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Abstract. Scattering of radial H1 solutions to the 3D focusing cubic nonlinear
Schrödinger equation below a mass-energy threshold M [u]E[u] < M [Q]E[Q] and
satisfying an initial mass-gradient bound ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 , where
Q is the ground state, was established in Holmer-Roudenko [8]. In this note, we
extend the result in [8] to non-radial H1 data. For this, we prove a non-radial
profile decomposition involving a spatial translation parameter. Then, in the spirit
of Kenig-Merle [10], we control via momentum conservation the rate of divergence
of the spatial translation parameter and by a convexity argument based on a local
virial identity deduce scattering. An application to the defocusing case is also
mentioned.

1. Introduction

We consider the Cauchy problem for the cubic focusing nonlinear Schrödinger

(NLS) equation on R3:

(1.1) i∂tu+ ∆u+ |u|2 u = 0, (x, t) ∈ R3 × R,

(1.2) u(x, 0) = u0 ∈ H1(R3).

It is locally well-posed (e.g., see Cazenave [3]). The equation has 3 conserved quan-

tities; namely, the mass M [u], energy E[u] and momentum P [u]:

M [u] =

∫
|u(x, t)|2 dx = M [u0],

E[u] =
1

2

∫
|∇u(x, t)|2 dx− 1

4

∫
|u(x, t)|4 dx = E[u0],

P [u] = Im

∫
ū(x, t)∇u(x, t) dx = P [u0].

The scale-invariant Sobolev norm is Ḣ1/2 and the scale-invariant Lebesgue norm is

L3. Let u(x, t) = eitQ(x); then u solves (1.1) provided Q solves the nonlinear elliptic

equation

(1.3) −Q+ ∆Q+ |Q|2Q = 0.

This equation has an infinite number of solutions in H1(R3). The solution of minimal

mass, hereafter denoted by Q(x), is positive, radial, exponentially decaying, and
1
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is called the ground state. For further properties of Q, we refer to Weinstein [14],

Holmer-Roudenko [8], Cazenave [3].

In Holmer-Roudenko [8, Theorem 1.1] (see also Holmer-Roudenko [7]), it was

proved that under the condition M [u]E[u] < M [Q]E[Q], solutions to (1.1)-(1.2) glob-

ally exist if u0 satisfies

(1.4) ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 ,

and radial solutions with initial data satisfying (1.4) scatter in H1 in both time

directions. This means that there exist φ± ∈ H1 such that

lim
t→±∞

‖u(t)− eit∆φ±‖H1 = 0.

In this note we extend the scattering result to include non-radial H1 data.

Theorem 1.1. Let u0 ∈ H1 and let u be the corresponding solution to (1.1) in H1.

Suppose

(1.5) M [u]E[u] < M [Q]E[Q].

If ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2, then u scatters in H1.

The argument of [8] in the radial case followed a strategy introduced by Kenig-Merle

[9] for proving global well-posedness and scattering for the focusing energy-critical

NLS. The argument begins by contradiction: suppose the threshold for scattering

is strictly below that claimed. A profile decomposition lemma based on concentra-

tion compactness principles (and analogous to that of Keraani [11]) was invoked to

prove the existence of a global but nonscattering solution uc standing exactly at the

threshold between scattering and nonscattering. The profile decomposition lemma is

again invoked to prove that the flow of uc is a precompact subset of H1, which then

implies that uc remains spatially localized uniformly in time. This uniform localiza-

tion enabled the use of a local virial identity to establish, with the aid of the sharp

Gagliardo-Nirenberg inequality, a strictly positive lower bound on the convexity (in

time) of the local mass of uc. Mass conservation is then violated at a sufficiently large

time.

In this paper, we show that the above program carries over to the non-radial setting

with the addition of two key ingredients. First, in §2, we introduce a profile decom-

position lemma that applies to non-radial H1 sequences. To compensate for the lack

of localization at the origin induced by radiality, a spatial translation sequence is

needed. We also here adapt the proof given in [8] of the energy Pythagorean expan-

sion (Lemma 2.3) to apply to non-radial sequences; in [8], an inessential application of

the compact embedding H1
rad → L4 was used at one point. The profile decomposition

and concentration compactness techniques are previously used in works of Keraani

[11], Gerard [5], see also Bahouri and Gerard [1]-[2], and originate from P.-L. Lions

[12]-[13].
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The application of the non-radial profile decomposition to time slices of the flow of

the critical solution uc yields the existence of a continuous time translation parameter

x(t) such that the translated flow uc(·−x(t), t) is precompact in H1 (Prop. 3.2). This

implies the localization of uc(·, t) near x(t) (as opposed to the radial case, in which

localization is obtained near the origin).

Obtaining suitable control on the behavior of x(t) is the main new step beyond

[8]. This is done by following a method introduced by Kenig-Merle [10] (who applied

it to the energy-critical nonlinear wave equation). First, we argue that by Galilean

invariance, the solution uc must have zero momentum (see §4). An appropriate selec-

tion of the phase shift is possible in our case since our solution belongs to L2.1 This

zero-momentum solution is then shown in §5 to have a near-conservation of localized

center-of-mass, which provides the desired control on the rate of divergence of x(t)

(specifically, x(t)/t→ 0 as t→∞).

In §7, we remark on the adaptation of these techniques to the defocusing cubic

NLS in 3D.
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2. Non-radial profile and energy decompositions

We will make use of the Strichartz norm notation used in [8]. We say that (q, r) is

Ḣs Strichartz admissible (in 3D) if

2

q
+

3

r
=

3

2
− s.

Let

‖u‖S(L2) = sup
(q,r) L2 admissible

2≤r≤6, 2≤q≤∞

‖u‖Lq
tL

r
x
.

Define

‖u‖S(Ḣ1/2) = sup
(q,r) Ḣ1/2 admissible
3≤r≤6−, 4+≤q≤∞

‖u‖Lq
tL

r
x
,

where 6− is an arbitrarily preselected and fixed number < 6; similarly for 4+.

1It could not be applied in the Kenig-Merle paper [9] on the energy critical NLS since the argument
there takes place in Ḣ1 .
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Lemma 2.1 (Profile expansion). Let φn(x) be a uniformly bounded sequence in H1.

