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Abstract

We prove, by adapting the method of Colliander-Kenig [9], local well-
posedness of the initial-boundary value problem for the one-dimensional
nonlinear Schrédinger equation i0;u + 0%u + Au|u|*~! = 0 on the half-line

under low boundary regularity assumptions.
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1 Introduction

We consider the initial-boundary value problem on the right half-line for the

one-dimensional nonlinear Schrédinger (1D NLS) equation

10 + 02u + Aulu|*t =0 for (z,t) € (0,4+00) x (0,7T)
u(0,t) = f(t) for t € (0,7T) (1)
u(z,0) = ¢(z) for x € (0, 400)

where A € C.

On R, we define the homogeneous L*based Sobolev spaces H* = H(R) by
the norm |||

fs = | |§|SQA5(€)||L§ and the L?-based inhomogeneous Sobolev spaces
H* = H*(R) by the norm [|¢]lus = [|(€)*(€)l|z, where (€) = (1 + [¢[*)"/2. In
addition, we shall need L2-based inhomogeneous Sobolev spaces on the half-line
R* = (0,400), which we denote H*(R"). These are defined, for s > 0, as:
¢ € H5(RY) if 3 ¢ € H*(R) such that ¢(x) = ¢(x) for a.e. > 0; in this

case we set ||¢|

msgr+) = infj 6] ms®r)- We also similarly define, for s > 0,
¢ € H*(0,L) if 3 ¢ € H*(R) such that ¢(z) = ¢(x) a.e. on (0, L); in this case

we set |||

Hs(0,L) = inf$ ||é| Hs-

The local smoothing inequality of [15] for the 1D Schrodinger group is

1092
||€’tam¢||LooH2s$ < c[¢]l s
x t

This inequality is sharp in the sense that 2%1 cannot be replaced by any

higher number. We are thus motivated to consider initial-boundary data pairs

2s+1

(¢(z), f(t) € HS(RF) x H™4

optimal in the scale of L?-based Sobolev spaces.

(R;") and inclined to consider this configuration

Note that the trace map ¢ — ¢(0) is well-defined on H*(R') when s > %
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Thus, if s > 1, then 2221 > 1 and both ¢(0) and f(0) are well-defined quantities.
Since ¢(0) and f(0) are both meant to represent u(0,0), they must agree.

Therefore, we consider (1) for 0 < s < £ in the setting

2s+1

¢ € H'(R"), fe H+ (RY), and if § < s <3, ¢(0) = f(0) (2)

The solutions we construct shall have the following characteristics.

Definition 1. u(x,t) will be called a distributional solution of (1), (2) on [0,7™)

with strong traces if

(a) u belongs to a space X with the property that u € X implies ulu|*™! is

defined as a distribution.

(b) w(z,t) satisfies the equation (1) in the sense of distributions on the set

(,1) € (0,+00) x (0,T7).

(c) Space traces: ¥V T' < T*, we have u € C([0,T); HE) and u(-,0) = ¢ in
Hs(RT).
(d) Time traces: VT < T*, we have u € C(Ry: H™ (0,T)) and u(0,-) = f

2541

in H=1 (0,T).

For the purposes of uniqueness in the high regularity setting s > %, we can

consider a weaker notion of solution.

Definition 2. u(zx,t) will be called a distributional solution of (1), (2) on [0, T%)
with weak traces if it satisfies conditions (a), (b) of Definition 1 and

(¢) Onme-sided space traces: VT < T*, we have u € C([0,T]; H*(R})) and
u(+,0) = ¢ in H5(RT).



(d) Boundary values: VT < T™, we have 1;{1(}||u(x, = fHHLS‘lﬂ(OT —

So that we may, at a later time, properly address the matter of uniqueness in
the low regularity s < % setting, we shall introduce the concept of mild solution

used by [1].

Definition 3. w(z,t) is a mild solution of (1) on [0,7%) if VT < T*, 3 a
sequence {u,} in C([0,T]; H*(R}))NCY([0,T]; L*(R})) such that

(a) up(x,t) solves (1) in L*(R}) for0 <t <T.

(b) lim ||lu, — UHC([O,T];HS(R?)):O'

n—-+4oo

(©) lim_[lun(0,) -

n—-+

[1] have announceed a method for proving uniqueness of mild solutions for
the Korteweg-de Vries (KdV) equation on the half-line (to be discussed further
in [2]), and the techniques of this forthcoming paper may also apply here to
resolve the uniqueness problem for 0 < s < %

We establish in §8 the following straightforward fact.

Proposition 1. For s > 3, u is a distributional solution of (1), (2) with weak

traces if and only if it is a mild solution; in this case u is unique.
Our main result is the following existence statement.
Theorem 1.

