GLOBAL EXISTENCE AND SCATTERING FOR ROUGH
SOLUTIONS TO GENERALIZED NONLINEAR
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ABSTRACT. We consider the Cauchy problem for a family of semilinear
defocusing Schrodinger equations with monomial nonlinearities in one
space dimension. We establish global well-posedness and scattering.
Our analysis is based on a four-particle interaction Morawetz estimate
giving a priori ng spacetime control on solutions.

1. INTRODUCTION

We consider the initial value problem for the one-dimensional defocusing
nonlinear Schrédinger (NLS) equation,

; — |y |2k
(1.1) {zut+Au— |u|*Fu

u(0,z) = uo(x),
where k € N with £ > 3 and v is a complex-valued function on spacetime
R; x R;. This problem is known to be locally wellposed for initial data in
H*(R) for s > s, := 3 — +; see [4, 5]. The scaling invariant Sobolev index s,
is distinguished in the theory by the invariance of the Hic norm under the
scaling symmetry of solutions to (1.1): If u solves (1.1) then

(1.2) uMt, x) = )\_%u()\_Zt, Alz)

also solves (1.1).
The following quantities, if finite for the initial data, are time invariant:

Mass == M[u(t)] = u(t)|2:,

1 1
Energy := E[u(t)] := §HVU(75)H%3 + m“u(t)”iéﬁz

The local-in-time theory in the presence of these conserved quantities iter-
ates to prove global-in-time well-posedness for (1.1) for initial data in H}.
Furthermore, in this case it is known that these global-in-time solutions
are bounded in the associated scaling-invariant diagonal Strichartz space
Lf”; and scatter; see [18]. It is conjectured that global well-posedness and

scattering also hold for solutions to (1.1) with initial data in H%(R).
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This work makes partial progress toward this conjecture by establishing
these properties for solutions to (1.1) with initial data in H %(R). In fact,
for all values k considered we establish global well-posedness and scattering
for (1.1) with initial data in H*(R) for s > sj, where sj := gijg < %.

Theorem 1.1. For each k € {3,4,...} there is a regularity threshold s =

gﬁjg such that the initial value problem (1.1) is globally wellposed and scat-

ters for initial data ug € H*(R), provided s > si. In particular, there exist
usr € H*(R) such that

||u(t) — eitAui]]Hs(R) —0 ast— +oo.

Our approach to proving this result is based on the proof of a similar
statement for the defocusing cubic nonlinear Schrédinger equation on R? in
[11]. The analysis in [11] is based on an a priori two-particle interaction
Morawetz estimate. We derive a four-particle interaction Morawetz inequal-
ity which provides L} spacetime control on solutions to (1.1). Our analysis
relies on this improved a prior: control.

As a consequence of the four-particle interaction Morawetz inequality, we
are in fact able to offer a new proof of scattering for a class of one-dimensional
defocusing nonlinear Schrédinger equations with initial data in H*(R); see
[18] for the original proof.

Theorem 1.2 (Scattering in H'(R)). Let ug € H'(R). Then, there ewists
a unique global solution u to the initial value problem

iug + Au = |u|*u, p>0,
u(0,x) = ug(z).

Moreover, if p > 2 there exist u+ € H'(R) such that

(1.3)

|lu(t) — eitAuiHH1(R) —0 ast— t+oo.

We briefly explain our strategy for proving Theorem 1.1 and Theorem 1.2.
The interaction Morawetz inequality we derive in Section 3 provides a
priors ng spacetime control on solutions to (1.3) (and hence on solutions
to (1.1)), provided that ||u(t)HH;/2 stays bounded. In particular, if the
initial data up € H), we immediately obtain that the unique global H}
solution enjoys the global L?Z, estimate. In Section 4, for p > 2 we upgrade
this estimate to stronger Strichartz norm control from which scattering in
H} follows, thus establishing Theorem 1.2. A similar argument in higher
dimensions, n > 3, relying on the two-particle Morawetz inequality, can be
found in [20].

If we are in the H3 setting (rather than the H} setting) with s being
defined in Theorem 1.1, we know the problem is HJ subcritical and, as
a consequence, the length of the local well-posedness time interval of the
unique H? solution depends only on the H} norm of the initial data. Thus,
in order to prove global well-posedness we only need to control the H norm
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of the solution. This is not immediate as the H; norm is not conserved. In
order to derive the desired control over the H; norm of the solution, we will
use the ‘I-method’.

The idea behind the ‘I-method’ (]9, 11]) is to smooth out the initial data
in order to get access to the good local and global theory available at H}
regularity. To this end, one introduces the Fourier multiplier I which is the
identity on low frequencies and behaves like a fractional integral operator of
order 1 — s on high frequencies. Thus, the operator I maps H to H! and
the H? norm of u can be controlled by the H} norm of the modified solution
Iu. However, Iu is not a solution to (1.1) and hence one cannot use the
conservation of energy to derive a bound on the H} norm of Iu. In fact,
we expect an increment in the energy of Iu. This increment is proved to
be under control provided the Morawetz norm is finite; see Section 5. But
in order for the Morawetz norm to be finite we need to control the H;/ 2
norm of the solution. This sets us up for a bootstrap argument which will
be carried out in Section 6.
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2. PRELIMINARIES

In this section, we introduce notations and some basic estimates we will
invoke throughout this paper.

We will often use the notation X < Y whenever there exists some constant
C > 0sothat X < CY. Similarly, we willuse X ~ Y if X SY < X. We will
use X < Y if X < ¢Y for some very small constant ¢ > 0. We will sometimes
denote partial derivatives with subscripts (a;(z) := 0ja(z) := 0,;a(x)) and
use the convention that repeated indices are implicitly summed.