Then for each M there exists a subsequence of φn, also denoted φn, and

(1) for each 1 ≤ j ≤M , there exists a (fixed in n) profile ψj(x) in H1,

(2) for each 1 ≤ j ≤M , there exists a sequence (in n) of time shifts tjn,

(3) for each 1 ≤ j ≤M , there exists a sequence (in n) of space shifts xjn,

(4) there exists a sequence (in n) of remainders WM
n (x) in H1,

such that

φn(x) =
M∑
j=1

e−it
j
n∆ψj(x− xjn) +WM

n (x).

The time and space sequences have a pairwise divergence property, i.e., for 1 ≤ j 6=
k ≤M , we have

(2.1) lim
n→+∞

|tjn − tkn|+ |xjn − xkn| = +∞.

The remainder sequence has the following asymptotic smallness property2:

(2.2) lim
M→+∞

[
lim

n→+∞
‖eit∆WM

n ‖S(Ḣ1/2)

]
= 0.

For fixed M and any 0 ≤ s ≤ 1, we have the asymptotic Pythagorean expansion

(2.3) ‖φn‖2
Ḣs =

M∑
j=1

‖ψj‖2
Ḣs + ‖WM

n ‖2
Ḣs + on(1).

Remark 2.2. If the assumption that φn is uniformly bounded in H1 is weakened

to the assumption that φn is uniformly bounded in Ḣ1/2, then the above profile

decomposition remains valid provided a scaling parameter λ is also involved, similar

to the theorem in [11]. However, it is not needed for the results of this note and for

simplicity of exposition the proof is omitted.

Proof. The proof is very close to the one of [8, Lemma 5.2]. We also refer to [11] for

a similar result in the energy-critical case.

Step 1. Construction of ψ1
n. Let A1 = lim supn ‖eit∆φn‖L∞t L3

x
. If A1 = 0, we are done.

Indeed, for an arbitrary Ḣ1/2-admissible couple (q, r) we have∥∥eit∆φn∥∥Lq
tL

r
x
≤
∥∥eit∆φn∥∥θL4

tL
6
x

∥∥eit∆φn∥∥1−θ
L∞t L3

x
with θ =

4

q
∈ (0, 1).

Noting that
∥∥eit∆φn∥∥L4

tL
6
x
≤ C‖φn‖Ḣ1/2 , we get that lim supn ‖eit∆φn‖S(Ḣ1/2) = 0, and

we can take ψj = 0 for all j.

2We can always pass to a subsequence in n with the property that ‖eit∆WM
n ‖S(Ḣ1/2) converges.

Therefore, we use lim and not lim sup or lim inf. Similar remarks apply for the limits that appear
in the Pythagorean expansion.
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If A1 > 0, let

c1 = lim sup
n
‖φn‖H1 .

Extracting a subsequence from φn, we show that there exist sequences t1n, x1
n and a

function ψ1 ∈ H1 such that

eit
1
n∆φn(·+ x1

n) ⇀ ψ1 weakly in H1,(2.4)

Kc4
1

∥∥ψ1
∥∥
Ḣ1/2 ≥ A5

1,(2.5)

where K > 0 is a constant independent of all parameters.

Let r =
16c21
A2

1
and χr be a radial Schwartz function such that χ̂r(ξ) = 1 for 1

r
≤ |ξ| ≤

r, and suppχr ⊂
[

1
2r
, 2r
]
. By the arguments of [8], there exists sequences t1n, x1

n such

that

|χr ∗ eit
1
n∆φn(x1

n)| ≥ A3
1

32c2
1

.

Pass to a subsequence so that eit
1
n∆φn(·+x1

n) ⇀ ψ1 weakly in H1. In [8] the functions

φn are radial, and thus, by the radial Gagliardo-Nirenberg inequality, one can show

that x1
n is bounded in n, which is not necessarily the case here. As in [8], the estimate

‖χr‖Ḣ−1/2 ≤ r yields, together with Plancherel and Cauchy-Schwarz inequalities, the

estimate (2.5).

Next, define W 1
n(x) = φn(x)− e−it1n4ψ1(x−x1

n). Since eit
1
n4φn(·+x1

n) ⇀ ψ1 in H1,

expanding ‖W 1
n‖2

Ḣs as an inner product and using the definition of W 1
n , we obtain

lim
n→∞

‖W 1
n‖2

Ḣs = lim
n→∞

‖eit1n4φn‖2
Ḣs − ‖ψ1‖2

Ḣs , 0 ≤ s ≤ 1,

which yields (2.3) for M = 1.

Step 2. Construction of ψj for j ≥ 2. We construct the functions ψj inductively,

applying Step 1 to the sequences (in n) W j−1
n . Let M ≥ 2. Assuming that ψj, xjn, tjn

and W j
n are known for j ∈ {1, . . . M − 1}, we consider

AM = lim sup
n

∥∥WM−1
n

∥∥
L∞t L3

x
.

If AM = 0, we take, as in Step 1, ψj = 0 for j ≥M . Assume AM > 0. Applying Step

1 to the sequence WM−1
n , we obtain, extracting if necessary, sequences xMn , tMn and a

function ψM ∈ H1 such that

eit
M
n ∆WM−1

n (·+ xMn ) ⇀ ψM weakly in H1,(2.6)

Kc4
M

∥∥ψM∥∥
Ḣ1/2 ≥ A5

M , where cM = lim sup
n
‖WM−1

n ‖H1 .(2.7)

We then define WM
n (x) = WM−1

n (x)− e−itMn 4ψM(x− xMn ).
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We next show (2.1) and (2.3) by induction. Assume that (2.3) holds at rank M−1.

Expanding∥∥WM
n

∥∥2

Ḣs =
∥∥∥eitMn 4WM

n (·+ xMn )
∥∥∥2

Ḣs
=
∥∥∥eitMn 4WM−1

n (·+ xMn )− ψM
∥∥∥2

Ḣs

and using the weak convergence (2.6), we obtain directly (2.3) at rank M .