(a) Subcritical: Suppose

O<s<—, and2<04<5 25



or

$<s<3 and2<a<oo

Then 3T* > 0 and u that s both a mild solution and a distributional solu-

tion with strong traces of (1),(2) on [0,T*). IfT* < oo, then limgyr-

00, Also, VT < T*, 36 = (s, T, 0, f) > 0 such that if 0 < § < 0y and
I — ¢1]
above) on [0,T], corresponding to (1, f1), such that ||u — uy||c(o,r); Hz) +

lu — ul“c(R;C; ¥ oy S 0 with ¢ = ole:T. /,9).

sty +|[f — f1||H2‘gP(R+) < 0 then there is a solution u;(as

5—2s

1o Then 3T* > 0 maximal and u

(b) Critical: Suppose 0 <'s < 3 and o =
that is both a mild solution and a distributional solution with strong traces
of (1),(2) on [0,T%). Also, 3T =T(s,¢,f) <T* and 3 5y = 0o(s, ¢, f) >
0 such that if 0 < 6 < g and ||¢ — ¢1|

Hs(R+) + Hf — fl”HQSz-l (R+) < 0 then

there is a solution uy (as above) on [0,T], corresponding to (¢p1, f1), such

that [|u —wlloqory mp) + llu —wll g - pos o 7)) < €0, with e = (s, f,9).

Note that in (b), we may not have blow-up in the norm ||u(-,t)|| as ¢t T T*.

The proof of Theorem 1 involves the introduction of a boundary forcing
operator analogous to that introduced by [9] in their treatment of the general-
ized Korteweg de-Vries equation (gKdV) on the half-line, and incorporates the
techniques of the standard proof of local well-posedness of the corresponding
initial-value problem based on the Strichartz estimates (see [7]).

One could also consider the left half-line problem
10 + 0%u + Mufu|*t =0 for (z,t) € (—00,0) x (0,T)
u(0,t) = f(t) for t € (0,7)
u(z,0) = ¢(x) for x € (—00,0)

u(s )|y =



although this is actually identical to the right half-line problem (1) by the trans-
formation u(z,t) — u(—=x,t).
We plan, in a future publication, to examine the initial-boundary value prob-

lem for the line-segment

(0 + 8% + ulu[*t =0 for (z,1) € (0,L) x (0,T)
w(0,1) = fi(t) for t € (0,7)
u(L,t) = fo(t) for t € (0,7)
u(z,0) = ¢(z) for = € (0, L)

(
and consider global existence questions for the half-line and line-segment prob-
lems.

We now briefly mention some earlier work and alternate perspectives on this
problem and related problems. The main new feature of our work is the low
regularity requirements for ¢ and f. Under higher regularity assumptions, more
general results are already available. [18] considered a bounded or unbounded
domain 2 C R"™ with smooth boundary 0f2, and proved global existence of

solutions to
i0wu + Au+ dujul* ' =0 for (z,t) € Q x (0,T)
u(z,t) = f(x,t) for x € 00 (3)
u(z,0) = ¢(x) for x € Q
where f € C3(99) is compactly supported, ¢ € H'(€), and A < 0. This solution
is obtained as a limit of solutions to approximate problems after several a priori

identities have been established. Earlier, [6] and [5] had obtained solutions to

(1) fora >3, A< 0and a =3, A € R for ¢ € H*(RT) and f € C?(0,T), using



semigroup techniques and a priori estimates. The problem (3) with f = 0 had
been considered previously ([4] [22] [20] [21] [23]).

[10] in the integrable case a = 3, A = £2 with ¢ Schwartz and f sufficiently
smooth, obtained a solution to (1) by reformulating the problem as a 2 x 2 matrix
Riemann-Hilbert problem. In this setting, [3] obtain an explicit representation
for 0,u(0,t).

Outline: In §2, we discuss some notation, introduce function spaces and
recall some needed properties of these function spaces. In §3, we review the
definition and basic properties of the Riemann-Liouville fractional integral. In
84, 5, we state the needed estimates for the group and inhomogeneous solution
operator. In §6, we define the boundary forcing operator, adapted from [9], and
prove the needed estimates for it. In §7, we prove Theorem 1. In §8, we prove

Prop. 1.

2 Notations and some function space proper-
ties

Let xs denote the characteristic function for the set S. We shall write L% to
mean L4([0,T]). Set ¢(¢) = [, e ™E¢(x)dw. Define (r — i0)* as the limit, in
the sense of distributions, of (7 + 7)™ as v T 0. Let (£)* = (1 + |£]*)*/2. Let
Es\f(ﬁ) — |€*f(€). The homogeneous L2-based Sobolev spaces are H*(R) =
(—0*)7*/2L%(R) and the inhomogeneous L%based H*(R) = (1 — 9%)~*/2L%(R).
We also set, for 1 < p < oo, WP = (I — 9*)7*/2LP. We use the notation H®
to mean H*(R) (and not H*(R") or Hi(R™)). The trace operator ¢ — ¢(0) is

defined for ¢ € H*(R) when s > 1. For s > 0, define ¢ € H*(R") if 3 ¢ € H5(R)



such that ¢(x) = ¢(z) for z > 0; in this case we set ||¢]

Hs(R+) — mfd; ||§g| Hs(R)-

For s > 0, define ¢ € H(R") if, when ¢(x) is extended to ¢(z) on R by setting
¢(x) = 0 for z < 0, then ¢ € H*(R); in this case we set 91l 25 m+) = D] 225 m)-

Define ¢ € C§°(R™) if ¢ € C*°(R) with supp ¢ C [0, +00) (so that, in particular,

¢ and all of its derivatives vanish at 0), and Cg%(R*) as those members of
C°(R*) with compact support. We remark that Cg%.(R*) is dense in H§(R™)
for all s € R. We shall take a fixed § € C°(R) such that 0(¢t) = 1 on [—1, 1] and
suppf C [—2,2]. Denote by 07(t) = 0(tT1).