We use L (R) to denote the Banach space of functions f : R — C whose

norm
11 = ([ 1#@ras)

is finite, with the usual modifications when r = oo.
We use L{L" to denote the spacetime norm

a/r \1/q
lallgr <= lull o2 ey = (/R (/R utt, e at) ",

with the usual modifications when either ¢ or r are infinity, or when the
domain R x R is replaced by some smaller spacetime region. When q = r
we abbreviate L{L} by L{ .
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We define the Fourier transform on R to be
fle) = [ e plada,
We will make use of the fractional differentiation operators |V|® defined
by
VI (&) == €17 F(€)-
These define the homogeneous Sobolev norms
11z == NIV fllzz
and more general Sobolev norms
1 laze = (V)" fllp,

where, (V) = (1 + |V\2)%
Let e® be the free Schrodinger propagator. In physical space this is
given by the formula

@itAf(J;) — (471-2]1":)1/2 Aei|$y2/4tf(y)dy

for t # 0 (using a suitable branch cut to define (47it)'/?), while in frequency
space one can write this as

(2.1) A f(€) = et f(g).

In particular, the propagator obeys the dispersive inequality
; _1

(22) "2 fllrge S 1617211 f Il

for all times ¢ # 0.
We also recall Duhamel’s formula

t
(2.3) u(t) = ety (o) — i / =8 (juy 4+ Au)(s)ds.
to

Definition 2.1. A pair of exponents (q,r) is called Schridinger-admissible
if

2 1 1

-—+-==, 2<r<oo

qg r 2

For a spacetime slab I x R, we define the Strichartz norm

||f”50(1) = sup ||f||L§L;(IxR)-

(g,r) admissible

Then, we have the following Strichartz estimates (for a proof see [13, 15, 19]):

Lemma 2.1. Let I be a compact time interval, tg € I, s > 0, and let u be
a solution to the forced Schréodinger equation

m
=1
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for some functions Fy,..., F,. Then,
m

@) IVl S Tt + SN Bl
1=

for any admissible pairs (q;,7;), 1 < i < m. Here, p' denotes the conjugate

exponent to p, that is, % + ]% =1.

We will also need some Littlewood-Paley theory. Specifically, let ¢(§) be
a smooth bump supported in || < 2 and equalling one on |¢| < 1. For each
dyadic number N € 2% we define the Littlewood-Paley operators

Pon(€) == 0(&/N) f(©),
PonJ(€) =1 — p(¢/N)If(€),
Pr f(€) = [p(€/N) — (26 /N)If(£)-

Similarly, we can define P.y, P>y, and Py«.<y := P<y — P<jr, whenever
M and N are dyadic numbers. We will frequently write f<y for P<y f and
similarly for the other operators. We recall the following standard Bernstein
and Sobolev type inequalities:

Lemma 2.2. Forany 1 <p<q< oo and s > 0, we have
I1P>Nfllze S NEHVIPPon fll e
IIVIPP<n flle S NIl P<n fll e
V= Py fllzz ~ NF||Px fll 2
|P<nfllg S N» | Pn il
IPxfllze S N7~ oSl e

For N > 1, we define the Fourier multiplier I := Iy (cf. [9])
Inu(§) == my(£)a(§),

where my is a smooth radial decreasing function such that
() = 1, if (<N
TNSIEA i g > 2N

Thus, I is the identity operator on frequencies |{| < N and behaves like a
fractional integral operator of order 1—s on higher frequencies. In particular,
I maps H? to H:. We collect the basic properties of I into the following

Lemma 2.3. Let 1 <p< oo and 0 <o <s < 1. Then,

(2.5) I fllp < 11
(2.6) V7P n fllp S NOHIVIS I,

(2.7) I fllas Sl S N2l s
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Proof. The estimate (2.5) is a direct consequence of the multiplier theorem.
To prove (2.6), we write

V17 Pon fllp = [ Pon VT (VD) TV Fl.

The claim follows again from the multiplier theorem.
Now we turn to (2.7). By the definition of the operator I and (2.6),

Ifllms S 1P<n fllag + P>y fll2 + VP Psn £l
SIP<nIfllmy + NTHVIfll2 + NTHVI
S I f -

On the other hand, since the operator I commutes with (V)?,
1 fllmy = V)T IHV)* flla S NPV fll2 € N2l

which proves the last inequality in (2.7). Note that a similar argument also
yields

(2.8) TP TP

3. AN INTERACTION MORAWETZ INEQUALITY

In this section we develop an a priori four-particle interaction Morawetz
inequality for solutions to one-dimensional defocusing nonlinear Schrédinger
equations. This a priori control will be fundamental to our analysis.

The name Morawetz inequality derives from her work on monotonicity
formulae for the wave equation. The Schrodinger version is due to Lin and
Strauss, [16]. The idea of a two-particle interaction Morawetz inequality
was first introduced in [11]. This two-particle style of estimate has proved
invaluable in the study of NLS in dimensions three and higher. Unfortu-
nately, there is no direct analogue of this estimate in dimensions one and
two; nevertheless, several alternatives have been proposed, [18, 12]. Here
we derive a Morawetz inequality based on four-particle interactions. This
approach was suggested to us by Terry Tao, based on a private conversation
with Andrew Hassel.

Proposition 3.1 (Interaction Morawetz estimate). Let u be an H'Y? solu-
tion to (1.3) on the spacetime slab I x R. Then,

(3.1 [ [l deat Sl ey ol

T

The calculations that follow are difficult to justify without additional
regularity and decay assumptions on the solution. This obstacle can be dealt
with in the standard manner: mollify the initial data and the nonlinearity
to make the interim calculations valid and observe that the mollifications
can be removed at the end. For expository reasons, we skip the details and
keep all computations on a formal level.
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In order to prove Proposition 3.1 we first review general facts about the
one-particle Morawetz action. Let ¢ : Ry X Rf; — C be a solution to the
Schrédinger equation

igr + Ap=N.
Let a : ]Rf, — R be a convex weight function and define the Morawetz action
to be the weighted momentum

Ma(t) =2Im ¢(t’ y)va(y) : v¢(t7 y) dy

R4
A direct calculation establishes that in the (yi,...,y4) coordinate system
we have
0.(0) =2 | (~ABa)Io( 9 dy+4 [ 0l Re(@y0)(t.9) dy

+2 [ Vaty) - (N0}t do
where the momentum bracket is defined by

{f.9} == Re(fVg - gVf).

