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Abstract. We show that, for the 1d cubic NLS equation, widely separated equal

amplitude in-phase solitons attract and opposite-phase solitons repel. Our result

gives an exact description of the evolution of the two solitons valid until the soli-

tons have moved a distance comparable to the logarithm of the initial separation.

Our method does not use the inverse scattering theory and should be applicable

to nonintegrable equations with local nonlinearities that support solitons with ex-

ponentially decaying tails. The result is presented as a special case of a general

framework which also addresses, for example, the dynamics of single solitons sub-

ject to external forces as in [7, 8].

1. Introduction

We consider the 1d nonlinear Schrödinger equation (NLS)

(1.1) i∂tu+ 1
2
∂2
xu+ |u|2u = 0 .

It has a single soliton solution u(x, t) = eit/2 sechx. The invariances of (1.1) can be

applied to produce a whole family of solutions. To describe them, let 1

(1.2) η(x, µ, a, θ, v) = eiθeiµ
−1v(x−a)µ sech(µ(x− a))

for parameters θ, a, v ∈ R, µ > 0. Then u(x, t) = η(x, µ(t), a(t), θ(t), v(t)) solves (1.1)

provided

(1.3)



µ(t) = µ0

a(t) = a0 + tv0µ
−1
0

θ(t) = θ0 +
1

2
t(µ2

0 + µ−2
0 v2

0)

v(t) = v0

In this paper, we study the evolution of initial data that is the sum of two widely

separated solitons:

(1.4) u0(x) = η(x, µ10, a10, θ10, v10) + η(x, µ20, a20, θ20, v20)

1We order the parameters as (µ, a, θ, v) to mimic (q1, q2, p1, p2) as canonical coordinates for the

four dimensional symplectic space with symplectic form dp1 ∧ dq1 + dp2 ∧ dq2.
1
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where |a20−a10| � 1. In particular, we focus on two illustrative cases. In both cases,

we consider identical mass solitons with zero initial velocity. In Case 0, we take the

same initial phase, corresponding to an even superposition and in Case 1, we take

opposite initial phase corresponding to an odd superposition.

(1.5) u0(x) =

{
η(x, 1,−a0, 0, 0) + η(x, 1, a0, 0, 0) Case σ = 0

η(x, 1,−a0, π, 0) + η(x, 1, a0, 0, 0) Case σ = 1

We find that in the same phase case (Case 0), the two solitons are drawn toward

each other and in the opposite phase case (Case 1) they are pushed apart– see Fig.

1.1. In either case, the solution u to (1.1) is well-approximated by

(1.6) uz(x) = η(x, µ1, a1, θ1, v1) + η(x, µ2, a2, θ2, v2)

where z represents coordinates2

(1.7) z = (z1, z2, z3, z4, z5, z6, z7, z8) = (µ1, a1, µ2, a2, θ1, v1, θ2, v2)

As parity is preserved by the flow (1.1), we have

(1.8) µ
def
= µ1 = µ2 , a

def
= −a1 = a2 , v

def
= −v1 = v2 ,

and θ
def
= θ1 = θ2 in the same phase case (Case 0), while θ

def
= θ1 − π = θ2 in the

opposite phase case (Case 1).

Theorem 1.1. Suppose that u(t) is the solution to (1.1) with initial data (1.5). Let

h = e−a0 � 1 (so a0 = log h−1 � 1). Let

T ∼

{
h−1 Case σ = 0

h−1 log h−1 Case σ = 1

Let (a(t), v(t)) solve

(1.9)

{
ȧ = v

v̇ = −4(−1)σe−2a

with initial data (a0, 0). Let µ solve

(1.10) µ̇ = (−1)σ(8a− 4)ve−2a ,

and then let θ solve

(1.11) θ̇ =
1

2
µ2 +

1

2
v2µ−2 + 18(−1)σe−2a .