Assume that the condition (2.1) holds for j, k ∈ {1, . . . ,M−1}. Let j ∈ {1, . . . ,M−
1}. Then (here, W 0

n = φn),

−eit
j
n∆WM−1

n (x+ xjn) + eit
j
n∆W j−1

n (x+ xjn)− ψj(x) =
M−1∑
k=j+1

ei(t
j
n−tkn)∆ψk(x+ xjn − xkn).

By the orthogonality condition (2.1), the right hand side converges to 0 weakly in H1

as n tends to infinity. Furthermore, by the definition of W j−1
n ,

eit
j
n∆W j−1

n (x+ xjn)− ψj(x) ⇀
n→+∞

0 weakly in H1.

Thus, eit
j
n∆WM−1

n (x + xjn) must go to 0 weakly in H1. From (2.6), we deduce, if

ψM 6= 0

lim
n→+∞

|xjn − xMn |+ |tjn − tMn | = +∞,

which shows that (2.1) must also holds for k = M .

It remains to show (2.2). Note that by (2.3), cM ≤ c1 for all M . If for all M ,

AM > 0, we have by (2.3)∑
M≥1

A10
M ≤ K2c8

1

∑
n≥1

‖ψM‖2
Ḣ1/2 ≤ K2c8

1 lim sup ‖φn‖2
Ḣ1/2 <∞,

which shows that AM tends to 0 as M goes to ∞, yielding (2.2) and concluding the

proof of Lemma 2.1. �

Lemma 2.3 (Energy Pythagorean expansion). In the situation of Lemma 2.1, we

have

(2.8) E[φn] =
M∑
j=1

E[e−it
j
n∆ψj] + E[WM

n ] + on(1).

Proof. According to (2.3), it suffices to establish for all M ≥ 1,

(2.9) ‖φn‖4
L4 =

M∑
j=1

∥∥e−itjn∆ψj
∥∥4

L4 +
∥∥WM

n

∥∥4

L4 + on(1).

Step 1. Pythagorean expansion of a sum of orthogonal profiles. We show that if

M ≥ 1 is fixed, orthogonality condition (2.1) implies

(2.10)

∥∥∥∥∥
M∑
j=1

e−it
j
n∆ψj(· − xjn)

∥∥∥∥∥
4

L4

=
M∑
j=1

∥∥∥e−itjn∆ψj
∥∥∥4

L4
+ on(1).
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By reindexing, we can arrange so that there is M0 ≤M such that

• For 1 ≤ j ≤M0, we have that tjn is bounded in n.

• For M0 + 1 ≤ j ≤M , we have that |tjn| → ∞ as n→∞.

By passing to a subsequence, we may assume that for each 1 ≤ j ≤M0, tjn converges

(in n), and by adjusting the profiles ψj we can take tjn = 0.

Note that

(2.11) M0 + 1 ≤ k ≤M =⇒ lim
n→+∞

∥∥∥e−itkn∆ψk
∥∥∥
L4

= 0.

Indeed, in this case |tkn| → ∞ as n→∞. For a function ψ̃ ∈ Ḣ3/4∩L4/3, from Sobolev

embedding and the Lp space-time decay estimate of the linear flow, we obtain

‖e−itkn∆ψk‖L4 ≤ c‖ψk − ψ̃‖Ḣ3/4 +
c

|tkn|3/4
‖ψ̃‖L4/3 .

By approximating ψk by ψ̃ ∈ C∞c in Ḣ3/4 and sending n→∞, we obtain (2.11).

By (2.1), if 1 ≤ j < k ≤M0, limn |xjn − xkn| = +∞, and thus, it implies∥∥∥∥∥
M0∑
j=1

ψj
(
· − xjn

)∥∥∥∥∥
4

L4

=

M0∑
j=1

∥∥ψj∥∥4

L4 + on(1),

which yields, together with (2.11), expansion (2.10).

Step 2. End of the Proof. We first note

(2.12) lim
M1→+∞

(
lim

n→+∞

∥∥WM1
n

∥∥
L4

)
= 0.

Indeed,

‖WM1
n ‖L4

x
≤ ‖eit∆WM1

n ‖L∞t L4
x

≤ ‖eit∆WM1
n ‖

1/2

L∞t L3
x
‖eit∆WM1

n ‖
1/2

L∞t Ḣ1
x

≤ ‖eit∆WM1
n ‖

1/2

L∞t L3
x

sup
n
‖φn‖1/2

H1 .

By (2.2), we get (2.12).

Let M ≥ 1 and ε > 0. Note that {φn}n is uniformly bounded in L4, since it is

uniformly bounded in H1 by the hypothesis; furthermore, by (2.12) {WM
n }n is also

uniformly bounded in L4. Thus, we can choose M1 ≥M and N1 such that for n ≥ N1,

we have

(2.13)
∣∣∣‖φn −WM1

n ‖4
L4 − ‖φn‖4

L4

∣∣∣+
∣∣∣‖WM

n −WM1
n ‖4

L4 − ‖WM
n ‖4

L4

∣∣∣
≤ C

[(
sup
n
‖φn‖3

L4 + sup
n
‖WM

n ‖3
L4

)
‖WM1

n ‖L4 + ‖WM1
n ‖4

L4

]
≤ ε.
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By (2.10) , we get N2 ≥ N1 such that for n ≥ N2,

(2.14)

∣∣∣∣ ∥∥φn −WM1
n

∥∥4

L4 −
M1∑
j=1

∥∥∥e−itjn∆ψj
∥∥∥4

L4

∣∣∣∣ ≤ ε.

Using the definition of W j
n, expand WM

n −WM1
n to obtain

WM
n −WM1

n =

M1∑
j=M+1

e−it
j
n∆ψj(· − xj).

By (2.10) there exists N3 ≥ N2 such that for n ≥ N2,

(2.15)

∣∣∣∣ ∥∥WM
n −WM1

n

∥∥4

L4 −
M1∑

j=M+1

∥∥∥e−itjn∆ψj
∥∥∥4

L4

∣∣∣∣ ≤ ε.