As the weight a is convex, the matrix {ajk}1§j7k§4 is positive semi-definite
and hence

/R4 a;ji(y) Re(9; ) (t,y) dy = 0.

(3.2) M, (t) > 2 / (—Ada(y))|é(t,y)[* dy

R4
2 / Va(y) - IV, 6}(t.y) dy.
R4

Now we are ready to prove Proposition 3.1. Let u be a solution to (1.3)
and for each 1 < j <4 let u;(t,x;) := u(t,z;). Define

4
w(t,x) = w(t,z1,x2, T3, T4) := Huj(t,xj);
j=1
note that w satisfies the equation

4
iwy + Apw = (Z ]uj\Qp)w.

i=1
Next, we perform the orthonormal change of variables

1 1 1 1
1 1 -1 -1
1 -1 1 -1
-1 1 1 -1

z:AxwithA:%
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Then A, = A, and hence, for w(t, z) := w(t, z(z)), we have
4

iwy + Ayw = (Z |u;|?)w
j=1
Applying (3.2) to w in the (z1,...,24) coordinate system with the convex
weight a(z) := (23 + 22 + 22)1/2, we get

O M, (t) > 2/1R4(—AZAZa(z))]w(t,z)|2 dz

'S

2p
(3.3) +2/R4V2a Z\u\ Jw, w}(t, ) dz,

where

My(t) :==2Im [ w(t,2)V.a(z)- V,yw(t,z)dz.
R4
A quick computation shows that

—A,Aa(z) = 4m6(z2, 23, 24)

and hence, by a change of variables,
/ (—AAa(2))|w(t, 2)|* dz —87r/ |w(t, 21,0,0,0)|? dz;
R4
—167r/ \w(t, 21, 21, 21, 21) > dz
R

= 167?/ lu(t, z1)|® dz.
R

To estimate the second term on the right-hand side of (3.3), we note that
orthonormal changes of variables leave inner products invariant and hence,

4
/R4 V.a(z) - {(Z |uj|2p)w,w}(t,z) ds
j=1

R4

4
= Z|u|pww}t:cd:v

A simple computation then shows that in the (ml, ..., x4) coordinate system
we have

(2 o PP)w, w} = () w0 = w [ (3 s )]
= —Iw\ani(i |u;[*)

=L o, (™).
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Integrating by parts, we obtain

4
90 {(Z |ui [P w, w}(t, x) d

R4

2
p+1/ Zau ) (lw]?|wi| ) (¢, ) da > 0,

as a is a convex function.
Putting everything together we get

DM, (t) > S / fu(t, 2)[ da
R
and hence, by the Fundamental Theorem of Calculus,

//|u(t,x)|8dxdtSsup|Ma(t)\.
IJR

tel

In order to estimate the right-hand side in the inequality above, we first
note that

F@) o VI@) o] S 1oy

(3.4) o

.
for any function f : R” — C with n > 3. Indeed, by Cauchy-Schwarz,

X

VF@) | S 1 lvzqan|| o f

‘ R™ ’1" HY/2(RY
and (3.4) follows if we establish that the operator T'(f)(z) := ‘ilf(l') is

bounded on H/?(R™). Using Hardy’s inequality

|, < 1wz

it is easy to see that T is bounded on L*(R™) and on H'(R"). By interpo-
lation, this yields the claim.
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Applying (3.4) (in the variables (29, 23, 24)), Plancherel, and a change of
variables, we estimate

MOLS [ Tt 1, o 82
= /}R/]R 163 + &5 + G2 10(t, 21, €2, 63, €)|P dE2 dE3 dEs dn
= /R 165 + €3 + €112 lo(t, €)1 de
o
< [ lellot o de
= [ mllate. P an
R4

= /w [l (8, m0) 2|2 (t, 12) [ a5 (¢, ms) [P @ (8, 1) * d

4
< [ I+l + ol + o)) T b )

j=1
< Al 7o llu(®)15-

In the computations above, we used @ to denote the partial Fourier transform
with respect to the variables (29, 23,24) and @ to denote the full Fourier
transform. The change of variables performed was £ := An.

Thus, by the conservation of mass,

8 < 2 6 < 2 6
[ [t dwt < sup )y a3 5 1l sy g S

This concludes the proof of Proposition 3.1.

4. PROOF OF THEOREM 1.2

In this section we prove Theorem 1.2. Global well-posedness for (1.3)
is a consequence of the fact that the equation is subcritical with respect to
energy. The result and the proof are by now standard and we will not revisit
them here; see [5, 14].

Scattering in the case p > 2 was first proved by Nakanishi, [18]. In
this section we present a new proof relying on the four-particle interaction
Morawetz inequality we developed in the previous section.