Then on 0 ≤ t ≤ T , we have

‖u(t)− uz‖H1
x
. h2− ,

2Superscripts are used on z to conform with geometric summation conventions used later in the

paper.
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Figure 1.1. The top plot is a depiction of Case 0 (same phase;

even solution), where the two solitons are pulled toward each other.

The bottom plot depicts Case 1 (opposite phase; odd solution), where

they repel. In each case, the solution is modeled in Theorem 1.1 as

u ≈ uz = η(µ,−a, θ + σπ,−v) + η(µ, a, θ, v) where (µ, a, θ, v) solve a

specific ODE system.

where

(1.12) uz = η(µ,−a, θ + σπ,−v) + η(µ, a, θ, v)

Let us make some remarks on the ODE system (1.9). The energy associated to

this system is

Heff = v2 − 4(−1)σe−2a = −4(−1)σe−2a0

In the case σ = 0 (same phase), we have v ≤ 0, a ≤ a0 and{
a(t) = a0 − log sec(2ht)

v(t) = 2h tan(2ht)

valid for 0 ≤ t . ea0 = h−1. In the case σ = 1 (opposite phase), we have v ≥ 0,

a ≥ a0 and {
a(t) = a0 + log cosh(2ht)

v(t) = 2h tanh(2ht)
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valid for 0 ≤ t . a0e
a0 = h−1 log h−1. In either case, µ evolving according to (1.10)

satisfies |µ − 1| . h2 and can thus be replaced by 1 in (1.12). However, the O(h2)

behavior of µ is dynamically significant in that it yields O(h1) effects in θ through

(1.11). It is evident from the explicit forms for a(t) given above that, on the indicated

time scale, the soliton has moved a distance comparable to log a0.

We remark that although (1.1) is completely integrable, we do not use the inverse

scattering theory of Zakharov-Shabat [20]. We expect that one could compute the

scattering data associated to our initial condition and conduct an analysis using in-

verse scattering theory that would describe the dynamics for all time. Our argument,

however, has the merit of being relatively simple and should adapt to most nonin-

tegrable nonlinearities that support stable solitons with exponentially decaying tails.

An important example of such a nonintegrable equation is the 1d cubic-quintic NLS:

i∂tu+
1

2
∂2
xu+ |u|2u− ε|u|4u = 0

Furthermore, our goal was not just to obtain Theorem 1.1 but to present it in the

conceptual (yet rigorous) framework of symplectic restriction that illustrates its con-

nection to previous work of the first author, Holmer-Zworski [7, 8].

We cite two papers from the physics literature as motivation for our problem.

Stegeman-Segev [17] provide an overview of phase-driven two-soliton interaction in

the context of optics, beginning with an account of the 1d case (1.1) that we study

(see their Fig. 4) and proceeding to a discussion of two-soliton interaction in two

dimensions in which the attractive forces between in-phase solitons can lead to spi-

raling structures – see their Fig. 6. The NLS equation also arises in a completely

different physical setting, Bose-Einstein condensation. Strecker et.al. [18] describe an

experiment producing multiple solitons, in which the model is (1.1) with a confining

potential. A train of five solitons with successively opposite phases are produced and

oscillate in a well. At the peak of the oscillations, the solitons bunch up but retain

some separation; [18] explains this in terms of their phase differences.

We will now give an explanation of Theorem 1.1 and an overview of the proof.

Consider L2(R;C) as a manifold with metric

gu(v1, v2) = 〈v1, v2〉
def
= Re

∫
v1v̄2 for u ∈ L2, v1, v2 ∈ TuL2 ' L2 .

Introduce J = −i, viewed as an operator TuL
2 → TuL

2. The corresponding symplec-

tic form is

(1.13) ωu(v1, v2) = 〈v1, J
−1v2〉
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Take as Hamiltonian the (densely defined, with domain3 D = H2) function H : L2 →
R given by

(1.14) H(u) =
1

4

∫
|ux|2 −

1

4

∫
|u|4

Then

H ′(u) ∈ T ∗uL2 '
metric g

TuL
2

The corresponding flow is ∂tu = JH ′(u) yielding (1.1).