Lemma 1 ([9] Lemma 2.8). If 0 < o < 3, then |07k g« < (T)*||R| 0,

where ¢ = ¢(a, 0).

Lemma 2 ([13] Lemma 3.5). If —1 < o < 1, then || X(0100) || o < || f] 110,

where ¢ = c(a).

Lemma 3 ([9] Prop. 2.4, [13] Lemma 3.7, 3.8). If 1 < a < 2, then

HYRY) ={f € H*(R") | f(0) =0} and if f € H*(R") with f(0) =0, then

1X(0,100) f | g (+) < || fllrar+), where ¢ = c(a).

The following Gronwall-type inequality can be obtained by applying the
Holder inequality iteratively:

Lemma 4. If1<g <g<ocoandVt>0

</Ot |9(5)|qd3> Ha <o+ (/Ot Fs)[ ds)l/ql

then with ~ defined by 2cvi_% =1, we have V't > 0,

( / i) ds) " < s



A version of the chain rule for fractional derivatives is

Lemma 5 (Prop. 3.1 in [8]). Let 0 < s < 1, u: R — R? and F : R? — R?,
F e C", so that F'(u) is a 2 X 2 matriz. Then
1D F ()| < el ()|l ri [|D*ul 22
1

11 :
for;za+g with 1 < r,ri,ry < 00.

The product rule for fractional derivatives is

Lemma 6 (Prop. 3.3 in [8]). Let 0 <s < 1. Ifu,v: R — R, then
1D (uo) e < [[D%ul| [0l e + [l s [|1 D0 £

for 1 <r,ry,re,r3, 14 < 00 and%Z%Jri lZ%Jri.

3 The Riemann-Liouville fractional integral
The tempered distribution ﬁ—;) is defined as a locally integrable function for

()=t 0

Integration by parts gives, for Re a > 0, that

t(jcr—l ok ti—‘rk—l
L(a) ' |T(a+k)

Re a > 0, i.e.

for all £ € N. This formula can be used to extend the definition (in the sense of
3!
TI'(«)

distributions) of to all @ € C. In particular, we obtain

a—1
t+

= do(t)




A change of contour calculation shows that

-~

[ﬁaﬂ (r) = e~ 3™ (7 — i0)~®

where (7 —i0)™® is the distributional limit. If f € C§°(R™), we define
3!

INE)!

Iaf: *f

Thus, when Re a > 0,

(1) = ﬁ / (t — )2 f(s) ds

and Zof = f, T f (t) = f(f f(s)ds,and Z_, f = f'. Also Z,Z3 = Z,g, which fol-

lows from the Fourier transform formula. For further details on the distribution
a—1

t
Ta)» S€e [11].

Lemma 7. If h € C°(R"), then Z,h € Cg°(RT), for all a € C.
Lemma 8 ([12]). If0 < a < +o0 and s € R, then

1 Z-ah]

Hy®R+) < c[[h] HT(RT)
Lemma 9 ([12]). If0 < a < 400, s € R, pp € Ci°(R)

11 Zabl 5 ey < bl g ey

where ¢ = ().

4 Estimates for the group

Set
o) = 5 [ < o(e) de ©
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so that
(i0, + 02)e™%p =0 for (z,t) e Rx R

e“aggb(x)}tzo = ¢(x) forx e R

Lemma 10. Let s € R. If € H*(R), then

(a) Space traces: ||e“85¢(93)||c(Rt;H;) < c||o|| g -

(b) Time traces: [0r(t)ePo@)], s < elT) ]

Hs -

(¢) Mixed-norm: If2 < ¢, r < oo and é + 5= = 1, then Heita%d%)HLng” <

cl|¢]

Hs -

Proof. (a) is clear from (4). (b) was obtained in [15]. (c¢) was obtained by [19]
(see also [14]). O

5 Estimates for the Duhamel inhomogeneous

solution operator

Let
t
Dw(z,t) = —i/ e %y () di!
0
Then
(i0; + 02)Dw(x,t) = w(x,t) for (z,t) ER xR
Dw(z,0) =0 forx e R
Lemma 11. Suppose 2 < q, r < oo and % + % = i, then

(a) Space Traces: If s € R, then ||Dwllow,.ms) < cllwll o s -
+ T

(b) Time Traces: If =3 < s < 3, then HQT(t)Dw(x,t)||C(Rm;ths4+1) < C<T>1/4Hw||L?/W§,W.