Indeed, by Proposition 3.1 and the conservation of mass and energy, the
unique global solution to (1.3) with initial data in H!(R) satisfies

(4.1) ”uHng(RXR) S lluoll ()

In order to prove scattering, we first upgrade (4.1) to Strichartz control.
Let § > 0 be a small constant to be chosen momentarily and divide R into



SCATTERING FOR GENERALIZED NLS ON R 11
L = L(|Juo| g1 (my) subintervals I = [t;,t;+1] such that
(42) lullzs 1,y ~ &

As p > 2, there exists ¢ > 0 such that p > 2 + %5. By Lemma 2.1, Hélder,
(4.2), and Sobolev embedding, on each I; x R we estimate

(W )ullsoqry) S IV)ulti) 2 + V) ([ulPu) | s

< luoll ) + Nul?ll 202 (V) ull 12 e

2p—
S luoll ) + lullzs el oo o sepo (V)ullso)
) L?TL;sT
S Mlwoll gy + 0% ||V ) UH (V)ullso(r;)

2 +1
S Nuoll gy + 65 IKV)ullgo =
A standard continuity argument yields
[{(V)ullsory) S lluoll )

provided § is chosen sufficiently small depending on |uol|z1(r). Summing
these bounds over all subintervals I; we derive

(4.3) {V)ullsor;) < Cllluollmw))-

We now use (4.3) to prove asymptotic completeness, that is, there exist
unique u+ such that

(4.4) l|u(t) — €itA’U,j:HH1(R) — 0 ast— too.

By time reversal symmetry, it suffices to prove the claim for positive times
only. Fort > 0, we define v(t) := e~**u(t). We will show that v(t) converges
in H! as t — 400, and define u; to be the limit.

Indeed, by Duhamel’s formula,

(4.5) v(t) = ug — i /O e~ 2 (Juf*u) (s) ds.

Therefore, for 0 < 7 < t,

t .
v(t) —o(r) = —i/ e_’SA(|u|2pu) (s)ds.
Arguing as above, by Lemma 2.1 and Sobolev embedding,

H’U(t) ( )”H1 R) ~ S H( >(’U\2pU)H 4/3L1([t7—]><R)
Sl e KV V)l
Thus, by (4.1) and (4.3),

[v(t) = v(7)|| g1 r) — 0 as 7, — oo.
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In particular, this implies u4 is well defined and inspecting (4.5) we find

Wy = g — i / ¢~ ([ 2P2) (5) dis.
0

Using the same estimates as above, it is now an easy matter to derive (4.4).
This completes the proof of Theorem 1.2.

5. ALMOST CONSERVATION LAW

As mentioned in the introduction, in order to prove global well-posedness
for (1.1) it suffices to obtain a priori control over the H? norm of solutions
o (1.1). However, the H? norm is not a conserved quantity. Nevertheless, it
can be controlled by the H! norm of the modified solution Inu (see (2.7)).
While we do have conservation of energy for (1.1), Iyu is not a solution to
(1.1) and hence we expect an energy increment. In this section, we prove
that the energy increment is small on intervals where the Morawetz norm
is small, thus transfering the problem to controlling the Morawetz norm
globally.
Proposition 5.1 (Energy increment). Let s > % and let u be an Hj
solution to (1.1) on the spacetime slab [to,T] x R with E(Inu(ty)) < 1.
Suppose in addition that

(5.1) HUHL§T [to,T]xR) =1

for a sufficiently small n > 0 (depending on k and on E(Inu(ty))). Then,
for N sufficiently large (depending on k and on E(Inu(to))),

(5.2) S E(Inu(t)) = E(Iyu(to)) + N~'F.

Proof. Fix t € [tp,T] and define

) 1/2
[ullzy == IV P<1ullso(r,4) + sup ( E HVPNUHL;?L;([tO,t]XR)) :
(q,r) admissible * 279

We observe the inequality

5.3 (5 ), = (5 1)

for all 2 < ¢g,7 < oo and arbitrary functions fy, which one proves by in-
terpolating between the trivial cases (2,2), (2,00), (00,2), and (00, 0). In
particular, (5.3) holds for all admissible exponents (g,r). Combining this




SCATTERING FOR GENERALIZED NLS ON R 13

with the Littlewood-Paley inequality, we find!

1/2 ) 1/2
lullgery S || (D2 1Pwul) |, 5 (3 IPwully,, )
Ne2Z t Ne2Z

In particular,
IVullsoro.) < llullze)-
Moreover, using Lemma 2.1, the fact that the Littlewood-Paley operators

Py commute with ¢9; + A, the Littlewood-Paley inequality, together with
the dual of (5.3), we get

G4 Nulzw S Il + IV G+ A0l 0

for any admissible pair (g, 7).
Now define

Zr(t) = [ Inull z@)-

Lemma 5.1. Under the hypotheses of Proposition 5.1,

2k(3k—8)
Z1(t) < |VInu(to)ll + N~ 2, (1)1 4 3=t 2, (1) 5
3k—8
(5.5) —i—n% sup E(Inu(s))3®+D Z(t).
SE[to,t]

Proof. Throughout this proof, all spacetime norms are on [tg,t] X R. By
(5.4) and Holder’s inequality, combined with the fact that VIy acts as a
derivative (as the multiplier of VI is increasing in [|), we estimate

Z1(t) S IVInu(to)ll2 + HVIN(W!%U)Hg,g
SIVInulto)ll2 + lull3g 5 VINullss
S IVInu(to)ll2 + l|ull3r s Z1(E)-

To estimate ||u||35, 3%, we decompose u := u<i +uj<.<n +usn. To estimate
the low frequencies, we use interpolation, (5.1), Bernstein, and the fact that
the operator Iy is the identity on frequencies || < 1 to get

2 -3
lu<illskar S lluillgsllu<illoo, 58
< 5 -2
~ N3k Hu§1‘|oo,2k+2

3k—8
Sn% sup E(Inu(s))3k@k+2)
SE[to,t]

1Strictly speaking, as the Littlewood-Paley square function is not bounded on L$°,
the inequality does not hold for the Schréodinger-admissible pair (4, 00). However, this
particular estimate will not be needed in the proof of Proposition 5.1 and we thus make
the convention that in the proof of this proposition alone the S° norm is the supremum
over all admissible pairs except (4, c0).
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To estimate the medium frequencies, we use interpolation, (5.1), Sobolev
embedding, Bernstein, and the fact that the operator I is the identity on
frequencies |{| < N

7 3-8
lur<.<nll3k3e S lluic<nllss " lui< <nll2ik 2an
3k—8

_T
< ||V <Ny a2

7 3k—8
5 R Z](t) 3k—1
To estimate the high frequencies, we use Sobolev embedding and Lemma 2.3

1_1
[usnllse,3e S NVIZTFus gy, ox

11
S N2 ’CHVIN“>N||31¢,3,§7§4
< N2 % Z1(1).
Putting everything together, we derive (5.5). O

Next, we control the energy increment in terms of the size of the modified
solution Inu.

