‖φ‖Hs ≤
∫
ξ

〈ξ〉2s|ξ|−2λ

(∫
τ

β(τ − ξ3)|τ |
λ
3
+ 2

3 |f̂(τ)| dτ
)2

dξ

≤
∫
τ

(∫
ξ

|ξ|−2λ〈ξ〉2s〈τ − ξ3〉−2N+2 dξ

)
|τ |

2λ
3

+ 4
3 |f̂(τ)|2 dτ

After the change of variable η = ξ3, the inner integral becomes (λ < 1
2

=⇒ −2λ
3
− 2

3
>

−1) ∫
η

|η|−
2λ
3
− 2

3 〈η〉
2s
3 〈τ − η〉−2N+2 dη ≤ c〈τ〉−

2λ
3
− 2

3
+ 2s

3
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This latter estimate can be obtained by considering cases |η| ≤ 1, |η| ≤ 1
2
|τ |, and

|η| ≥ 1
2
|τ | (using −1 ≤ λ− s =⇒ −2λ

3
− 2

3
+ 2s

3
≤ 0). By the power series expansion

for eit(τ−ξ
3), u1(x, t) =

∑+∞
k=1

1
k!
θk(t)e

−t∂3
xφk(x), where θk(t) = iktkθ(t) and

φ̂k(ξ) = (ξ − i0)−λ
∫
τ

(τ − ξ3)k−1ψ(τ − ξ3)(I− 2
3
−λ

3
f) (̂τ) dτ

By Lemma 5.5 (d), it suffices to show that ‖φk‖Hs ≤ c‖f‖
H

s+1
3

. Note that

‖φk‖Hs ≤
∫
ξ

〈ξ〉2s|ξ|−2λ

(∫
|τ−ξ3|≤1

|τ |
λ
3
+ 2

3 |f̂(τ)| dτ
)2

dξ

≤
∫
τ

(∫
|τ−ξ3|≤1

〈ξ〉2s|ξ|−2λ dξ

)
|τ |

2λ
3

+ 4
3 |f̂(τ)|2 dτ

The substitution η = ξ3 on the inner integral provides the needed bound. �

5.5. Bilinear estimates.

Lemma 5.10. (a) For s > −3
4
, ∃ b = b(s) < 1

2
such that ∀ α > 1

2
, we have

(5.10) ‖∂x(uv)‖Xs,−b
≤ c‖u‖Xs,b∩Dα‖v‖Xs,b∩Dα

(b) For −3
4
< s < 3, ∃ b = b(s) < 1

2
such that ∀ α > 1

2
, we have

(5.11) ‖∂x(uv)‖Ys,−b
≤ c‖u‖Xs,b∩Dα‖v‖Xs,b∩Dα

Remark 5.11. The purpose of introducing the Dα low frequency correction factor is

to validate the bilinear estimates above for b < 1
2
. Recall that the need to take b < 1

2

arose in Lemma 5.8(d).

We shall prove Lemma 5.10 by the calculus techniques of [KPV96]. We begin with

some elementary integral estimates.

Lemma 5.12. If 1
4
< b < 1

2
, then

(5.12)

∫ +∞

−∞

dx

〈x− α〉2b〈x− β〉2b
≤ c

〈α− β〉4b−1

Proof. By translation, it suffices to prove the inequality for β = 0. One then treats the

cases |α| ≤ 1 and |α| ≥ 1 separately, and for the latter case, uses 〈x− α〉−2b〈x〉−2b ≤
|x− α|−2b|x|−2b and scaling. �

The following is [KPV96] Lemma 2.3 (2.11) with 2b− 1
2

= 1− l verbatim.

Lemma 5.13. If b < 1
2
, then

(5.13)

∫
|x|≤β

dx

〈x〉4b−1|α− x|1/2
≤ c(1 + β)2−4b

〈α〉 1
2
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Proof of Lemma 5.10 (a). We begin by addressing −3
4
< s < −1

2
. The proof is mod-

elled on the proof for b > 1
2

given by [KPV96]. Essentially, we only need to replace

one of the calculus estimates ([KPV96] Lemma 2.3 (2.8)) in that paper with a suitable

version for b < 1
2

(Lemma 5.12). Let ρ = −s. It suffices to prove

(5.14)

∫∫
∗

|ξ|d(ξ, τ)
〈τ − ξ3〉b〈ξ〉ρ

〈ξ1〉ρĝ1(ξ, τ1)

β(ξ1, τ1)

〈ξ2〉ρĝ2(ξ2, τ2)

β(ξ2, τ2)
≤ c‖d‖L2‖g1‖L2‖g2‖L2

for d̂ ≥ 0, ĝ1 ≥ 0, ĝ2 ≥ 0, where ∗ indicates integration over ξ, ξ1, ξ2, subject to

the constraint ξ = ξ1 + ξ2, and over τ , τ1, τ2, subject to the constraint τ = τ1 + τ2,

and where βj(ξj, τj) = 〈τj − ξ3
j 〉b + χ|ξj |≤1〈τj〉α. By symmetry, it suffices to consider

the case |τ2 − ξ3
2 | ≤ |τ1 − ξ3

1 |. We address (5.14) in pieces by the Cauchy-Schwarz

method of [KPV96]. We shall assume that |ξ1| ≥ 1 and |ξ2| ≥ 1, since otherwise, the

bound (5.14) reduces to the case ρ = 0, which has already been established in [CK02].