11



(c) Mixed-norm: If s € R, then |Dw| pawsr < cllw|l oy
t T

Proof. (a) and (c) are due to [19] (see also [14]). We now prove (b), following
the techniques of Theorem 2.3 in [16]. We use the representation

. +00

[ee]

1 , 1 oW
+— [ " | lim — / e”ﬁwdg dr
27 ., =0+ 27 Jirpe2me T+ EP

=14+1I
and Term II can also be written

II = % TeitT[m(-,T) * ' (-, 7)](x) dT

where w'(-,7) denotes the Fourier transform of w(x,t) in the ¢-variable alone

and

1 exp(—|z[|7['/?) | 1 sin(|z[|7['/?)

m(l’, 7_) = _§X(0,+oo) (7—) |7_|1/2 + §X(*°°:0) (T) |T’1/2

First we treat Term I for all s and all admissible pairs ¢, r. Pairing Term I with
f(x,t) such that || f[| =~ 2.0 <1, we are left to show that
LacHt
‘ < cHwHLng;,w
H;

/ (sgnt'e %y (z, ') dt’
t/

and

The first of these follows from the proof of (a), while the second is obtained by

/ Or(t)e % f(x, t) dt

t

< .
. cHfllLacht_%

duality and Lemma 10(b). We address Term II separately for ' = 2, ¢’ = 1,

and ' =1, ¢ = %; the intermediate cases follow by interpolation. For the case

12



" =2, ¢ =1, we use the first representation of Term II with Lemma 1, the
change of variable n = —¢£2, and L2-boundedness of the Hilbert transform on

Ag-weighted spaces, to obtain

1/2
1070 Term 1) s < e ([ It o) o

<c(/|§| (f1or ft\dt) )1/2

where w”(&,t) denotes the Fourier transform in the z-variable alone. Complete
the bound by applying Minkowskii’s integral inequality and the Placherel theo-

rem. The validity of this step is restricted to —% <s < %

We shall only prove the v’ = 1, ¢ = % case for s = 0. Note that by the

second representation for Term II, ||(Term II) 1/ is

// |T|_1/2m(x —y, 70 (y, 7) dy / |7|712m(z — 2z, 7)wt (2, 7) dz dT
T Jy

z

which is equivalent to

K(y, s, 2, t)w(y, s)w(z, 1) dy ds dz dt

Y,8,2,t
where
K(y,s,z,t) = /]7\1/2 “DT(x —y, T)m(x — 2z, 7) dr

From the definition of m, we see that |K (y, s, z,t)| < c|s — t|7¥/2. We conclude
by applying the theorem on fractional integration (see Theorem 1 of Chapter V
in [17]). [

13



6 Estimates for the Duhamel boundary forcing
operator

For f € C§°(R™), define the boundary forcing operator

t
£i(at) =264 [ OR )T g () it (5)
0

ix?

- % /Ot(t — 1) Y2 exp (m) T apf(t)dt (6)

The equivalence of the two definitions is evident from the formula

67i£sgnt 1 ix2 - 2
- - - — g
v e ()] ©=

From these two definitions, we see that

(i, + O2)Lf (x,t) = 26757 80(2)T_1 )0 f (t) for (z,1) € R X R
Lf(z,0)=0 for z € R
Lf(0,t) = f(t) fort e R

We now establish some continuity properties of Lf(xz,t) when f is suitably nice.
Lemma 12. Let f € Cgo.(RT).

(a) For fized t, Lf(x,t) is continuous in x for all x € R and 0, Lf(x,t) is

continuous in x for x # 0 with

11%1 L f(x,t) = 6_%7—1/2]((75) h?g QL f(x,t) = —G_imz—uzf(t)
(7)

(b) Vk=0,1,2,... and for fived z, OFL f(x,t) is continuous in t for allt € R.

14



We also have the pointwise estimates, for k =10,1,2,..., on [0,T],
5 Lf (2, 8)] + |0 L f (2, 8)] < elar)™
where ¢ = c(f, N, k,T).

Proof. Let us denote “integration by parts” by IBP. It is clear from (6) and
dominated convergence that, for fixed ¢, Lf(z,t) is continuous in z, and for
fixed x, Lf(x,t) is continuous in ¢. Let h = 26&”1_1/2]” € C°(RT) (by Lemma
7) and ¢(&,t) = [o e (') dt'. By IBP in ¢/, 0£0(&,t)] < ()", where

c¢=c(h,k,T), and thus
Eo(E%, )] < efg) ™2 (8)

We have

Liet) = [ ot 0 dg (9

3
and by IBP in € and (8), we have |Lf(z,t)] < ¢(z)~N. By 8,[et"1%5y(x)] =
—0y[¢1%5)(2)] and IBP in ¢’ in (5), &,Lf = Ld,f, and thus, for fixed z,
OFLf(x,t) is continuous in ¢ and [OFLf(z,t)| < clz)~N. By 92[e!=")%5y(x)] =
i0p[e't11%5o(x)] and IBP in ¢ in (5), O2Lf(x,t) = 2e'376(x)T 10 f(t) —
iL(Oyf)(z,t). Hence
OuLf (x,t) = 37 (sgna)T_ o () — / L)1) da’ + ()
z'=0

Since all terms except c¢(t) are odd in z, we must have ¢(t) = 0. From this
we obtain (7), and the bound [0, Lf(x,t)| < c¢. From (9), IBP in £ and (8), we
obtain that |0,Lf(z,t)| < c|z|™. Combining the two previous bounds, we have

10.Lf(z,t)| < clx)™N. O
Now we provide an alternate representation of L f(x,t).