By (2.13), (2.14) and (2.15), we obtain that for n ≥ N3,∣∣∣∣ ‖φn‖4
L4 −

M∑
j=1

∥∥∥e−itjn∆ψj
∥∥∥4

L4
−
∥∥WM

n

∥∥4

L4

∣∣∣∣ ≤ 4ε,

which concludes the proof of (2.9). �

3. Outline of the proof of the main result

Let u(t) be the corresponding H1 solution to (1.1)-(1.2). By Theorem 1.1(1)(a) in

[8] the solution is globally well-posed, so our goal is to show that

(3.1) ‖u‖S(Ḣ1/2) <∞.

This combined with Proposition 2.2 from [8] will give H1 scattering. We will use the

strategy of [9]. We shall say that SC(u0) holds if (3.1) is true for the solution u(t)

generated from u0.

By the small data theory there exists δ > 0 such that if M [u]E[u] < δ and

‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 , then (3.1) holds. For each δ > 0 define the set

Sδ to be the collection of all such initial data in H1:

Sδ = {u0 ∈ H1 with M [u]E[u] < δ and ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2}.

Next define (ME)c = sup{δ : u0 ∈ Sδ =⇒ SC(u0) holds}. If (ME)c = M [Q]E[Q],

then we are done, so we assume

(3.2) (ME)c < M [Q]E[Q].

Then there exists a sequence of solutions un to (1.1) with H1 initial data un,0 (rescale

all of them to have ‖un‖L2 = 1 for all n) such that ‖∇un,0‖L2 < ‖Q‖L2‖∇Q‖L2 and

E[un]↘ (ME)c as n→ +∞, for which SC(un,0) does not hold for any n.

The next proposition gives the existence of an H1 solution uc to (1.1) with initial

data uc,0 such that ‖uc,0‖L2‖∇uc,0‖L2 < ‖Q‖L2‖∇Q‖L2 and M [uc]E[uc] = (ME)c for
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which SC(uc,0) does not hold. This will imply that K = {uc(·−x(t), t) | 0 ≤ t < +∞}
is precompact in H1 (Proposition 3.2). As a consequence (see Corollary (3.3)) we

obtain that for each ε > 0, there is an R > 0 such that, uniformly in t, we have

(3.3)

∫
|x+x(t)|>R

|∇uc(t, x)|2dx ≤ ε.

This together with the hypothesis of zero momentum (which can always be achieved

by Galilean invariance – see §4) provides a control on the growth of x(t) (Lemma

5.1). Finally, the rigidity theorem (Theorem 6.1), which appeals to this control on

x(t) and the uniform localization (3.3), will lead to a contradiction that such critical

element exists (unless it is identically zero) which will conclude the proof.

Proposition 3.1 (Existence of a critical solution). Assume (3.2). Then there exists

a global (T ∗ = +∞) solution uc in H1 with initial data uc,0 such that ‖uc,0‖L2 = 1,

E[uc] = (ME)c < M [Q]E[Q],

‖∇uc(t)‖L2 < ‖Q‖L2‖∇Q‖L2 for all 0 ≤ t < +∞,
and

‖uc‖S(Ḣ1/2) = +∞.

Proof. The proof closely follows the proof of [8, Prop 5.4]. �

Proposition 3.2 (Precompactness of the flow of the critical solution). With uc as in

Proposition 3.1, there exists a continuous path x(t) in R3 such that

K = {uc(· − x(t), t) | t ∈ [0,+∞) } ⊂ H1

is precompact in H1 (i.e., K̄ is compact).

Proof. For convenience, we write u = uc. We argue by contradiction. By the argu-

ments in Appendix A, we can assume that there exists η > 0 and a sequence tn such

that for all n 6= n′,

(3.4) inf
x0∈R3

‖u(· − x0, tn)− u(·, tn′)‖H1 ≥ η.

Take φn = u(tn) in the profile expansion lemma (Lemma 2.1). The remainder of the

argument closely follows the proof of [8, Prop 5.5]. �

Corollary 3.3 (Precompactness of the flow implies uniform localization). Let u be a

solution to (1.1) such that

K = {u(· − x(t), t) | t ∈ [0,+∞) }

is precompact in H1. Then for each ε > 0, there exists R > 0 so that∫
|x+x(t)|>R

|∇u(x, t)|2 + |u(x, t)|2 + |u(x, t)|4 dx ≤ ε, for all 0 ≤ t < +∞.
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Proof. If not, then there exists ε > 0 and a sequence of times tn such that∫
|x+x(tn)|>n

|∇u(x, tn)|2 + |u(x, tn)|2 + |u(x, tn)|4 dx ≥ ε,

or, by changing variables,

(3.5)

∫
|x|>n
|∇u(x− x(tn), tn)|2 + |u(x− x(tn), tn)|2 + |u(x− x(tn), tn)|4 dx ≥ ε.

Since K is precompact, there exists φ ∈ H1 such that, passing to a subsequence of

tn, we have u(· − x(tn), tn)→ φ in H1. By (3.5)

∀R > 0,

∫
|x|>R

|∇φ(x)|2 + |φ(x)|2 + |φ(x)|4 ≥ ε,

which is a contradiction with the fact that φ ∈ H1. �

4. Zero momentum of the critical solution

Proposition 4.1. Assume (3.2) and let uc be the critical solution constructed in

Section 3. Then its conserved momentum P [uc] = Im
∫
ūc∇uc dx is zero.

Proof. Consider for some ξ0 ∈ R3 the transformed solution

wc(x, t) = eix·ξ0e−it|ξ0|
2

uc(x− 2ξ0t, t).

We compute

‖∇wc‖2
L2 = |ξ0|2M [uc] + 2ξ0 · P [uc] + ‖∇uc‖2

L2 .

Observe that M [wc] = M [uc] and

E[wc] =
1

2
|ξ0|2M [uc] + ξ0 · P [uc] + E[uc].

To minimize E[wc], we take ξ0 = −P [uc]/M [uc].

Assume P [uc] 6= 0. Choose ξ0 = − P [uc]
M [uc]

. Then P [wc] = 0 and

(4.1) M [wc] = M [uc], E[wc] = E[uc]−
1

2

P [uc]
2

M [uc]
, ‖∇wc‖2

L2 = ‖∇uc‖2
L2 −

P [uc]
2

M [uc]
.