Lemma 5.2. Under the hypotheses of Proposition 5.1,

(5.6) ‘ sup E(Iyu(s)) — E(INu(to))‘

SG[to,t]
SN (Z(t A2 4 %Z[ t)? sup E(Inu(s 30D
n
s€[to,t]
2k+2
4(2k+2-J) (2k—5)(2k+2—J)
+ Zn 2k—1 Z](t)‘] sup E([NU(S)) (2k—1)(2k+2) )
sE€[to,t]

3k
+ N (Z[(t)gl‘”r1 + n? Zr(t) sup E(Inu(s)) 3<’€+§>)
s€[to,t]

k—
% (Ze0* 0t sup B(Iyu(s)565)
s€E([to,t]

2k+2 4(2k+2—J) (2k—5)(2k+2—J)

+N Zﬁ k-1 I(t)J_l sup E(Iyu(s)) @102
s€[to,t]

6k—1
X (Zf(t)%“ 5 sup E(INu(s))73<2k+2>>.
s€[to,t]

Proof. As

d
aE( u(t)) = Re/ut(|ul2ku — Au)dr = Re/ut(|ul2ku — Au — iuy) dz,



SCATTERING FOR GENERALIZED NLS ON R 15

we obtain

d
@E(Iu( ) = Re/[ut(|fu|2klu — Alu—ilu) dx

_ Re/Iﬁt(]IquIu ~ I(ju*u)) da.

Using the Fundamental Theorem of Calculus and Plancherel, we write?

E(ITu(t)) — E(Iu(ty))

m(&e+ &+ + Sokso)
B Re/ / 2k+2g o — m(&)m(&s) - 'm(§2k+2)>

o~

TOwu(€)Tu(€a) - TulEapsr)Tu(Eaps2) do(€) ds.

As iuy = —Au + |u|?*u, we thus need to control

f (6t 65+ o)
5| /zfﬁz o e may)

—

ATu(€)Tul6) - Tu(Eops1) Tu(Eons2) do(€) ds

and

f (o 65t + o)
69 | /szf IR ),

—

T(ulFu) (€)Tu(€2) -+ Tu(op 1) Tu(€ar ) do(€) ds|.

We first estimate (5.7). To this end, we decompose

U= ZPNU

N>1

with the convention that Pju := P<ju. Using this notation and symmetry,
we estimate

(59) (57) 5 Z B(Nla"'>N2k+2)7
Ni,...;Nog 221
No>N3>->Napy2

where
B(N1, ..., Nogyo)
‘/ / m(52+§3+"'+€2k+2)>
2’“”5 o m(§2)m(&s) -+ - m(&ak+2)
AIUN1(§1>IUN2(§2) Ia;l(f2k+2)fav;2(§2k+2)d0(§)d5'

Case I: Ny > 1, No > --- > Nogio > 1.
Case I,: N > Ns.

2Throughout this proof we use the abbreviation m := my.
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In this case,

m(& + &+ - 4 Sopg2) = m(&e) = - = m(&ang2) = 1.

Thus,
B(Ny,...,Noji2) =0

and the contribution to the right-hand side of (5.9) is zero.
Case I;: Ns Z N > Ns.

As 2122'2 i = 0, we must have N; ~ Ny. Thus, by the Fundamental
Theorem of Calculus,

1_ m(£2+§3+"'+§2k+2)‘ _ )1_ m(§2+"'+£2k+2)‘
m(&2)m(&3) - - m(Eart2) m(&2)
< )Vm(&)(ﬁs NP +f2k+2)’ < Ns
~ m(&2) ~ Ny

Applying the multilinear multiplier theorem (cf. [7, 8]), Sobolev embedding,
Bernstein, and recalling that N; > 1, we estimate

B(N17"'7N2k+2)

N 2k+2
3
S 7IIAIUN1 lo.sll Tunsllo.cll Tunslloe T 17w, la@i-1),226-1)
j=4
N 3 2k+2 -
S N2 [T 1vIun,lles T] V=T Tun, [l g,y 226-0
9 . 7 2k-3
7=1 J=4
S iZ](t)2k+2 S, N*lJrNg—ZI(t)ZkJrQ.
Ny
The factor Ng_ allows us to sum in Ny, No, ..., Nogio, this case contributing

at most N~ Z7(t)%*2 to the right-hand side of (5.9).
Case [.: No > N3 2> N.
As Z?ﬁﬂ i = 0, we must have N; ~ Ny. Thus, as m is decreasing,

m(&a 4+ &34 -+ + Eopo) < m(&1)

L Em(E) - miEara) |~ mE) - miEara)
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Using again the multilinear multiplier theorem, Sobolev embedding, Bern-
k+1
stein, and the fact that m(&)|£|2*-T is increasing for s > %, we estimate

B(Ny, ..., Nogy2)