15



Lemma 13. Suppose f € CgS.(RT). Then

1/2 2

Lf(x,t) = % / e lel =0 £ (1) dr (10)

where

1/2 1/2

. 1 .
(7 =10)2 = X(0,400) (T|T]"* = iX(—00,0)(T) 7]

Proof. 1t suffices to verify that
(a) On [0, 7], [Lf(z, )]+ [0Lf (x,1)] < c{x)~N, with ¢ = ¢(f, N, T).
(b) Lf(z,0)=0

(c) (0 + O2)Lf(x,t) = 200(x)eT™T_y o f (1)

e~ lzl(T=i0)!/2] —

(a) is integration by parts in 7 in (10) using —2(7 —i0)"/2|z| =10,
. To show (b), note that since f € Cgo.(R"), f(7) extends to an

67|x|(7'7i0)1/2

analytic function on Im 7 < 0 satisfying |f(7)| < ¢(r)~* with ¢ = ¢(f, k), and

thus

Lf(z,0)= x lim el

2 710 Im 7=~

1/2 2

f(r)dr (11)

Since |e71#1™"*] <1 for Im7 < 0, by Cauchy’s theorem, (11) = 0. (c) is a direct
computation from (10).

Denote the operator defined by (10) as Lo f(z,t) and the one given by (5)-(6)
as Ly f(x,t). Setting w = L, f — Lof, we have w(x,0) =0 and (i0; + 02)w = 0.
Compute 9y [ |w|*dz = 0, which yields w = 0, to complete the proof. ]

1,1 1
Lemma 14. Suppose q,r > 2 and s Tw T

4
0

(a) Space traces: If —3 < s < 3, then ||0p(t)Lf (2, t)||cmyms) < c<T>1/4HfHH2.s+1

16
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(b) Time traces: If s € R, then Hcf”O(Rz;Hj%P(Rj)) < c||f||H()2%+r1(R+).

(¢) Mixed norm: If0 < s <1, r # oo, we have ||Lf]|Lawsr < c||f||st+1 .
0

T(R+)
Proof. By density, it suffices to establish these facts for f € Cg%(R™).
By pairing (a) with ¢(z) such that ||¢||z-s < 1, we see that it suffices to

show

t
[ 1o %] _dt < (T A
t'=0

/

But
LHS < X oo f(I] 222 [0r(2)e" % 6(2)|| s < RHS

4 t

by Lemmas 10(b) and 2. To establish the continuity statement, write 07 (t2)Lf(z,ts)—
Or(t)Lf(z,t1) = ttf WO LS (x,t)]dt. By O.L = LI, and the bound just de-
rived, we have ||07(t2)Lf(x,ta) — Op(t)Lf(z,t1)]| < c|ta — t1|||f||H02T+5

(b) is immediate from Lemma 13, except that we should confirm that (under
the assumption f € CGo.(RT), that 9fLf(x,0) = 0 for all k = 0,1,2,.... This,
however, follows from 0L = L0;. The continuity statement follows by using

Lf(xa,t) — Lf(x1,t) = f;f 0. Lf(x,t)dr. From Lemma 13, we have

1, 1 . -N\1/2 o~
0. Lf(x,t) =e 1™ (sgn x)% /eme_wl(T_ZO) / Z_1jof] (1) dr

T

and thus

H‘Cf(x%t) - [’f(xht)HH%

. clzy — fL“1|||f||HO2ST+3

To prove (c), it suffices to establish

ILf(z, )l rire < cllfllgs (12)

and

10:Lf ()| Large < cllf[] gaa (13)

17



Indeed, the proof of (a) in the case s = 1 shows

1L (@, ez < ellfllgnn N0LS (@ )l Lgerz < el fl s

Interpolate (12) with the first inequality and (13) with the second inequality to

obtain

ILF (@, O)llgry < ellfllgm N10:LF (@, )|y < cllfll s

for admissible ¢, r. This implies

ILf (@, )l pawsr < cllfll 20, 7 # 00

for s = 0 and s = 1. Now interpolate over s between these two endpoints to
obtain the result as stated.

By pairing LHS of (12) against w(z,t) € L{/*L}

x?