Case 1. If |τ2 − ξ3
2 | ≤ |τ1 − ξ3

1 | ≤ |τ − ξ3|, then we shall show

(5.15)
|ξ|

〈τ − ξ3〉b〈ξ〉ρ

(∫∫
τ1,ξ1

〈ξ1〉2ρ〈ξ2〉2ρ

〈τ1 − ξ3
1〉2b〈τ2 − ξ3

2〉2b
dξ1 dτ1

)1/2

≤ c

To prove this, we note that

(5.16) τ − ξ3 + 3ξξ1ξ2 = (τ2 − ξ3
2) + (τ1 − ξ3

1)

By lemma 5.12 with α = ξ3
1 and β = ξ3

1 +τ−ξ3+3ξξ1ξ2, we get that (5.15) is bounded

by

|ξ|
〈τ − ξ3〉b〈ξ〉ρ

(∫
ξ1

〈ξ1〉2ρ〈ξ2〉2ρ

〈τ − ξ3 + 3ξξ1ξ2〉4b−1
dξ1

)1/2

By (5.16), |ξξ1ξ2| ≤ |τ − ξ3|. Substituting |ξ1ξ2| ≤ |τ − ξ3||ξ|−1 into the above gives

that it is bounded by

(5.17)
|ξ|1−ρ〈τ − ξ3〉ρ−b

〈ξ〉ρ

(∫
ξ1

dξ1
〈τ − ξ3 + 3ξξ1ξ2〉4b−1

)1/2

Let u = τ−ξ3 +3ξξ1ξ2, so that, by (5.16), we have |u| ≤ 2|τ−ξ3|. The corresponding

differential is

dξ1 =
cdu

|ξ|1/2|u− (τ − 1
4
ξ3)|1/2

Substituting into (5.17), we obtain that (5.17) is bounded by

|ξ| 34−ρ〈τ − ξ3〉ρ−b

〈ξ〉ρ

(∫
|u|≤2|τ−ξ3|

du

〈u〉4b−1|u− (τ − 1
4
ξ3)|1/2

)1/2

By Lemma 5.13, this is controlled by

〈τ − ξ3〉ρ+1−3b

〈ξ〉2ρ− 3
4 〈τ − 1

4
ξ3〉1/4
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This expression is bounded, provided b ≥ 1
9
ρ+ 5

12
.

Case 2. |τ2 − ξ3
2 | ≤ |τ1 − ξ3

1 |, |τ − ξ3| ≤ |τ1 − ξ3
1 |. In this case, we shall prove the

bound

(5.18)
1

〈τ1 − ξ3
1〉b

(∫∫
ξ,τ

|ξ|2−2ρ|ξξ1ξ2|2ρ

〈ξ〉2ρ〈τ − ξ3〉2b〈τ2 − ξ3
2〉2b

dξ dτ

)1/2

≤ c

Since

(5.19) (τ1 − ξ3
1) + (τ2 − ξ3

2)− (τ − ξ3) = 3ξξ1ξ2

we have, by Lemma 5.12 with α = ξ3, β = ξ3 + (τ1 − ξ3
1) − 3ξξ1ξ2, that (5.18) is

bounded by

(5.20)
1

〈τ1 − ξ3
1〉b

(∫
ξ

〈ξ〉2−4ρ|ξξ1ξ2|2ρ

〈τ1 − ξ3
1 − 3ξξ1ξ2〉4b−1

dξ

)1/2

We address (5.20) in cases. Cases 2A and 2B differ only in the bound used for 〈ξ〉2−4ρ,

while Case 2C is treated somewhat differently.

Case 2A. |ξ1| ∼ |ξ| or |ξ1| << |ξ|. Here, we use 〈ξ〉2−4ρ ≤ 〈ξ1〉2−4ρ.

Case 2B. |ξ| << |ξ1| and [|τ1| >> 1
4
|ξ1|3 or |τ1| << 1

4
|ξ1|3]. Here, we use 〈ξ〉2−4ρ ≤ 1.

Cases 2A and 2B. In the setting of Case 2A, let g(ξ1) = 〈ξ1〉1−2ρ, and in the setting

of Case 2B, let g(ξ1) = 1. Since by (5.19), |ξξ1ξ2| ≤ |τ1 − ξ3
1 |, (5.20) is bounded by

(5.21) g(ξ1)〈τ1 − ξ3
1〉ρ−b

(∫
ξ

dξ

〈τ1 − ξ3
1 − 3ξξ1ξ2〉4b−1

)1/2

Set u = τ1 − ξ3
1 − 3ξξ1ξ2. Then

du = 3ξ1(ξ1 − 2ξ)dξ = c|ξ1|1/2|u− (τ1 − 1
4
ξ3
1)|1/2dξ

which, upon substituting in (5.21), gives that it is bounded by

g(ξ1)〈τ1 − ξ3
1〉ρ−b

|ξ|1/4

(∫
|u|≤2|τ1−ξ31 |

du

〈u〉4b−1|u− (τ1 − 1
4
ξ3
1)|1/2

)1/2

By Lemma 5.13, this is controlled by

(5.22)
g(ξ1)〈τ1 − ξ3

1〉ρ+1−3b

|ξ1|1/4〈τ1 − 1
4
ξ3
1〉1/4

In Case 2A, g(ξ1) = 〈ξ1〉1−2ρ, and (5.22) becomes

〈τ1 − ξ3
1〉ρ+1−3b

〈ξ1〉2ρ−
3
4 〈τ1 − 1

4
ξ3
1〉1/4

which is bounded provided b > 1
9
ρ+ 5

12
. In Case 2B, g(ξ1) = 1, and (5.22) becomes

〈τ1 − ξ3
1〉ρ+1−3b

〈ξ1〉1/4〈τ1 − 1
4
ξ3
1〉1/4
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which is bounded (under the restrictions of Case 2B) provided b ≥ 1
3
ρ+ 1

4
.