Recalling that η is given by (1.2), consider the manifold of solitons

M = { η(·, µ, a, θ, v) | µ > 0, θ ∈ R, a ∈ R, v ∈ R } .

Computations show that the restriction of the symplectic form ω to M is

i∗ω = dθ ∧ dµ+ dv ∧ da ,

while the restriction of the Hamiltonian H to M is

H(η(·, µ, a, θ, v)) =
1

2
µ−1v2 − 1

6
µ3 ,

Note that the free single soliton flow (1.3) is just the solution to the Hamilton equa-

tions of motion for H(η) with respect to i∗ω:

µ̇ = ∂θH(η) = 0

ȧ = ∂vH(η) = µ−1v

θ̇ = −∂µH(η) =
1

2
µ−2v2 +

1

2
µ2

v̇ = −∂aH(η) = 0

Turning to the double soliton problem, recall that we model the u in terms of uz
given by (1.6) where z = (z1, . . . , z8) is given by (1.7). We introduce the shorthand

notation

ηj
def
= η(·, µj, aj, θj, vj) , j = 1, 2.

Also recall that h = e−a0 � 1, and the initial soliton separation is 2a0 = 2 log h−1 � 1.

Expanding the nonlinearity, we obtain

(1.15) Hp(uz) = Hp(η1) + 〈H ′p(η1), η2〉+Hp(η2) + 〈H ′p(η2), η1〉+O(h4)

The last two terms are dominant near a2 (on the effective support of η2), so that the

second soliton sees an “effective” Hamiltonian

(1.16) Heff(µ2, a2, θ2, v2) = H(η2) + 〈H ′p(η2), η1〉

3This domain is chosen so that JH ′(u) = −i(− 1
2uxx − |u|

2u) ∈ L2. Although we restrict to

u ∈ D = H2 here, we will prove estimates on the corresponding flow in H1. This parallels the

situation in the theory of linear self-adjoint operators A, where a dense domain is specified but the

flow associated to −iA extends to a unitary operator on all of L2.
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and thus its expected equations of motion are

(1.17)


µ̇2 = ∂θ2H(η2) + ∂θ2〈H ′p(η2), η1〉
ȧ2 = ∂v2H(η2) + ∂v2〈H ′p(η2), η1〉

θ̇2 = −∂µ2H(η2)− ∂µ2〈H ′p(η2), η1〉
v̇2 = −∂a2H(η2)− ∂a2〈H ′p(η2), η1〉

Likewise, the first two terms in (1.15) are dominant near a1 so the first soliton sees

an effective Hamiltonian

Heff(µ1, a1, θ1, v1) = H(η1) + 〈H ′p(η1), η2〉

and thus its expected equations of motion are

(1.18)


µ̇1 = ∂θ1H(η1) + ∂θ1〈H ′p(η1), η2〉
ȧ1 = ∂v1H(η1) + ∂v1〈H ′p(η1), η2〉

θ̇1 = −∂µ1H(η1)− ∂µ1〈H ′p(η1), η2〉
v̇1 = −∂a1H(η1)− ∂a1〈H ′p(η1), η2〉

Pulling (1.17) and (1.18) together gives us a systems of eight equations in eight

unknowns:

(1.19)



µ̇1 = ∂θ1H(η1) + ∂θ1〈H ′p(η1), η2〉
ȧ1 = ∂v1H(η1) + ∂v1〈H ′p(η1), η2〉

θ̇1 = −∂µ1H(η1)− ∂µ1〈H ′p(η1), η2〉
v̇1 = −∂a1H(η1)− ∂a1〈H ′p(η1), η2〉
µ̇2 = ∂θ2H(η2) + ∂θ2〈H ′p(η2), η1〉
ȧ2 = ∂v2H(η2) + ∂v2〈H ′p(η2), η1〉