Thus, M [wc]E[wc] < M [uc]E[uc], ‖wc‖L2‖∇wc‖L2 < ‖Q‖L2‖∇Q‖L2 . By Proposi-

tion 3.1, ‖uc‖S(Ḣ1/2) = +∞, and hence, ‖wc‖S(Ḣ1/2) = +∞, which contradicts the

definition of uc. �
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5. Control of the spatial translation parameter

Observe that

(5.1)
∂

∂t

∫
x|u(x, t)|2 dx = 2 Im

∫
ū∇u dx = 2P [u].

Since P [uc] = 0 (see Prop. 4.1), it follows that

∫
x|uc(x, t)|2 dx = const, provided

it is finite. We will replace this identity with a version localized to a suitably large

radius R > 0. Provided the localization R is taken large enough over an interval [t0, t1]

to envelope the entire path x(t) over [t0, t1], we can exploit the localization of uc in

H1 around x(t) (induced by the precompactness of the translated flow uc(· − x(t), t))

and the zero-momentum property to prove that the localized center of mass is nearly

conserved. The parameter x(t) is then constrained from diverging too quickly to +∞
by the localization of uc in H1 around x(t) and the near conservation of localized

center of mass. We refer to [10, Lemma 5.5] for a similar proof in the case of the

energy-critical non-radial wave equation.

Lemma 5.1. Let u be a solution of (1.1) defined on [0,+∞) such that P [u] = 0 and

K = {u(· − x(t), t)| t ∈ [0,∞)} is precompact in H1, for some continuous function

x(·). Then

(5.2)
x(t)

t
→ 0 as t→ +∞.

Proof. Assume that (5.2) does not hold. Then there exists a sequence tn → +∞
such that |x(tn)|/tn ≥ ε0 for some ε0 > 0. Without loss of generality we may assume

x(0) = 0. For R > 0, let

t0(R) = inf{t ≥ 0 : |x(t)| ≥ R} ,

i.e., t0(R) is the first time when x(t) reaches the boundary of the ball of radius R. By

continuity of x(t), the value t0(R) is well-defined. Moreover, the following properties

hold: (1) t0(R) > 0; (2) |x(t)| < R for 0 ≤ t < t0(R); and (3) |x(t0(R))| = R.

Define Rn = |x(tn)| and t̃n = t0(Rn). Note that tn ≥ t̃n, which combined with

|x(tn)|/tn ≥ ε0 gives Rn/t̃n ≥ ε0. Since tn → +∞ and |x(tn)|/tn ≥ ε0, we have

Rn = |x(tn)| → +∞. Thus, t̃n = t0(Rn) → +∞. At this point, we can forget about

tn; we will work on the time interval [0, t̃n] and the only data that we will use in the

remainder of the proof is:

(1) for 0 ≤ t < t̃n, we have |x(t)| < Rn;

(2) |x(t̃n)| = Rn;

(3)
Rn

t̃n
≥ ε0 and t̃n → +∞.
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By the precompactness of K and Corollary 3.3, it follows that for any ε > 0 there

exists R0(ε) ≥ 0 such that for any t ≥ 0,

(5.3)

∫
|x+x(t)|≥R0(ε)

(
|u|2 + |∇u|2

)
dx ≤ ε.

We will select ε > 0 appropriately later.

For x ∈ R, let θ(x) ∈ C∞c (R) be such that θ(x) = x, for −1 ≤ x ≤ 1, θ(x) = 0

for |x| ≥ 21/3, |θ(x)| ≤ |x|, ‖θ′‖∞ ≤ 4, and ‖θ‖∞ ≤ 2. For x = (x1, x2, x3) ∈ R3, let

φ(x) = (θ(x1), θ(x2), θ(x3)). Then φ(x) = x for |x| ≤ 1 and ‖φ‖∞ ≤ 2. For R > 0,

set φR(x) = Rφ(x/R). Let zR : R→ R3 be the truncated center of mass given by

zR(t) =

∫
φR(x) |u(x, t)|2 dx .

Then z′R(t) = ([z′R(t)]1, [z
′
R(t)]2, [z

′
R(t)]3), where

[z′R(t)]j = 2 Im

∫
θ′(xj/R) ∂ju ū dx.

Note that θ′(xj/R) = 1 for |xj| ≤ 1. By the zero momentum property,

Im

∫
|xj |≤R

∂ju ū = − Im

∫
|xj |>R

∂ju ū,

and thus,

[z′R(t)]j = −2 Im

∫
|xj |≥R

∂ju ū dx+ 2 Im

∫
|xj |≥R

θ′(xj/R)∂ju ū dx ,

from which we obtain by Cauchy-Schwarz,

(5.4) |z′R(t)| ≤ 5

∫
|x|≥R

(|∇u|2 + |u|2) .

Set R̃n = Rn +R0(ε). Note that for 0 ≤ t ≤ t̃n and |x| > R̃n, we have |x+ x(t)| ≥
R̃n −Rn = R0(ε), and thus, (5.4) and (5.3) give

(5.5) |z′
R̃n

(t)| ≤ 5 ε.

Now we obtain an upper bound for zR̃n
(0) and a lower bound for zR̃n

(t).

zR̃n
(0) =

∫
|x|<R0(ε)

φR̃n
(x) |u0(x)|2 dx+

∫
|x+x(0)|≥R0(ε)

φR̃n
(x)|u0(x)|2 dx ,

and hence, by (5.3), we have

(5.6) |zR̃n
(0)| ≤ R0(ε)M [u] + 2R̃n ε.
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For 0 ≤ t ≤ t̃n, we split zR̃n
(t) as

zR̃n
(t) =

∫
|x+x(t)|≥R0(ε)

φR̃n
(x) |u(x, t)|2 dx+

∫
|x+x(t)|≤R0(ε)

φR̃n
(x) |u(x, t)|2 dx.

= I + II

To estimate I, we note that |φR̃n
(x)| ≤ 2R̃n and use (5.3) to obtain |I| ≤ 2R̃nε. For

II, we first note that |x| ≤ |x+x(t)|+ |x(t)| ≤ R0(ε)+Rn = R̃n, and thus φR̃n
(x) = x.