Case 2C. |ξ| << |ξ1| and |τ1| ∼ 1
4
|ξ1|3. Here, we return to (5.20) and use that

|τ1| ∼ 1
4
|ξ1|3 and 3|ξξ1ξ2| ≤ 1

4
|ξ1|3 implies 〈τ1− ξ3

1 − 3ξξ1ξ2〉 ∼ 〈ξ1〉3. Substituting into

(5.20), we find that it is bounded by

〈ξ1〉3ρ−15b+3

(∫
|ξ|≤|ξ1|

〈ξ〉2−4ρ dξ

)1/2

≤ 〈ξ1〉ρ−15b+ 9
2

which is bounded provided b ≥ 1
15
ρ+ 3

10
.

We have completed the proof for −3
4
< s < −1

2
, and we shall now extend this result

to all s > −3
4

by interpolation. From the above, we have (5.10) for s = −5
8

and some

b < 1
2
. As a consequence,

‖∂x(uv)‖X 3
8 ,−b

≤ ‖∂x(uv)‖X− 5
8 ,−b

+ ‖∂x[(∂xu)v]‖X− 5
8 ,−b

+ ‖∂x[u(∂xv)]‖X− 5
8 ,−b

≤ (‖u‖X− 5
8 ,b

∩Dα + ‖∂xu‖X− 5
8 ,b

∩Dα)(‖v‖X− 5
8 ,b

∩Dα + ‖∂xv‖X− 5
8 ,b

∩Dα)

≤ ‖u‖X 3
8 ,b

∩Dα‖v‖X 3
8 ,b

∩Dα

thus establishing (5.10) for s = 3
8
. Now we can interpolate between the cases s = −5

8

and s = 3
8

to obtain (5.10) for −3
4
< s ≤ 3

8
. Similarly, we can extend (5.10) to all

s > −3
4
. �

Proof of Lemma 5.10(b). First we address the range −1
2
< s < −3

4
. Let ρ = −s.

Note that by the Xs,b bilinear estimate Lemma 5.10(a), it suffices to prove the lemma

under the assumption |τ | ≤ 1
8
|ξ|3. Constant multiples are routinely omitted from the

calculation.

Step 1. If |ξ1| ≥ 1, |ξ2| ≥ 1, |τ2 − ξ3
2 | ≤ |τ1 − ξ3

1 |, |τ1 − ξ3
1 | ≤ 1000|τ − ξ3|, and

|τ | ≤ 1
8
|ξ|3, then the expression

(5.23)
|ξ|

〈τ〉 ρ
3 〈ξ〉3b

(∫
ξ1

∫
τ1

|ξ1|2ρ|ξ2|2ρ

〈τ1 − ξ3
1〉2b〈τ2 − ξ3

2〉2b
dτ1 dξ1

)1/2

is bounded.

Proof. Applying Lemma 5.12, using τ2 − ξ3
2 = (τ − ξ3) − (τ1 − ξ3

1) + 3ξξ1ξ2, we get

that (5.23) is bounded by

|ξ|
〈τ〉 ρ

3 〈ξ〉3b

(∫
ξ1

|ξ1|2ρ|ξ2|2ρ

〈τ − ξ3 + 3ξξ1ξ2〉4b−1
dξ1

)1/2
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Using that |ξ1||ξ2| ≤
|τ − ξ3|
|ξ|

, this is controlled by

(5.24)
|ξ|1−ρ|τ − ξ3|ρ

〈ξ〉3b〈τ〉ρ/3

(∫
ξ1

1

〈τ − ξ3 + 3ξξ1ξ2〉4b−1
dξ1

)1/2

Set

u = τ − ξ3 + 3ξξ1(ξ − ξ1)

so that 3ξ(ξ1 − 1
2
ξ)2 = u− (τ − 1

4
ξ3), and thus

3√
2
|ξ||2ξ1 − ξ| = |ξ|1/2|u− (τ − 1

4
ξ3)|1/2

Also, du = 3ξ(ξ − 2ξ1) dξ1. It follows from the hypotheses of this step that the range

of integration is a subset of |u| ≤ |τ − ξ3|. With this substitution, we see that (5.24)

is bounded by

|ξ|1−ρ|τ − ξ3|ρ

〈ξ〉3b〈τ〉ρ/3

(∫
|u|≤|τ−ξ3|

du

〈u〉4b−1|ξ|1/2|u− (τ − 1
4
ξ3)|1/2

)1/2

By Lemma 5.13, this is controlled by

|ξ| 34−ρ|τ − ξ3|ρ〈τ − ξ3〉1−2b

〈ξ〉3b〈τ〉ρ/3〈τ − 1
4
ξ3〉1/4

If |τ | ≤ 1
8
|ξ|3, then this reduces to

|ξ| 34−ρ〈ξ〉3ρ〈ξ〉3(1−2b)

〈ξ〉3b〈ξ〉3/4

and the exponent 2ρ− 9b+ 3 ≤ 0 provided b ≥ 2
9
ρ+ 1

3
.

Step 2. If |ξ1| ≥ 1, |ξ2| ≥ 1, |τ2−ξ3
2 | ≤ |τ1−ξ3

1 |, |τ−ξ3| ≤ 1
1000

|τ1−ξ3
1 |, and |τ | ≤ 1

8
|ξ|3,

then

(5.25)
|ξ1|ρ

〈τ1 − ξ3
1〉b

(∫
ξ

∫
τ

|ξ|2|ξ2|2ρ

〈τ〉2ρ/3〈ξ〉6b〈τ2 − ξ3
2〉2b

dξ dτ

)1/2

is bounded.