(N) N 2k+2

1
VI \V4 2k 1[

m(Na) - - m(Nog2) N2N3 H I UN; H66 ]1_14 4 UN; HQ(% 1), 2(2k 1)
1 2k+2

< = HHVIUN los TT 1970,y ) 2o

N3m(N3) H2k+2 (N; )N% e
1
S Moy IV 2w ool VIua oo 21 (2)*

S VNGV g oIV T 6 Z1 (0

The factor N??_ allows us to sum over Ns,..., Nogio. To sum over N; and
Ny, we use the fact that Ny ~ Ny and Cauchy-Schwarz to estimate the
contribution to the right-hand side of (5.9) by

1 1
N (S IV R6)* (D IVTun B6) " Zi()* € N7 2,02+,

Ni>1 No>1
Case [;: No ~ N3 > N.
As Z?ﬁf i = 0, we obtain N; < Na, and hence m(Ny) 2 m(N2) and
m(Nl)]\ﬁ 5 m(Nz)NQ. Thus,
m(&a+ &+ + Eopy2)
m(&2)m(&s) - - m(Eart2)

Arguing as for Case I., we estimate

1—

<

m(Na)m(N3) - - - m(Nogy2)

m N1 N1
B(Ni,...., Nag2) < S o Zi()?
m(Na) Nam(N3) N3 T[5252 m(N;)NF
1
< 7 (t 2k+2
g N_1+N§]_Z[(t)2k+2.
The factor N?E)_ allows us to sum over Ny,..., Nogio. This case contributes

at most N~ Z;(t)%*2 to the right-hand side of (5.9).
Case II: There exists 1 < jo < 2k + 2 such that Nj; = 1. Recall that by
our convention, P; := P<;.
Case I1,: N1 =1.

Let J be such that Ng > --- > Ny >1= Njy;; =--- = Napio. Note that
we may assume J > 3 since otherwise

B(Ny,..., Nojio) = 0.
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Also, arguing as for Case I, if N > Ns then
B(Ny,...,Nogyo) =0.

Thus, we may assume Ny 2 N. In this case we cannot have Ny > N3 since
it would contradict Z%H & =0 and Ny = 1. Hence, we must have

Ny ~ N3 > N.

As

m(€a+ &+ + &ns2) | o 1
m(&2)m(&s) -+ m(Sant2) | ™ m(Na)m(Ns) - - - m(Nagq2)’

we use the multilinear multiplier theorem and Sobolev embedding to esti-
mate

1—

B(Ny, ..., Nogio)

Ny 3
m(Ny) Nom(Ns) Nam(Ny) - - - m(Naj 1) 1:[1 IVIun, los
2k+2
X HH’VP’“ Hup;, ”2(% 1), 22k1) H [ Tun; ll22k—1),2(26—1)
j=4 Jj=J+1
1 2k+2
S =2 T 1Hun;lla@i-1) 2081
m(Na) Nom(N3) N3 [T7_, m(N;) N j=J+1
2k+2
SNNGZi)” T 1w, llaee-1) 2026-1)-
J=J11

Applying interpolation, (5.1), and Bernstein, we bound

2k—5
(5.10) [Tu<tllaer—1)2026-1) < HIU<1||82k I Tust 13558
ST sup B(Tu(s)) e,
s€to,t]
Thus,
94 AfO— AEkH2-T) J (2k=5)(2k+2-J)
B(Nl) s 7N2k+2) 5 N N2 n o 2kl Z[(t) sup E(IU(S)) (2k—1)(2k+2) |
SE[to,t}
The factor NS_ allows us to sum in No,..., N;. This case contributes at
most
2k+2
(2k—5)(2k+2—J)
—2+ Z ?74(2];;21 = I ) sup E(IU(S)) (2/671)(24]‘6:%2)
sE[to,t]

to the right—hand 81de of (5.9).
Case II;: Ny >1land Ny =---= Ngk+2 =1.
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As Zfﬁﬁ i = 0, we obtain N7 < 1 and thus, taking N sufficiently large
depending on k, we get
- m(§+ &+ + Swr2)
m(&2)m(&3) - - - m(Sak+2)
This case contributes zero to the right-hand side of (5.9).
Case [I;: Ny >1and N >1= N3 ="---= Nopyo.
As Z?ﬁ?z ; = 0, we must have Ny ~ Ny. If N; ~ Ny < N, then

- m(&+ &+ + Swro)
m(&2)m(&3) - - - m(§akr2)

and the contribution is zero. Thus, we may assume N; ~ Ny 2> N.
Applying the Fundamental Theorem of Calculus,

m(&a + &+ - + Sopy2) - m(&+ -+ o)

1 =0.

=0

1 ’ - )1
m(&2)m(&s) - - - m(Sart2) m(&2)
~lm(&) 1N,
By the multilinear multiplier theorem,
2k+2
1
B(N1, ..., Nawra) S - lATum [losll Tunlo.6 T 17w, lisese
2 i

N
< 5z |V Tumllos |V Tun,|
2

S NTYNGTZi ()2 Tu<t |13 51

k
6.6l Tu<tlI3% s

The factor Ng_ allows us to sum in N7 and Na. Using interpolation, (2.5),
(5.1), and Bernstein, we estimate

2 1-2
[Tu<ilsk,se S [Hu<a|[$1Hu< oo,
1—-8
3k
00,2k+2
8 _3k—=8
Sn3E sup E(Lu(s)) 2
sE€[to,t]

8
S 03 |[Tu< ||

Thus, this case contributes at most
3k—8
N_1+77%Zl(t)2 sup E(Iu(s))3*+D)
sE([to,t]
to the right-hand side of (5.9).
Case I1;: N; > 1 and there exists J > 3 such that No > --- > Ny > 1=
Njy1 ="+ = Nopio.
To estimate the contribution of this case, we argue as for Case I; the only
new ingredient is that the low frequencies are estimated via (5.10). This
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case contributes at most