We now rewrite II as

II =

∫
|x+x(t)|≤R0(ε)

(x+ x(t)) |u(x, t)|2 dx− x(t)

∫
|x+x(t)|≤R0(ε)

|u(x, t)|2 dx

=

∫
|x+x(t)|≤R0(ε)

(x+ x(t)) |u(x, t)|2 dx− x(t)M [u] + x(t)

∫
|x+x(t)|≥R0(ε)

|u(x, t)|2 dx

= IIA + IIB + IIC

Trivially, |IIA| ≤ R0(ε)M [u], and by (5.3), |IIC| ≤ |x(t)|ε ≤ R̃nε. Thus,

|zR̃n
(t)| ≥ |IIB| − |I| − |IIA| − |IIC|

≥ |x(t)|M [u]−R0(ε)M [u]− 3R̃nε .

Taking t = t̃n, we get

(5.7) |zR̃n
(t̃n)| ≥ R̃n(M [u]− 3ε)−R0(ε)M [u] .

Combining (5.5), (5.6), and (5.7), we have

5 ε t̃n ≥
∫ t̃n

0

|z′
R̃n

(t)| dt ≥

∣∣∣∣∣
∫ t̃n

0

z′
R̃n

(t) dt

∣∣∣∣∣ ≥ |zR̃n
(t̃n)− zR̃n

(0)|

≥ R̃n(M [u]− 5ε)− 2R0(ε)M [u] .

Dividing by t̃n and using that R̃n ≥ Rn (assume ε ≤ 1
5
M [u]), we obtain

5 ε ≥ Rn

t̃n
(M [u]− 5ε)− 2R0(ε)M [u]

t̃n
.

Since Rn/t̃n ≥ ε0, we have

5 ε ≥ ε0(M [u]− 5ε)− 2R0(ε)M [u]

t̃n
.

Take ε = M [u]ε0/16 (assume ε0 ≤ 1), and then send n → +∞. Since t̃n → +∞, we

get a contradiction. �
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6. Rigidity theorem

We now prove the following rigidity, or Liouville-type, theorem.

Theorem 6.1 (Rigidity). Suppose u0 ∈ H1 satisfies P [u0] = 0,

(6.1) M [u0]E[u0] < M [Q]E[Q]

and

(6.2) ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 .

Let u be the global H1 solution of (1.1) with initial data u0 and suppose that

K = {u(· − x(t), t) | t ∈ [0,+∞) } is precompact in H1.

Then u0 = 0.

Before beginning the proof, we recall in Lemma 6.2 below a few basic facts proved

in [8]. These facts are consequences of the Gagliardo-Nirenberg inequality

‖u‖4
L4 ≤ cGN‖u‖L2‖∇u‖3

L2

with the sharp value of cGN expressed as

cGN =
4

3‖Q‖2‖∇Q‖2

.

One also uses the relation

M [Q]E[Q] =
1

6
‖Q‖2

L2‖∇Q‖2
L2 ,

which is a consequence of the Pohozhaev identities.

Lemma 6.2. If M [u]E[u] < M [Q]E[Q] and ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2, then

for all t,

(6.3) ‖u(t)‖L2‖∇u(t)‖L2 ≤ ω‖Q‖L2‖∇Q‖L2

where ω =
(
M [u]E[u]
M [Q]E[Q]

)1/2

. We also have the bound, for all t

(6.4) 8‖∇u(t)‖2 − 6‖u(t)‖4
L4 ≥ 8(1− ω)‖∇u(t)‖2

L2 ≥ 16(1− ω)E[u].

We remark that under the hypotheses here, E[u] > 0 unless u ≡ 0. In fact, one has

the bound E[u] ≥ 1
6
‖∇u0‖2

L2.

Proof of Theorem 6.1. In the proof below, all instances of a constant c refer to some

absolute constant. Let ϕ ∈ C∞0 be radial with

ϕ(x) =

{
|x|2 for |x| ≤ 1

0 for |x| ≥ 2
.
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For R > 0, define

zR(t) =

∫
R2ϕ

( x
R

)
|u(x, t)|2 dx .

Then, by direct calculation,

z′R(t) = 2 Im

∫
R∇ϕ

( x
R

)
· ∇u(t) ū(t) dx

By the Hölder inequality,

(6.5) |z′R(t)| ≤ cR

∫
|x|≤2R

|∇u(t)||u(t)| dx ≤ cR‖∇u(t)‖L2‖u(t)‖L2

Also by direct calculation, we have the local virial identity

z′′R(t) = 4
∑
j,k

∫
∂2ϕ

∂xj∂xk

( x
R

) ∂u

∂xj

∂ū

∂xk
− 1

R2

∫
(∆2ϕ)

( x
R

)
|u|2 −

∫
(∆ϕ)

( x
R

)
|u|4.

Since ϕ is radial, we have

(6.6) z′′R(t) =

(
8

∫
|∇u|2 − 6

∫
|u|4
)

+ AR(u(t)),

where

AR(u(t)) = 4
∑
j

∫ (
(∂2
xj
ϕ)
( x
R

)
− 2
) ∣∣∂xj

u
∣∣2 + 4

∑
j 6=k

∫
R≤|x|≤2R

∂2ϕ

∂xj∂xk

( x
R

) ∂u

∂xj

∂ū

∂xk

− 1

R2

∫
(∆2ϕ)

( x
R

)
|u|2 −

∫ (
(∆ϕ)

( x
R

)
− 6
)
|u|4.

From this expression, we obtain the bound

(6.7) |AR(u(t))| ≤ c

∫
|x|≥R

(
|∇u(t)|2 +

1

R2
|u(t)|2 + |u(t)|4

)
dx.

We want to examine zR(t), for R chosen suitably large, over a suitably chosen time

interval [t0, t1], where 1� t0 � t1 <∞. By (6.6) and (6.4), we have

(6.8) |z′′R(t)| ≥ 16(1− ω)E[u]− |AR(u(t))|.