Proof. Since |τ | ≤ |ξ|3, we have
1

〈ξ〉6b−2ρ
≤ 1

〈τ〉2b− 2ρ
3

, and thus (5.25) is bounded by

|ξ1|ρ

〈τ1 − ξ3
1〉b

(∫
ξ

∫
τ

|ξ|2|ξ2|2ρ

〈ξ〉2ρ〈τ〉2b〈τ2 − ξ3
2〉2b

dξ dτ

)1/2

Carrying out the τ integral and applying Lemma 5.12, we see that this is controlled

by

(5.26)
|ξ1|ρ

〈τ1 − ξ3
1〉b

(∫
ξ

|ξ|2|ξ2|2ρ

〈ξ〉2ρ〈τ1 − ξ3
1 − 3ξξ1ξ2 + ξ3〉4b−1

dξ

)1/2
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Case 1. 3|ξξ1ξ2| ≤ 1
2
|τ1 − ξ3

1 |.
Since |τ − ξ3| << |τ1 − ξ3

1 | and |τ | ≤ 1
8
|ξ|3, we have |ξ|3 << |τ1 − ξ3

1 |, giving

〈τ1 − ξ3
1 − 3ξξ1ξ2 + ξ3〉 ∼ 〈τ1 − ξ3

1〉

and thus (5.26) is bounded by

|ξ1|ρ

〈τ1 − ξ3
1〉3b−

1
2

(∫
ξ

|ξ|2|ξ2|2ρ

〈ξ〉2ρ
dξ

)1/2

Using that |ξξ1ξ2| ≤ |τ1 − ξ3
1 |, this is controlled by

(5.27)
|τ1 − ξ3

1 |ρ

〈τ1 − ξ3
1〉3b−

1
2

(∫
ξ

|ξ|2−2ρ

〈ξ〉2ρ
dξ

)1/2

Carrying out the ξ integral over the region |ξ| ≤ |τ1 − ξ3
1 |1/3 gives∫

ξ

|ξ|2−2ρ

〈ξ〉2ρ
dξ ≤ 〈τ1 − ξ3

1〉1−
4
3
ρ

and thus (5.27) is bounded by

〈τ1 − ξ3
1〉1+

1
3
ρ−3b

which is bounded provided b ≥ 5
12

.

Case 2. 3|ξξ1ξ2| ≥ 1
2
|τ1 − ξ3

1 |.
In this case, |ξ| ≤ 1

10
|ξ1|. Indeed, if |ξ1| ≤ 10|ξ|, then 3|ξξ1ξ2| ≤ 330|ξ|3 ≤ 1

3
|τ1 − ξ3

1 |.
Let u = τ1 − ξ3

1 − 3ξ1(ξ − ξ1)ξ + ξ3, du = 3ξ1(−2ξ + ξ1) + 3ξ2. Now 3|ξ|2 ≤ 3
100
|ξ1|2

and 3|ξ1(−2ξ + ξ1)| ≥ 12
5
|ξ1|2, and thus 3|ξ|2 << 3|ξ1(2ξ − ξ1)|. We see that (5.26) is

bounded by

|ξ1|ρ

〈τ1 − ξ3
1〉b

(∫
ξ

|ξ|2|ξ2|2ρ|3ξ1(ξ1 − 2ξ) + 3ξ2|
〈ξ〉2ρ〈τ1 − ξ3

1 − 3ξξ1ξ2 + ξ3〉4b−1|ξ1(ξ1 − 2ξ)|
dξ

)1/2

Using |ξ2| ∼ |ξ1|, and |ξ1(ξ1 − 2ξ)| ∼ |ξ1|2, this is controlled by

|ξ1|2ρ−1

〈τ1 − ξ3
1〉b

(∫
|u|≤|τ1−ξ31 |

|ξ|2−2ρ

〈u〉4b−1
du

)1/2

Using that |ξ| ≤ |τ1 − ξ3
1 |

|ξ1|2
, this is controlled by

|ξ1|2ρ−1|τ1 − ξ3
1 |1−ρ

|ξ1|2(1−ρ)〈τ1 − ξ3
1〉b

(∫
|u|≤|τ1−ξ31 |

du

〈u〉4b−1

)1/2

Carrying out the u integral, this is bounded by

|ξ1|4ρ−3

〈τ1 − ξ3
1〉ρ+3b−2



32 JUSTIN HOLMER

which is bounded provided b ≥ 2
3
− 1

3
ρ.

Now we address the range 3
2
< s < 3. It suffices to show∫∫

∗

|ξ|〈τ〉s/3d̂(ξ, τ)
〈τ − ξ3〉b

ĝ1(ξ1, τ1)

〈τ1 − ξ3
1〉b〈ξ1〉s

ĝ2(ξ2, τ2)

〈τ2 − ξ3
2〉b〈ξ2〉s

≤ c‖d‖L2‖g1‖L2‖g2‖L2

for d̂ ≥ 0, ĝ1 ≥ 0, ĝ2 ≥ 0, where ∗ indicates integration over ξ, ξ1, ξ2, subject to the

constraint ξ = ξ1 + ξ2, and over τ , τ1, τ2, subject to the constraint τ = τ1 + τ2, under

the assumption |τ | >> |ξ|3, since, for s > 0 in the region |τ | ≤ 2|ξ|3, ‖∂x(uv)‖Ys,−b
≤

c‖∂x(uv)‖Xs,−b
. We shall show

(5.28)
|ξ|〈τ〉s/3

〈τ − ξ3〉b

(∫
ξ1

∫
τ1

dξ1 dτ1
〈τ1 − ξ3

1〉2b〈ξ1〉2s〈τ2 − ξ3
2〉2b〈ξ2〉2s

)1/2

≤ c

Since τ − ξ3 + 3ξξ1ξ2 = (τ2 − ξ3
2) + (τ1 − ξ3

1), by Lemma 5.12, we have that (5.28) is

bounded by

(5.29) |ξ|〈τ〉
s
3
−b
(∫

ξ1

1

〈ξ1〉2s〈ξ2〉2s
1

〈τ − ξ3 + 3ξξ1ξ2〉4b−1
dξ1

)1/2

Case 1. |ξ1| << |ξ2| or |ξ2| << |ξ1|. In this case, 3|ξξ1ξ2| << |ξ|3, which combined

with |ξ|3 << |τ |, implies 〈τ − ξ3 + 3ξξ1ξ2〉 ∼ 〈τ〉. Thus

(5.29) ≤ 〈τ〉
s
3
−3b+ 1

2

(∫
ξ1

|ξ|2 dξ1
〈ξ1〉2s〈ξ2〉2s

)1/2

≤ 〈τ〉
s
3
−3b+ 1

2

(∫
ξ1

dξ1
〈ξ1〉2s−2〈ξ2〉2s−2

)1/2

(5.30)

Provided s > 3
2

and b > 1
9
s+ 1

6
, (5.30) is bounded.