// T —|x\’r i0)1/2 (fL’,t) d dt

Writing out the L2 norm, we see that it suffices to show

we see that it suffices to

show

fI—1/4

K(x,t,y,s)w(z, t)w(y,s)dvdtdyds < cllwl| /3,

x7t7y7s
where

K(x,t,y,s) = / ’T|_1/267;(1“3)76_‘9”(T_io)me“yKT“O)l/2 dr

By a change of contour calculation, it follows that |K (z,v,t,s)| < c|t — s|7'/2,
and hence (12) follows by the theorem on fractional integration. For (13), the

kernel is instead

K(z,t,y,s) = (sgnz)(sgny /|T| L2it=s)r o lal(r=i0)!/2 o=lyl(r+i0)'/* g

and hence the estimation of | K| is identical. O
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7 Existence: Proof of Theorem 1

First we prove the subcritical assertion (a) in the case 0 < s < 3. Select an
extension ¢ € H® of ¢ such that ||¢zs < 2||¢| HyR). Oet 7 = 1+‘(X;_11)s and

q= %. This is an admissible pair with 7 > 2 and ¢ > 2(:%; + 1). Set

2541

Z=CRy; H)NCR,; H, * )N LIWS"
Take w € Z. By the chain rule (Lemma 5), for & > 1 (see below for details)

1D (wl* w)ll, gy < Tl yre (14)

gy
for some ¢ > 0. Note that by Lemmas 10(b), 11(b), 2, if w € Z, then
£) = b (e %0]_y € Hy " (RY) and Gor(HD(wlwl*)(0,1) € Hy * (R),
and the evaluation at z = 0 in these statements is understood in the sense of

2541
CO(Ry; H, * ). Let

Aw(t) = Or(t)e"% ) + 0r(t) L(f — Oare™d| _ )(t) (15)
— M (t)D(w|w|*™ ) (t) + A0 (1) L(O2D(wlw|* )| _)(t)

so that, on [0, 7], (i0; + 02)Aw = —Aw|w|*~! for x # 0 in the sense of distribu-
tions. By Lemmas 10, 11, 14 and (14),

[Awl[z < cll¢|

oy + gt g+ T ol (16)

In the sense of C(Ry; H), we have Aw(z,0) = ¢(x) on R, and in the sense of

2s+1
4

C(R,; H, * ), we have Aw(0,t) = f(t) on [0,7]. We therefore look to solve
Aw = w for some selection of T'. By the chain rule and product rule (see below

for details), for a > 2,
[Awy = Aws|l 7z < T ([Jwn |5 + [lwal| 5™ wr — w2 (17)
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Now choose T" small in terms of ||¢|| gs®+) and ||f||H2%P1 so that, by (16)

(R*)’
and (17), A is a contraction, which yields a unique fixed point w, which on [0, T’

solves the integral equation

u(t) = e"%g+ L(f — %] ) (18)

— XD (ulul*™") + AL(D(ulu|*)|, )

Let S be the set of all times 7" > 0 for which (1) 3 u € Z such that u solves
(18) on [0,7] and (2) for each pair uy, us € Z, such that u; solves (18) on [0, 7}]
with 77 < T and uy solves (18) on [0, 73] with 75 < T, we have u; = uy on
[0, min(T7, T)].

We claim that 7" as given in the above contraction argument is in .S. We need
only show condition (2). But the integral equation (18) has a unique solution
by the contraction argument in the space L7, W2", where T, = min(T},T5),
by Lemmas 10(c), 11(c), 14(c) and the fact that xjor,.1L9 = Xo,5,.]£(07,.9),
X[0,5,] Pw = X[o,1,]DXpo,1,)w- Let T = sup S. Define u* on [0,7%) by setting,
for t < T*, u*(t) = u(t) for some u € Z whose existence is given by condition
(1); this is well-defined by condition (2).
u(-, t)]

me(r+) < a. By the above existence argument applied

Suppose T™ < 0o and limyyz- ms(r+) 7 00. Then 3 a and a sequence

t, — T* such that ||u*(t,)|

at time t,, for n sufficiently large, we obtain a contradiction, as follows. We shall
select T' = t,, for n sufficiently large in a moment. We have, by assumption,

uy € Z solving the integral equation

ur(t) = %G 4 L(f — %
— AD(ug|ug|*7) + AL(D(us Juy |*7)]

=0) (19)

x:O)

on [0,7]. Apply the above existence argument to obtain uy € Z solving, on
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[T, T + 6], the integral equation

up(t) = D% u(T) + LT(f = T%u(T)| ) (20)
= ADT (uz|up|*™1) + ALT (DT (uz|ua|* )], )
where
Lig(t)=(g(+T)(t=T) D'o(t) =D(-+T)(t-T)
Since 6 = d(a, ||f”H2‘5+r1(R+))’ we can select n sufficiently large so that T+ § =

t,+0 > T* Now we show that we can concatenate these two integral equations.
Define u(t) = uy(t) for —oo < ¢t < T and u(t) = us(t) for T < t < +00. Then
clearly uw € L{W!>* N C(Ry; HE). Evaluate (19) at t = T', substitute into (20),

and apply the two identities

Ly(t) = D% Lg(T) — LT (g — D% Lg(T)| _ )(t) fort >T o
o= 21

Du(t) = /1% Dy(T) + D o(t) for all ¢
with v(t) = —Aulu|*"(t) and g(t) = f(t)—e"%¢
This establishes that u solves, on [0,7 + 4], the integral equation (18). Next,

—Dv(0,t)on 0 <t < T+39.