Set ε = 1−ω
c
E[u] in Corollary 3.3 to obtain R0 ≥ 0 such that ∀ t,

(6.9)

∫
|x+x(t)|≥R0

(|∇u|2 + |u|2 + |u|4) ≤ (1− ω)

c
E[u].

If we select R ≥ R0 +supt0≤t≤t1 |x(t)|, then (6.8) combined with the bounds (6.7) and

(6.9) will imply that, for all t0 ≤ t ≤ t1,

(6.10) |z′′R(t)| ≥ 8(1− ω)E[u].
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By Lemma 5.1, there exists t0 ≥ 0 such that for all t ≥ t0, we have |x(t)| ≤ ηt,

with η > 0 to be selected later. Thus, by taking R = R0 + ηt1, we obtain that (6.10)

holds for all t0 ≤ t ≤ t1. Integrating (6.10) over [t0, t1], we obtain

(6.11) |z′R(t1)− z′R(t0)| ≥ 8(1− ω)E[u](t1 − t0).

On the other hand, for all t0 ≤ t ≤ t1, by (6.5) and (6.3), we have

(6.12)
|z′R(t)| ≤ cR‖u(t)‖L2‖∇u(t)‖L2 ≤ cR‖Q‖L2‖∇Q‖L2

≤ c‖Q‖L2‖∇Q‖L2(R0 + ηt1).

Combining (6.11) and (6.12), we obtain

8(1− ω)E[u](t1 − t0) ≤ 2c‖Q‖L2‖∇Q‖L2(R0 + ηt1).

Recall that ω and R0 are constants depending only upon (M [u]E[u])/(M [Q]E[Q]),

while η > 0 is yet to be specified and t0 = t0(η). Put η = (1−ω)E[u]/(c‖Q‖2‖∇Q‖2)

and then send t1 → +∞ to obtain a contradiction unless E[u] = 0 which implies

u ≡ 0. �

To complete the proof of Theorem 1.1, we just apply Theorem 6.1 to uc constructed

in Proposition 3.1, which by Propositions 3.2 and 4.1, meets the hypotheses in The-

orem 6.1. Thus uc,0 = 0, which contradicts the fact that ‖uc‖S(Ḣ1/2) = ∞. We have

thus obtained that if ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 and M [u]E[u] < M [Q]E[Q],

then SC(u0) holds, i.e. ‖u‖S(Ḣ1/2) <∞. By Proposition 2.2 [8], H1 scattering holds.

7. Remarks on the defocusing equation

One may use the above arguments to show H1-scattering of solutions of the defo-

cusing equation

i∂tu+ ∆u− |u|2 u = 0, (x, t) ∈ R3 × R,(7.1)

u(x, 0) = u0 ∈ H1(R3).(7.2)

In this case, scattering is already known, as a consequence of Morawetz [6], or inter-

action Morawetz [4] inequalities.

We argue by contradiction. If scattering does not hold, there exists a critical

solution uc, which does not scatter, and such that M [uc]E[uc] is minimal for non-

scattering solutions of (7.1). As before, one shows that P [uc] = 0, and that there

exists x(t) such that the set K = {uc(t, · − x(t)), t ∈ R} is precompact in H1. Note

that because of the defocusing sign of the non-linearity, we do not need to assume

M [uc]E[uc] < M [Q]E[Q] and ‖uc(0)‖L2 ‖∇uc(0)‖L2 < ‖Q‖L2 ‖∇Q‖L2 . The control of

the spatial translation x(t) works as in Section 5, and one concludes as in Section 6,
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by a localized virial argument, using that in the defocusing case, the second derivative

of the localized variance zR(t) is

z′′R(t) =

(
8

∫
|∇u|2 + 6

∫
|u|4
)

+BR(u(t)),

where BR satisfies the bound

|BR(u(t))| ≤ c

∫
|x|≥R

(
|∇u(t)|2 +

1

R2
|u(t)|2 + |u(t)|4

)
dx.

Note that the use of the virial identity is potentially more robust since one might be

able to handle variants of the NLS equation (for example with a linear potential) that

might be out of reach for Morawetz based proofs.

Appendix A. A lifting lemma

In this appendix, we discuss some basic analysis facts needed in the very beginning

of the proof of Prop. 3.2.

Let G ∼= R3 act on H1 by translation, i.e., (x0 · φ)(x) = φ(x − x0). Write G\H1

for the quotient space endowed with the quotient topology. We represent elements

of G\H1 (the equivalence classes) by [φ], and let π : H1 → G\H1 be the natural

projection.

Lemma A.1. G\H1 is metrizable with metric

d([φ], [ψ]) = inf
x0∈R3

‖φ(· − x0)− ψ‖H1 .

With respect to this metric, G\H1 is complete. (Caution that G\H1 is not a vector

space, however.)

Proof. First, we establish that the orbits of G are closed in H1. The orbit of 0 is 0.

Suppose φ 6= 0, {xn} ⊂ R3 and φ(· − xn) converges to ψ in H1. Then we claim that

xn converges. Indeed, if not, then either xn is unbounded and there is a subsequence

xn such that |xn| → ∞, or xn is bounded and there are two subsequences xn → x0

and xn′ → x′0. In the first case, we obtain that ψ = 0 (by examining, for fixed R > 0,

the convergence on B(0, R)), which implies φ = 0, a contradiction. In the second

case, we obtain that φ(· − x0) = φ(· − x′0), only possible if φ = 0, a contradiction.

Next, we verify that d is a metric. Suppose d([φ], [ψ]) = 0. Then infx0∈R3 ‖φ(· −
x0) − ψ‖H1 = 0, and thus ψ is a point of closure (in H1) of the orbit of φ. But

since the orbits are closed, ψ belongs to this orbit, and thus, [φ] = [ψ]. The triangle

inequality is a straightforward exercise dealing with infima, and symmetry is obvious.

Suppose [φn] is a Cauchy sequence; to show that it converges, it suffices to show that

a subsequence converges. We can pass to a subsequence [φn] so that d([φn], [φn+1]) ≤
2−n. Take x1 = 0. Construct a sequence xn inductively as follows: given xn−1, select

xn so that ‖φn−1(· − xn−1) − φn(· − xn)‖H1 ≤ 2−n+1. Then φn(· − xn) is a Cauchy
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sequence in H1, and hence, converges to some φ. It is then clear that [φn] → [φ] in

G\H1.