Case 2. |ξ1| ∼ |ξ2|.
Case 2A. 3|ξξ1ξ2| ∼ |τ | or 3|ξξ1ξ2| >> |τ |. Then we ignore 〈τ − ξ3 + 3ξξ1ξ2〉4b−1 in

(5.29) and bound as: (∫
ξ1

|ξ|2〈τ〉 2s
3
−2b

〈ξ1〉2s〈ξ2〉2s
dξ1

)1/2

Using that 〈τ〉 ≤ c〈ξ〉〈ξ1〉〈ξ2〉, 〈ξ〉 ≤ 〈ξ1〉+ 〈ξ2〉, and 〈ξ1〉 ∼ 〈ξ2〉, this is controlled by(∫
1

〈ξ1〉2s+6b−2
dξ1

)1/2

Thus, we need 2s+ 6b− 2 > 1, which is automatically satisfied if s > 3
2

and b > 0.

Case 2B. 3|ξξ1ξ2| << |τ |. Here, we just follow the method of Case 1.

Thus we have estimate (5.11) for −3
4
< s < −1

2
, and 3

2
< s < 3. The result in the

full range −3
4
< s < 3 follows by interpolation. �
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6. The left half-line problem

We now carry out the proof of Theorem 1.3(b). We first return to the linearized

version of (1.2). Consider −1 < λ1, λ2 < 1, h1, h2 ∈ C∞
0 (R+), and let

u(x, t) = Lλ1
− h1(x, t) + Lλ2

− h2(x, t)

By Lemma 3.1, u(x, t) is continuous in x at x = 0 and by Lemma 3.2,

u(0, t) = 2 sin(π
3
λ1 + π

6
)h1(t) + 2 sin(π

3
λ2 + π

6
)h2(t)

By the definition (3.1),

∂xu(x, t) = Lλ1−1
− I−1/3h1(x, t) + Lλ2−1

− I−1/3h2(x, t)

By Lemma 3.1, ∂xu(x, t) is continuous in x at x = 0 and by Lemma 3.2,

∂xu(0, t) = 2 sin(π
3
λ1 − π

6
)h1(t) + 2 sin(π

3
λ2 − π

6
)h2(t)

Combining,[
u(0, t)

I−1/3[∂xu(0, ·)](t)

]
= 2

[
sin(π

3
λ1 + π

6
) sin(π

3
λ2 + π

6
)

sin(π
3
λ1 − π

6
) sin(π

3
λ2 − π

6
)

] [
h1(t)

h2(t)

]
By basic trigonometric identities, this 2×2 matrix has determinant

√
3 sin π

3
(λ2−λ1)

which is 6= 0 provided λ1 − λ2 6= 3n for n ∈ Z. Thus, for any −1 < λ1, λ2 < 1, with

λ1 6= λ2, if we are given g1(t), g2(t) and we set[
h1(t)

h2(t)

]
= A

[
g1(t)

I1/3g2(t)

]
where

A =
1

2
√

3 sin[π
3
(λ2 − λ1)]

[
sin(π

3
λ2 − π

6
) − sin(π

3
λ2 + π

6
)

− sin(π
3
λ1 − π

6
) sin(π

3
λ1 + π

6
)

]
then u(x, t) solves 

∂tu+ ∂3
xu = 0 for x < 0

u(x, 0) = 0

u(0, t) = g1(t)

∂xu(0, t) = g2(t)

If we take −1 < λ1, λ2 < 1, λ1 6= λ2, and set

Λw(x, t) = θ(t)e−t∂
3
xφ(x)− 1

2
θ(t)D∂xw2(x, t) + θ(t)Lλ1

− h1(x, t) + θ(t)Lλ2
− h2(x, t)

where [
h1(t)

h2(t)

]
= A

[
g1(t)− θ(t)e−t∂

3
xφ|x=0 + 1

2
θ(t)D∂xw2(0, t)

θ(t)I1/3(g2 − θ∂xe
−·∂3

xφ|x=0 + 1
2
θ∂xD∂xw2(0, ·))(t)

]
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Then (∂t + ∂3
x)Λw(x, t) = −1

2
∂xw

2(x, t) for x < 0, 0 < t < 1, in the sense of distribu-

tions. We have

(6.1)

‖h1‖
H

s+1
3

0 (R+)
+ ‖h2‖

H
s+1
3

0 (R+)

≤ c‖g1(t)− θ(t)e−t∂
3
xφ|x=0 + 1

2
θ(t)D∂xw2(0, t)‖

H
s+1
3

0 (R+)

+ c‖θ(t)I1/3(g2 − θ∂xe
−·∂3

xφ|x=0 + 1
2
θ∂xD∂xw2(0, ·))(t)‖

H
s+1
3

0 (R+)