=0

2541

we show that v € C(R,; H 1 ). Let ¢p € C* such that ¥(t) = 0 for ¢t < 0,

Y(t)=1for L <t <T+2 () =0fort>T+4. It is clear from the definition
2541

of u that (1 —¢)u € C(R,; H, * ). Since by (18)

D(t)u(t) = Y(£)e"% g+ () L(f — Oarrse o wo) ()
— M) D (ulu|* 1) (#) + M (E) L(Oa(r 15D (ulu]* )| )

2541
by Lemmas 10(b), 11(b), and 14(b) we have yyu € C(R,; H, * ).
Next, we need to verify condition (2) in the definition of f. Now suppose

u is a solution on [0,7,] with 7,, < T + ¢, and v is a solution on [0, 7] with
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T, < T + 6, and suppose min(7,,7T,) > T*. Then u(t) = v(t) for all t < T
(since T' € S). Then, again by (21), u solves (20) with uy replaced by u, and
v solves (20) with us replaced by v (u(T") = v(T")). By uniqueness of the fixed
Wer, we get that u(t) = v(t) on [T,T + 0]. We have

point to (20) in L7, 5

thus established that sup.S > T + ¢ > T™, which is a contradiction, so in fact

limtTT* U(‘, t)HHS(R"") =o0 if T* < 0.

Now we move on the continuity claim. Suppose (¢, f) gives a solution u of

(18) on [0,7™), and consider (¢1, f1) with |[¢— o1 || gs@e)+ || f— fil] 2500 < 0.

H™4 (Rt)
Fix T' < T*. Let uy be the solution corresponding to (¢4, f1) on [0, 71], where T}

is the first time ¢ such that ”ulHLfo G = 2||ullgawer. We claim that 71 > T
provided we take  sufficiently small. Indeed, taking the difference of the two

integral equations, we find, for ¢ < min(7},7T)

lu = wllze wer < €8+ c(llull gwer + lJullg, wer)llw = wllpe wer

where ¢; < ¢, and ¢ depends only upon operator norms. This gives, by Lemma
4,

lu = wllgg  wer < cd (22)
where now ¢ depends on f, ¢, and T. Now if T} < T, then take t = T} in

(22) and 4 sufficiently small to obtain a contradiction. The inequality (22) plus

estimates on the difference of the integral equations for u and wu; also shows

s = willeqom; mo + 1o = will g, g2t 7y < 0

Now we remark on the proof in the subcritical case (a) for % <s< % Let

2s+1

Z=CRy; H7)NC(Rys Hy * )
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Set r = 2, ¢ = oo in the remainder of the argument above. Do note, how-

2s+1

o € H7i (R)), we need to appeal to

ever, that to show f(t) — 62T(z€)e“3§$

the compatibility condition f(0) = ¢(0) and Lemma 3. Also, by Lemma 3,
2s+1

Oor (t)D(wlw|*~1)(0,t) € Hy * (R])

Now we discuss the critical case (b). Let Z = L{W>" with r = ; +‘(1;_11)5 and

4(a+1)

4= o=z The integral equation is

Aw(t) = Or(t)e"d + 0r(t)L(f — Oare™ % o) (D) (23)
— Mr(t)D(w|w|* 1) (t) + M (t) L(OarD(wlw|* )| ()

Now, because g # o0, ||0T(t)e“8%gz~§||LgW;m — 0as T | 0 and [|00(t)L(f —
Oyrei % o)l Lawrs — 0as T' | 0. Therefore, 3T > 0 such that

167(8)e"% @ sawsr + 10 (DL(f — Ozre™® 6

weo) Ol aws <6

which gives

[Aw][z < 6+ cllwllz (24)

For ¢ sufficiently small, there will be a fixed point in the space {w € Z | ||w||z <
26 }. From Au = u, (23) and Lemmas 10(a), 11(a), 14(a), we can recover the
bounds in C(R;; H?), and by Lemmas 10(b), 11(b), 14(b), we can recover the
bounds in C(R,; H:S“i). Let T be the supremum of all existence times with a
uniqueness stipulation, as before. We are not able to show the blowup statement
in this case. Moreover, we also can only establish the continuity assertion for

some T < T*.
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7.1 Notes on applying the chain and product rule

We shall apply the chain rule (Lemma 5) with w: R — C and F : C — C given
by F(w) = |w|* 'w, for « > 1. Then

(@ —D]w]*3Rew)? + [w|*! (o —1)|w[**(Rew)(Imw)

F'(w) = ) ] .
(a—D]wl*3Rew)(Imw) (o —1)|w|*3(Imw)? + Jw|**

and consequently each component of F'(w) is bounded by |w|*~!. Thus
1D w|* wll yr < eallfw|* | |1 D*wllzy

where - =1 -1 =1_-24apnd L =1 L1 —-1_2 Sincer,qhave been selected
T ™ IS q q q

so that—Lt— = % — s and

1
a7 >, we have

1D*[w|* wll < ellD*wll,

To handle differences, for wg, w; : R — C, set wy = Ow; + (1 — O)wy. Then

1

[wi | s — [wo|*~ wo = / (0= 1)|we|*~*wp (wp o (w1 —wp)) +wp|* " (w1 —wo)
6=0

where 2z 0 29 = (Re z1)(Re 22) + (Im 21)(Im 22). To this, apply D?, and invoke

the product rule (Lemma 6) and the chain rule (Lemma 5).