It can be checked that for each φ ∈ H1 and r > 0, π(B(φ, r)) = B([φ], r). Therefore,

the topology induced by the metric d on G\H1 is the quotient topology. �

The following two lemmas will reduce Prop. 3.2 to proving that the set π({u(·, t) | t ∈
[0,+∞) }) is precompact in G\H1.

Lemma A.2. Let K be a precompact subset of G\H1. Assume

(A.1) ∃ η > 0 such that ∀ φ ∈ π−1(K), η ≤ ‖φ‖H1 .

Then there exists K̃ precompact in H1 such that π(K̃) = K.

Proof. Let B(0, 1) be the unit ball in R3. We first show by contradiction that there

exists ε > 0 such that for all p in K, there exists ψ = ψ(p) ∈ π−1(p) such that

(A.2) ‖ψ(p)‖H1(B(0,1)) ≥ ε.

If not, there exists a sequence φn in π−1(K) such that

(A.3) sup
x0∈R3

‖φn(· − x0)‖H1(B(0,1)) ≤
1

n
.

The precompactness of K implies, extracting a subsequence from φn if necessary, that

there exists φ ∈ H1 such that π(φn) → p in G\H1. In other words, if φ is fixed in

π−1(p), infx0∈R3 ‖φn(· − x0) − φ‖H1 tends to 0 as n tends to infinity. Thus, one may

find a sequence xn in R3 such that

(A.4) ‖φn(· − xn)− φ‖H1 −→
n→+∞

0.

Now, by (A.3), for all x0 ∈ R3, ‖φn(· − x0 − xn)‖H1(B(0,1)) ≤ 1
n
. Hence, by (A.4), for

all x0, φ vanishes on B(x0, 1). But then φ = 0, which contradicts assumption (A.1),

concluding the proof of the existence of x(φ).

Let K̃ = {ψ(p) | p ∈ K }, where ψ(p) satisfies (A.2). Of course, π(K̃) = K. By

the definition of x(φ),

(A.5) ∀ φ ∈ π−1(K), ‖φ‖H1(B(0,1)) ≥ ε.

Let us show that K̃ is precompact. Let φn be a sequence in K̃. Then by the precom-

pactness of K, there exists (extracting subsequences) φ ∈ H1 and a sequence xn of

R3, such that

(A.6) lim
n→+∞

‖φn(· − xn)− φ‖H1 = 0.

Note that K being precompact, φn is bounded in H1, thus, we may assume (extracting

again)

(A.7) lim
n→+∞

‖φn‖H1 = ` ∈ (0,+∞).
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Let us show that xn is bounded. If not, we may assume that |xn| → +∞. By (A.5)

and (A.7), we have

lim sup
n→∞

‖φn(· − xn)‖H1(B(0,|xn|−1)) ≤ `− ε.

As |xn| → ∞, we conclude that ‖φ‖H1 ≤ `− ε, contradicting (A.7). Therefore, xn is

bounded. Extracting if necessary, we may assume that xn converges, which shows by

(A.6) that φn converges. This concludes the proof of the precompactness of K̃. �

Lemma A.3. Let u be a global H1 solution to (1.1). Suppose

π({u(·, t) | t ∈ [0,+∞) })

is precompact in G\H1. Then there exists x(t), a continuous path in R3, such that

{u(· − x(t), t) | t ∈ [0,+∞) }

is precompact in H1.

Proof. By taking K = π({u(·, t) | t ∈ [0,+∞) }) in Lemma A.2, we obtain K̃ precom-

pact inH1 such that π(K̃) = K. For eachN , the map u : [N,N+1]→ H1 is uniformly

continuous. Thus, for each N , there exists δN > 0 such that if t, t′ ∈ [N,N + 1] and

|t − t′| ≤ δN , then ‖u(t, ·) − u(t′, ·)‖H1 ≤ 1/N . Let tn be the increasing sequence of

times→ +∞ defined to include evenly spaced elements with density δN in [N,N + 1]

for each N . (Thus, tn is an increasing sequence with possibly more elements per

unit interval as we move out to +∞). For each n, select x(tn) ∈ R3 such that

u(· − x(tn), tn) ∈ K̃. Now define x(t) to be the continuous function that connects

x(tn) to x(tn+1) by a straight line in R3.

We claim that {u(· − x(t), t) | t ∈ [0,+∞) } is precompact in H1. Indeed, let sk be

a sequence in [0,+∞). Then there exists a subsequence (also labeled sk) such that

either sk converges to some finite s0 or sk → +∞. In the first case, u(·−x(sk), sk)→
u(· − x(s0), s0) by the continuity of u(t) and x(t). In the second case, for each k,

obtain the unique index n(k) such that tn(k)−1 ≤ sk < tn(k). By the precompactness

of K̃, we can pass to a subsequence (in k) such that both u(· − x(tn(k)−1), tn(k)−1)

and u(· − x(tn(k)), tn(k)) converge in H1. By the density of the tn sequence and

uniform continuity of u, we obtain that u(· − x(tn(k)−1), tn(k)) converges and that it

suffices to show that u(· − x(sk), tn(k)) has a convergent subsequence. But since both

u(·−x(tn(k)−1), tn(k)) and u(·−x(tn(k)), tn(k)) converge, we have that x(tn(k)−1)−x(tn(k))

converges. Recall that x(sk) lies on the line segment joining x(tn(k)−1) and x(tn(k)),

and thus, x(sk)− x(tn(k)−1) converges (after passing to a subsequence). Hence, u(· −
x(sk), tn(k)) converges in H1. �

Thus, to prove Prop. 3.2, it suffices to prove that

(A.8) π({u(·, t) | t ∈ [0,+∞) })
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is precompact in G\H1. Since G\H1 is complete, if we assume that (A.8) is not

precompact in G\H1, then there exists a sequence {[u(tn)]} in G\H1 and η > 0 such

that d([u(tn)], [u(tn′)]) ≥ η, or equivalently, (3.4) in the proof of Prop 3.2 holds.
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