By Lemma 5.5(b), ‖g1(t)−θ(t)e−t∂
3
xφ|x=0‖

H
s+1
3

t

≤ c‖g1‖
H

s+1
3

+c‖φ‖Hs . If −3
4
< s < 1

2
,

then 1
12
< s+1

3
< 1

2
, and Lemma 4.2 shows that g1(t) − θ(t)e−t∂

3
xφ|x=0 ∈ H

s+1
3

0 (R+
t )

with comparable norm. If 1
2
< s < 3

2
, then 1

2
< s+1

3
< 5

6
and by the compatibility

condition, g1(t) − θ(t)e−t∂
3
xφ|x=0 has a well-defined value of 0 at t = 0. By Lemma

4.3, g1(t) − θ(t)e−t∂
3
xφ|x=0 also belongs to H

s+1
3

0 (R+
t ) with comparable norm. The

conclusion then, is that if −3
4
< s < 3

2
, s 6= 1

2
, then

‖g1(t)− θ(t)e−t∂
3
xφ|x=0‖

H
s+1
3

0 (R+)
≤ c‖g1‖

H
s+1
3

+ c‖φ‖Hs

By Lemmas 5.6(b), 5.10,

‖θ(t)D∂xw2(0, t)‖
H

s+1
3

0 (R+
t )
≤ c‖w‖2

Xs,b∩Dα

By Lemma 5.5(c), ‖g2(t)−θ(t)∂xe−t∂
3
xφ|x=0‖Hs/3

t
≤ c‖g2‖Hs/3 +c‖φ‖Hs . If −3

4
< s < 3

2
,

then s
3
< 1

2
and by Lemma 4.2, g2(t)− θ(t)∂xe

−t∂3
xφ|x=0 ∈ Hs/3

0 (R+) with comparable

norm. By Lemma 5.4,

‖θ(t)I1/3(g2 − θ∂xe
−·∂3

xφ|x=0)‖
H

s+1
3

0 (R+)
≤ c‖g1‖

H
s+1
3

+ c‖φ‖Hs

By Lemmas 5.4, 5.6(c), 5.10,

‖θ(t)I1/3(θ∂xD∂xw2(0, ·))(t)‖
H

s+1
3

0 (R+
t )
≤ c‖w‖2

Xs,b∩Dα

Combining the above estimates with (6.1), we obtain

(6.2) ‖h1‖
H

s+1
3

0 (R+)
+ ‖h2‖

H
s+1
3

0 (R+)
≤ c‖g1‖

H
s+1
3

t

+ ‖g2‖Hs/3
t

+ c‖φ‖Hs + c‖w‖2
Xs,b∩Dα

By Lemmas 5.5(a), 5.6(a), 5.8(a), 5.10, and (6.2)

‖Λw(x, t)‖C(Rt;Hs
x) ≤ c‖φ‖Hs + c‖g1‖

H
s+1
3

+ c‖g2‖H s
3

+ c‖w‖2
Xs,b∩Dα

provided b(s) ≤ b < 1
2

(where b(s) is specified by Lemma 5.10), s − 5
2
< λ1 < s + 1

2
,

s − 5
2
< λ2 < s + 1

2
, α > 1

2
. In the sense of C(Rt;H

s
x), w(x, 0) = φ(x). By Lemmas

5.5 (b), 5.6(b), 5.8(b), 5.10, and (6.2)

‖Λw(x, t)‖
C(Rx;H

s+1
3

t )
≤ c‖φ‖Hs + c‖g1‖

H
s+1
3

+ c‖g2‖H s
3

+ c‖w‖2
Xs,b∩Dα
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provided b(s) < b < 1
2
. In the sense of C(Rx;H

s+1
3

t ), Λw(0, t) = g1(t) for 0 ≤ t ≤ 1.

By Lemmas 5.5(c), 5.6(c), 5.8(c), 5.10, and (6.2)

‖∂xΛw(x, t)‖
C(Rx;H

s
3
t )
≤ c‖φ‖Hs + c‖g1‖

H
s+1
3

+ c‖g2‖H s
3

+ c‖w‖2
Xs,b∩Dα

provided b(s) < b < 1
2
, and in the sense of C(Rx;H

s/3
t ), ∂xw(0, t) = g2(t) for 0 ≤ t ≤ 1.

By Lemma 5.5(d), 5.6(d), 5.8(d), 5.10, and (6.2), we have

‖Λw‖Xs,b∩Dα ≤ c‖φ‖Hs + c‖g1‖
H

s+1
3

+ c‖g2‖H s
3

+ c‖w‖2
Xs,b∩Dα

provided s − 1 ≤ λ1 < s + 1
2
, s − 1 ≤ λ2 < s + 1

2
, λ1 <

1
2
, λ2 <

1
2
, α ≤ s−λ1+2

3
,

α ≤ s−λ2+2
3

, b(s) < b < 1
2
, and 1

2
< α ≤ 1− b.

Collectively, the restrictions are −3
4
< s < 3

2
, s 6= 1

2
, b(s) < b < 1

2
,

(6.3)
s− 1 ≤ λ1 < s+ 1

2
− 1 < λ1 <

1
2

s− 1 ≤ λ2 < s+ 1
2

− 1 < λ2 <
1
2

(6.4)

1
2
< α ≤ s−λ1+2

3

1
2
< α ≤ s−λ2+2

3

α ≤ 1− b

Since s < 3
2

=⇒ s − 1 < 1
2

and s > −3
4

=⇒ s + 1
2
> −1

4
, and thus we can find

λ1 6= λ2 meeting the restriction (6.3). (Note that for s < −1
2
, we cannot use λ = 0,

the operator used in [CK02]). The conditions λ1 < s + 1
2
, λ2 < s + 1

2
imply that

s−λ1+2
3

> 1
2
, s−λ2+2

3
> 1

2
, and thus we can meet the requirements expressed in (6.3).