2k+2 4(2k+2— ]) (2k—5)(2k+2—J)

i 277 -1 Z;(t)! sup E(Iu(s)) @1k
s€[to,t]

to the right-hand side of (5.9).
Putting everything together, we get

3k—8

(5.7) S N2, ()2 4 N % 2,(4)2 sup B(Tu(s)) 050
SG[to,t]
2k+2
A@k+2-7) (@k=5)@2kt2-1)
(5.11) + N Zn = Zr(t)? sup E(Iu(s)) @FD0Ek2)
Se[to,t]

We turn now to estimating (5.8). Again we decompose
U= Z Pyu

with the convention that Piu := P<ju. Using this notation and symmetry,
we estimate

(58S D>, C(Ni,---, Napya),
Ni,...;Nop 1221
No>-->Nopyo

C(N1,- -+, Nogy2)

m(a+ &+ + Sonpo)
‘/ / Joine R ),

P, [P0 (€)Tamy (€2) -~ Ty (€akin) Timgs (€a42) dor(€) ds|.

In order to estimate C'(Ny,---, Naki2) we make the observation that in
estimating B(Ny,- -, Nogyo), for the term involving the N; frequency we
only used the bound

(5.12) | Pni T Aullss S N1l|VIun, |l S N1Z1(t).

Thus, to estimate (5.8) it suffices to prove

4 _6k—1
(13) P I(uPulles S Zi0P 4ot sup B(Tu(s) T,
SE[toﬂf}
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for then, arguing as for (5.7) and substituting (5.13) for (5.12), we obtain

(5.8) S N7 (210 + 9% Z4(t) sup E(Iu(s))iﬁ‘%ﬁ%)

sE€[to,t]
6k—1
% <Z[(t)2k+1+77% Sup E(IU(S))3(2k+2>)
s€lto,t]
2k+2 ~ ~
LN~ 1+ Z n4(2§1:r21 2 ZI ) J-1 sup E(Iu(s))(z(gki)ff(];:iZ)J)
s€[to,t]

6k—1
X (ZI( t)2kt1 —1—77% sup E(Iu(s))3<2k+2>).
SE[to,t}
Thus, we are left to proving (5.13). Using (2.5) and the boundedness of the
Littlewood-Paley operators, and decomposing u := u<1 + u1, we estimate

k k
12w, I(Jul* )66 S I1ullGor 1) 6020-41)

2k+1 2k+1
~ Hu§1’|6(2k+1),6(2k+1) + ||u>1||6(2k+1),6(2k+1)‘

Applying interpolation, (5.1), and Bernstein, we estimate

6k—1
3(2k+1) || <1||3(2k+1)

lu<illo@rri)6ertn S lu<illss

6k—1
§n3(2k+1) sup E(IU(S))3(2k+2)(2k+1).
sE([to,t]

Finally, by Sobolev embedding and (2.6),
1__ 1
us1lle@rt1),602641) S V]2 2(2k+1)u>1”6(2k+1),6(62kkj11) < Zi(t).

Putting things together, we derive (5.13).
This completes the proof of Lemma 5.2. O

Next, we combine Lemmas 5.1 and 5.2 to derive Proposition 5.1. Indeed,
Proposition 5.1 follows immediately from Lemmas 5.1 and 5.2, if we establish

Zr(t) <1 and  sup E(Iyu(s)) S1 forall t € [to, T).
SE[to,t]

As by assumption E(Iyu(tg)) < 1, it suffices to show that

(5.14) Z](t) < ||VINu(t0)||2 for all t € [to,T]
and
(5.15) sup E(Inu(s)) S E(Inu(ty)) for allt € [to,T).

sE[to,t]
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We achieve this via a bootstrap argument. Let

O := {t € [to,T] : Z[(t) < 01HVINU(7§0)||2,
sup E(INU(S)) < CQE(INU(to))}
s€[to,t]
= {t € [to,T] : Z[(t) < 201||V1Nu(t0)H2,
sup E(Inu(s)) < 2C2E(Inu(tg))}.
s€lto,t]
In order to run the bootstrap argument successfully, we need to check four
things:
e O # (). This is satisfied as tg € Q if we take C; and Cy sufficiently
large.
e ()1 is a closed set. This follows from Fatou’s Lemma.
o If t € 1, then there exists € > 0 such that [¢,t + €] € Q2. This follows
from the Dominated Convergence Theorem combined with (5.5) and (5.6).
o () C ;. This follows from (5.5) and (5.6) taking C and Cs sufficiently
large depending on absolute constants (like the Strichartz constant) and
choosing N sufficiently large and 7 sufficiently small depending on C;, Cs,
k, and E(INu(to)).
This finally proves Proposition 5.1.

6. PROOF OF THEOREM 1.1

Given Proposition 5.1, the proof of global well-posedness for (1.1) is re-
duced to showing

(6.1) lullzs  mxry < Clluollmg)-

This also implies scattering, as we will see later.
By Proposition 3.1,

3/4

1/4
(6.2) el ey o3/l

L Hy/?(IxR)
on any spacetime slab I x R on which the solution to (1.1) exists and lies in

H;/ 2, However, the H%/ % norm of the solution is not a conserved quantity
either, and in order to control it we must resort to the H; bound on the
solution. Thus, in order to obtain a global Morawetz estimate, we need a
global H? bound. This sets us up for a bootstrap argument.

Let u be the solution to (1.1). As E(Inug) is not necessarily small, we
first rescale the solution such that the energy of the rescaled initial data
satisfies the conditions in Proposition 5.1. By scaling,

Mz, t) = )fiu()\dt, A lz)
is also a solution to (1.1) with initial data

uy(z) = )\_%uo()\_lx).
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By (2.8) and Sobolev embedding,
1_1_
IVInuglls S N0 llugl gy = N7 X275 [fug|

1
HINUOH21€+2 S lld lokro = A2 [luglaka S AT ol

As s > - — 7, choosing A sufficiently large (depending on ||uo||zs and N)
such that

(6.3)  NYEIATTE S |uglly < 1 and AT E uglgs < 1,

we get

E(Iyud) < 1.