8 Uniqueness: Proof of Prop. 1

We shall begin by establishing uniqueness of a distributional solution with weak
traces for the linear problem for s > 0. Given two solutions uy, us, consider the

difference v = u; — us. We are thus assuming
v e C([0,T); L*(R")) with v(z,0) =0 (25)
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and

lim [[o(e, |z =0 (26)

r—07t (0,T)
Take T' < T™*. Let 6(t) be a nonnegative smooth function supported on [—2, —1]
with [0 =1. Let 05(t) = 67'0(6't). For d,¢ > 0, let

tselnt) = [ [ vl 5105t = )00t~ 5) dyds (27)
which defines, in the sense of distributions, vs.(z,t) a smooth function on — <
T < 400, —e < t <T — 2¢. Owing to the assumption (25) we can write

Vse(z,t) = /896(15 —5) {/v(y, $)0s(x —y)dy| ds

Y

where the integrals are defined in the usual sense. From this it follows that

el 2y < sup o 8)ll 2y
t+e<s<t+2e
Owing to the assumption (26), 3 L > 0 such that supy_ <oy [|[v(7,-)|[z2 <1

0,17) —

It follows that, for « + 26 < 2L, (27) can be written

wslet) = [ =) [otsinte = syds] ay

where the integrals are understood in the usual sense, and we also have

|Vs.e(z, )220 < sup  [[v(y, )| L2(er420) (28)
r+I<y<z+26

Let
ve(x,t) = /Qe(t — s)v(z, s)ds

s

which is initially understood as defining, for each t, a distribution in x on
(0, +00). It follows from (25) that it is also, for each ¢, a square integrable

function in & with ||ve(-,t)|| r2@+) < SUPyyecseryoe [V( 9)| 2@ty and

hm H’l}e(‘,t) — /U('at)HLQ(R“') = O (29)

e—0t
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Now we proceed to the calculation. The identity is

~+o00 +o00 T
/ (v (2, T)|2 da: — / s (2, 0)[2 + 2Im / 0,05, (0, )0 (0. D) dt (30)
0 x t=0

=0
Now 3 1 with 0 < x; < L such that d,vs.(x1,t) = L™ (vse(L,t) — vs.(0,1)),
by the mean-value theorem. Again by the mean-value theorem, 3 x5 with 0 <

Ty < 1 such that 0,vse(w1,t) — Opv5(0,t) = 2102vs,¢(w2, t). Subtracting,

102050, )20y < L sup [|03vse(ys )20y + L7 sup [vse(y, )llzz0m)
0<y<L 0<y<L
(31)

Bounding the terms on the right of this equation, we have

sup ||Ua,e($,')HL2(o,T)§ sup HU(J%')HLQ =
0<z<L S<w<L+25 (e, T+2¢)

We also have

O2vs(x,t) = —i0yws.(x,t) = ie ! // Os(z — y)(0")(t — s)v(y,s)dy ds

and thus

sup ||33U6,e($7 N z20,m) < e sup |v(x, )|l 2(er+20) < et
0<z<L S<w<L+26

Hence, for fixed € > 0 by Cauchy-Schwarz, bounding by (31) and (28), we have
T —
/ 05.6(0,t)0,v5(0,¢)dt — 0 as d — 0
0

Send § — 0 in (30) to get
+oo +o00
[ hnpE= [ o

—0 =0

and then send € — 0 and use (29).

Now we prove Prop. 1
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Proof. Suppose u;, us are given as in the statement of the proposition, and

additionally are smooth and have adequate decay. Let v = us — u; so that
iatv —+ (951) -+ >\(‘U2|a_IUQ — |u1|a_1u1)
and v(z,0) =0, v(0,t) = 0. Then
+00 +oo
at/ lv|?> dz = 2Re z')\/ (ug|ua|* — uyJus|* )0 da (32)
0 T

=0

and thus, for any ¢t > 0,

o0z < 235 ey + Nl ey / los) 12, ds

By the Sobolev imbedding H*(R*) C L*(R*) and Gronwall’s inequality, v(t) =
0. To handle rough wuq, uy, mollify v as was done above in the linear case to

obtain vs, so that
Orvs.e = 10705 + iMuslua|* ™ — ua|ur[*7H)5

Now prove an identity analogous to (30), estimate as in (32), and pass to the

limit to conclude v = 0.
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