Define a space Z by the norm

‖w‖Z = ‖w‖C(Rt;Hs
x) + ‖w‖

C(Rx;H
s+1
3

t )
+ ‖∂xw‖

C(Rx;H
s+1
3

t )
+ ‖w‖Xs,b∩Dα

By the above estimates

‖Λw‖Z ≤ c‖φ‖Hs + c‖g1‖
H

s+1
3

+ c‖g2‖H s
3

+ c‖w‖2
Z

Now

Λw1(x, t)− Λw2(x, t)

= − 1
2
θ(t)D∂x(w1 − w2)(w1 + w2)(x, t) + θ(t)Lλ1

− h1(x, t)

+ θ(t)Lλ2
− h2(x, t)

where [
h1(t)

h2(t)

]
= 1

2
A

[
θ(t)D∂x(w1 − w2)(w1 + w2)(0, t)

θ(t)I1/3(θ∂xD∂x(w1 − w2)(w1 + w2)(0, ·))(t)

]
By similar arguments, we can show

‖Λw1 − Λw2‖2 ≤ c(‖w1‖Z + ‖w2‖Z)(‖w1 − w2‖Z)
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By taking ‖φ‖Hs + ‖g1‖
H

s+1
3

+ ‖g2‖H s
3
≤ δ for δ > 0 suitably small, we obtain a fixed

point (Λu = u) in Z.

Theorem 1.3(b) follows by the standard scaling argument. Suppose we are given

data φ̃, g̃1, and g̃2 of arbitrary size for the problem (1.2), and we seek a solution ũ.

For 0 ≤ λ � 1 (to be selected in a moment) set φ(x) = λ2φ̃(x), g1(t) = λ2g̃1(t),

g2(t) = λ3g̃2(λ
3t). Take λ sufficiently small so that

‖φ‖Hs + ‖g1‖
H

s+1
3

+ ‖g2‖H s
3

≤ λ
3
2 〈λs〉‖φ̃‖Hs + λ

1
2 〈λ〉s+1‖g̃1‖

H
s+1
3

+ λ
3
2 〈λ〉s‖g̃2‖H s

3

≤ δ

By the above argument, there is a solution u(x, t) on 0 ≤ t ≤ 1. Then ũ(x, t) =

λ−2u(λ−1x, λ−3t) is the desired solution on 0 ≤ t ≤ λ3.

7. The right half-line problem

Now we prove Theorem 1.3(a). Suppose −1 < λ < 1 and we are given f ∈ C∞
0 (R+).

Let u(x, t) = e−πλiLλ+f(x, t). Then by Lemma 3.1, u(x, t) is continuous in x at x = 0

and by Lemma 3.2, u(0, t) = f(t). Then u(x, t) solves
∂tu+ ∂3

xu = 0

u(x, 0) = 0

u(0, t) = f(t)

Therefore, to address the nonlinear problem (1.2) with given data f and φ, take

−1 < λ < 1 and set

Λw(x, t) = θ(t)e−t∂
3
xφ(x)− 1

2
θ(t)D∂xw2(x, t) + θ(t)Lλ+h(x, t)

where

h(t) = e−πiλ[f(t)− θ(t)e−t∂
3
xφ|x=0 + 1

2
θ(t)D∂xw2(0, t)]

Then

(∂t + ∂3
x)Λw(x, t) = −1

2
∂xw

2(x, t).

By Lemma 5.5(b), ‖f(t)− θ(t)e−t∂3
xφ|x=0‖

H
s+1
3
≤ c‖f‖

H
s+1
3

+ c‖φ‖Hs . If −3
4
< s < 1

2
,

then 1
12
< s+1

3
< 1

2
and Lemma 4.2 shows that f(t) − θ(t)e−t∂

3
xφ|x=0 ∈ H

s+1
3

0 with

comparable norm. If 1
2
< s < 3

2
, then 1

2
< s+1

3
< 5

6
and by the compatibility

condition, f(t) − θ(t)e−t∂
3
xφ|x=0 has a well-defined value of 0 at t = 0. By Lemma

4.3, f(t)− θ(t)e−t∂
3
xφ|x=0 ∈ H

s+1
3

0 (R+) with comparable norm. The conclusion, then,

is that if −3
4
< s < 3

2
, s 6= 1

2
, then

‖f(t)− θ(t)e−t∂
3
xφ|x=0‖

H
s+1
3 (R+)

≤ c‖f‖
H

s+1
3

+ c‖φ‖Hs
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By Lemma 5.6(b), 5.10,

‖θ(t)D∂xw2(0, t)‖
H

s+1
3

0 (R+)
≤ c‖w‖2

Xs,b∩Dα

Combining, we obtain

(7.1) ‖h‖
H

s+1
3

0 (R+)
≤ c‖f‖

H
s+1
3

+ c‖φ‖Hs + c‖w‖2
Xs,b∩Dα

We then proceed in the manner of §6 to complete the proof of Theorem 1.3(a).

8. The line segment problem

We now turn to the line segment problem (1.5). By the standard scaling argument,

it suffices to show that ∃ δ > 0 and ∃ L1 >> 0 such that for any L > L1 and data f ,

g1, g2, φ satisfying

‖f‖
H

s+1
3 (R+)

+ ‖g1‖
H

s+1
3 (R+)

+ ‖g2‖H s
3 (R+)

+ ‖φ‖Hs(0,L) ≤ δ

we can solve (1.5) with T = 1. By the techniques employed in the previous two

sections, it suffices to show that for all boundary data f , g1, g2, there exists u solving

the linear problem

(8.1)



∂tu+ ∂3
xu = 0 for (x, t) ∈ (0, L)× (0, 1)

u(0, t) = f(t) for t ∈ (0, 1)

u(L, t) = g1(t) for t ∈ (0, 1)