We now show that there exists an absolute constant C such that
T(1_1
(6.4) |’U/\HL§$(RxR) < CiAstw),

Undoing the scaling, this yields (6.1).
We prove (6.4) via a bootstrap argument. By time reversal symmetry, it
suffices to argue for positive times only. Define

Q1 = {t €[0,00) : [z (ogxmy < CASETDY,
Q= {t € [0,00) : [l (ogwm) < 2C1AEGTHY.

In order to run the bootstrap argument, we need to verify four things:

1) Q1 # (). This is obvious as 0 € €.

2) Oy is closed. This follows from Fatou’s Lemma.

3) Qo C Q4.

4) If T € Oy, then there exists € > 0 such that [T,7 +¢) C . This is a
consequence of the local well-posedness theory and the proof of 3). We skip
the details.

Thus, we need to prove 3). Fix T' € Q9; we will show that in fact, T' € ;.
By (6.2) and the conservation of mass,
K

Hu ||L8 ([0,T)xR) ~ N HU0||2||U Lo L2 ([0,T]xR)

3L
S AEDC( ol 7y

To control the factor ||u|| we decompose

L H/?([0,T]xR)’
uM(t) := P<yul(t) + Psyul(t).
To estimate the low frequencies, we interpolate between the L2 norm and
the H! norm and use the fact that Iy is the identity on frequencies |¢| < N
1 1
A SYANTE SYINTE
1P<nu’ @)l 7z S I1Penu @13 1Pavu” (@)l 7y

1

1,1 3
< )\§(§_E)C(HUOHQ)HINUA(t)Hél'
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To control the high frequencies, we interpolate between the L2 norm and
the H? norm and use Lemma 2.3

1—L 1
1P nut (@) e S I1Psnu O > |1 P (01,

S ARG -DNT v 01,

Collecting all these estimates, we get

T(i_1 1 1
Mg o, 11xR) S A5 k)C(Iluolb)ts[lépT](IIVINUA(t)HS + I VINur(B)]157)-
: o,

Thus, taking C sufficiently large depending on |lug||2, we obtain T' € 2,
provided

(6.5) sup ||VIyur(t)]2 < 1.
t€[0,T]

We now prove that T € Q9 implies (6.5). Indeed, let n > 0 be a sufficiently
small constant like in Proposition 5.1 and divide [0, 7] into

L ()&@-D)S
n

subintervals I; = [t;,t;41] such that,
A
[u™Mzs (1, xm) < 0-
Applying Proposition 5.1 on each of the subintervals I;, we get

sup E(InuMt)) < E(Iyup) + E(Inugy) LN~
t€[0,T]

To maintain small energy during the iteration, we need
LN o NGOIN <« 1,

which combined with (6.3) leads to

e N\ EE)
<Ns+k_2) N < e(|Juol|ms) < 1.
This may be ensured by taking N large enough (depending only on &k and
[woll prs(w) ), Provided that

_ 8k —16
9k — 14"

s> s(k) :

As can be easily seen, s(k) — 5 as k — oc.
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This completes the bootstrap argument and hence (6.4), and moreover
(6.1), follow. Therefore (6.5) holds for all 7" € R and the conservation of
mass and Lemma 2.3 imply

lu(T) g < lluollrz + llu(T)l g

< uoll gz + 2GR A WT) | 4,
S luollz + X~ C#) | v (VD) |y
< luollz + XG0 (|l (D)2 + [V Ivu* (Tl 2)
< luollzz + X~ G7R (2% uollpz +1)
S C(lluollmg)

for all T € R. Hence,

(6.6) ull oo s < C(lluollms)-

Finally, we prove that scattering holds in H; for s > s;. As the construc-
tion of the wave operators is standard (see [5]), we content ourselves with
proving asymptotic completeness.

The first step is to upgrade the global Morawetz estimate to global Strichartz
control. Let u be a global H? solution to (1.1). Then u satisfies (6.1).
Let 6 > 0 be a small constant to be chosen momentarily and split R into
L = L(||uol|7s) subintervals I; = [t;,t;41] such that

lullzs  (1;xm) < 0
By Lemma 2.1, (6.6), and the fractional chain rule, [6], we estimate
2k
49} ullsogry S Ttz + 19D (i) s,
S Cllluollmg) + Il 23 14V) ull g 1, xm)»

while by Holder and Sobolev embedding,

7 3k—8
3k—1 3k—1
||u||L§’7’;(Ij><R) S HUHLEI([J.XR)HU| L%j“zk(IjXR)
SETTNI ]|
L24k [ SF=1 ([, xR)
7 St
_T s =
S 3T ||<v> UHSO(Ij)'

Therefore,

ullgorp s < a1
1) ullsory) < Cllluolla) + 5551V ul oy

A standard continuity argument yields

V)P ullsocryy < Clluollmg),
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provided we choose ¢ sufficiently small depending on k and |lug|zs. Sum-
ming over all subintervals I;, we obtain

(6.7) (V) ullso®) < C(lluollag)-
We now use (6.7) to prove asymptotic completeness, that is, there exist

unique u+ such that

(6.8) lim [lu(t) — e uy | gs = 0.

t—too

Arguing as in Section 4, it suffices to see that

o0
6.9 e (Jul**u) (s) ds —0 ast— oo.
H
t z
The estimates above yield
14k 2k(3k—8)
—isA I+=5=
H/ S ) (5) s, S TZE | (7l ey

Using (6.1) and (6.7) we derive (6 9).
This concludes the proof of Theorem 1.1.
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