∂xu(L, t) = g2(t) for t ∈ (0, 1)

u(x, 0) = 0 for x ∈ (0, L)

such that

(8.2)
‖u‖C(Rt;Hs

x) + ‖u‖
C(Rx;H

s+1
3

t )
+ ‖∂xu‖

C(Rx;H
s
3
t )

+ ‖u‖Xs,b∩Dα

≤ ‖f‖
H

s+1
3 (R+)

+ ‖g1‖
H

s+1
3 (R+)

+ ‖g2‖H s
3 (R+)

Let

L1h1(x, t) = Lλ1
− h1(x− L, t)

L2h2(x, t) = Lλ2
− h2(x− L, t)

L3h3(x, t) = Lλ3
+ h3(x, t)

By Lemma 3.2 and the estimates in §5, solving (8.1), (8.2) amounts to showing that

the matrix equation

(8.3) (g1, I1/3g2, f)T = (EL +KL)(h1, h2, h3)
T
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has a bounded inverse, where

EL =

2 sin(π
3
λ1 + π

6
) 2 sin(π

3
λ2 + π

6
) 0

2 sin(π
3
λ1 − π

6
) 2 sin(π

3
λ2 − π

6
) 0

L1

∣∣
x=0

L2

∣∣
x=0

eiπλ3

 ,
KL =

0 0 L3

∣∣
x=L

0 0 It1/3(∂xL3)
∣∣
x=L

0 0 0


The matrix operator EL is invertible with inverse

E−1
L =


sin(π

3
λ2 − π

6
)

√
3 sin(π

3
λ2 − π

3
λ1)

− sin(π
3
λ2 + π

6
)

√
3 sin(π

3
λ2 − π

3
λ1)

0

− sin(π
3
λ1 − π

6
)

√
3 sin(π

3
λ2 − π

3
λ1)

sin(π
3
λ1 + π

6
)

√
3 sin(π

3
λ2 − π

3
λ1)

0

A1 A2 e−iπλ3


where

A1 =

√
3e−iπλ3 sin(π

3
λ1 − π

6
)

sin(π
3
λ2 − π

3
λ1)

L2

∣∣
x=0

−
√

3e−iπλ3 sin(π
3
λ2 − π

6
)

sin(π
3
λ2 − π

3
λ1)

L1

∣∣
x=0

and

A2 =
−
√

3e−iπλ3 sin(π
3
λ1 + π

6
)

sin(π
3
λ2 − π

3
λ1)

L2

∣∣
x=0

+

√
3e−iπλ3 sin(π

3
λ2 + π

6
)

sin(π
3
λ2 − π

3
λ1)

L1

∣∣
x=0

Since L1

∣∣
x=0

: H
s+1
3

0 (R+) → H
s+1
3

0 (R+), L2

∣∣
x=0

: H
s+1
3

0 (R+) → H
s+1
3

0 (R+) are bounded

uniformly as L → +∞, the norm of E−1
L is uniformly bounded as L → +∞. (8.3)

becomes

(8.4) E−1
L (g1, I1/3g2, f)T = (I + E−1

L KL)(h1, h2, h3)
T

and we see that it suffices to show that (I + E−1
L KL) is invertible. We claim that

KL : [H
s+1
3

0 (R+)]3 → [H
s+1
3

0 (R+)]3 is bounded with norm → 0 as L → +∞. To show

this, we need a refinement of Lemma 5.8(b).

Lemma 8.1. For −2 < λ < 1 and x > 0

‖θ(t)Lλ+h(x, t)‖
H

s+1
3

0 (R+)
≤ c(x)‖h‖

H
s+1
3

0 (R+)

where c(x) → 0 as x→ +∞.

Proof. Lλ+f(x, t) = L0h(x, t) for x > 0 by a uniqueness calculation. By (2.5),

θ(t)L0h(x, t) = θ(t)

∫ t

0

θ(2(t− t′))

(t− t′)1/3
A

(
x

(t− t′)1/3

)
I−2/3h(t

′) dt′

= −θ(t)
∫ t

0

∂t′

[
θ(2(t− t′))

(t− t′)1/3
A

(
x

(t− t′)1/3

)]
θ(4t′)I1/3h(t

′) dt′
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Since A(x) decay rapidly as x→ +∞, we have

H(t) := −∂t
[
θ(2t)

t1/3
A
( x

t1/3

)
χt≥0

]
= − 2θ′(2t)x−1

( x

t1/3

)
A
( x

t1/3

)
χt≥0

+ 1
3
θ(2t)x−4

( x

t1/3

)4

A
( x

t1/3

)
χt≥0

+ 1
3
θ(2t)x−4

( x

t1/3

)5

A′
( x

t1/3

)
χt≥0

so that L0h(x, t) = θ(t)H ∗ (θ(4·)I1/3h)(t). By the asymptotic properties of A(x) as

x→ +∞,

‖Ĥ‖L∞ ≤ ‖H‖L1 ≤ sup
x≥x

2

(|x4A(x)|+ |x5A′(x)|) → 0 as x→ +∞

and we have

‖L0h(x, t)‖
H

s+1
3
≤ ‖Ĥ‖L∞‖θ(4t)I1/3h(t)‖

H
s+1
3
≤ c(x)‖h‖

H
s+1
3

with c(x) → 0 as x→ +∞. �

From the lemma, L3|x=L : H
s+1
3

0 (R+) → H
s+1
3

0 (R+) and I1/3(∂xL3)|x=L = I1/3(Lλ3−1
+ I−1/3)|x=L :

H
s+1
3

0 (R+) → H
s+1
3

0 (R+) are bounded with norm → 0 as L → +∞. Thus KL :

[H
s+1
3

0 (R+)]3 → [H
s+1
3

0 (R+)]3 enjoys the same property and (I+E−1
L KL) has bounded

(uniformly in L as a→ +∞) inverse in (8.4).
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