θ̇2 = −∂µ2H(η2)− ∂µ2〈H ′p(η2), η1〉
v̇2 = −∂a2H(η2)− ∂a2〈H ′p(η2), η1〉

After the even/odd symmetry assumption is imposed, one can distill from (1.19) the

equations appearing in the statement of Theorem 1.1. 4

We find that the above argument yielding (1.19) is a little too vague to adapt to a

rigorous proof. We now consider a different perspective that informally produces the

4In fact, the above heuristic argument does not invoke the even/odd symmetry assumption and

thus we might expect the equations (1.19) even without this assumption. However, the equations

(1.19) are only expected to be accurate to order O(h4). In the presence of the symmetry assumption

the eight equations in (1.19) dramatically decouple as (1.9), (1.10), (1.11) which permits a direct

analysis of these ODEs that shows that an O(h4) unknown can only only have a limited O(h2) effect

the solution. In the general case, the eight equations in (1.19) are more interdependent and we are

not certain as to the effect of O(h4) perturbations. This is not the only obstacle to removing the

symmetry assumption; see comments below.
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same set of equations (1.19) but adapts to yield a proof of Theorem 1.1 and in fact

extends and unifies the results of [3, 6, 7, 8]. Recalling z defined in (1.7), consider

now the eight-dimensional two-soliton manifold

M = {uz = η1 + η2 = η(·, µ1, a1, θ1, v1) + η(·, µ2, a2, θ2, v2) }

The symplectic form (1.13) restricted to M is

(1.20) i∗ω =
1

2

8∑
`,m=1

a`m(z) dz` ∧ dzm

where

A(z) = (a`m(z)) , a`m(z) = 〈∂z`uz, J−1∂zmuz〉
Let H(uz) denote the restriction to M of the Hamiltonian (1.14). The expected

equations of motion for zm are Hamilton’s equations for H(uz) with respect to i∗ω.

These equations are:

(1.21) żm = −
8∑
`=1

∂z`H(uz) a
`m(z) , m = 1, . . . , 8

where a`m denotes the components of the inverse of the matrix A = (a`m).

The matrix A contains O(h2) terms that result from the pairing of directions paral-

lel to the first soliton with directions parallel to the second soliton. Moreover, H(uz)

contains additional O(h2) terms arising from the quadratic part of (1.14) not repre-

sented in (1.19). It turns out that O(h2) terms in a`m and O(h2) terms in H(uz) each

give rise to terms which cancel in (1.21). This hinges upon the fact that

(1.22) ∂z`H(uz) = −
8∑
j=1

bjaj` + ∂z`〈η1, H
′
p(η2)〉+ ∂z`〈η2, H

′
p(η1)〉

where

b2 = ∂v1H(η1) , b4 = ∂v2H(η2) , b5 = −∂µ1H(η1) , b7 = −∂µ2H(η2)

and all other bj = 0. When this equation is substituted into (1.21), once can witness

the simplification arising from the pairing of A and A−1, and this shows that (1.21)

is equivalent to (1.19). We elaborate upon this in Appendix A.

The merit in this point of view is that the equations (1.21) readily follow from the

symplectic decomposition of the flow–that is, we select z (via the implicit function

theorem) so that

(1.23) u = uz + w

where w ∈ TzM⊥ (the symplectic orthogonal complement to TzM in TuzL
2). In §3

(Lemma 3.1) a general argument is given showing that the equations (1.21) follow,
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with errors of size h4 + ‖w‖2
H1 . This argument exploits the fact that (1.21), with

errors of size h4 + ‖w‖2
H1 , is equivalent to

(1.24) ∂tuz = ΠzJH
′(uz) +O(h4 + ‖w‖2

H1)

where Πz : TuzL
2 → TzM is the symplectic orthogonal projection operator given

explicitly by

Πzf =
8∑

`,m=1

〈f, J−1∂z`uz〉a`m(z)∂zmuz

The proof of Lemma 3.1 makes no reference to the specific meaning of H or uz, and a

similar result with nearly identical proof would yield the equations of motion in many

other problems, including those studied in [6, 7, 8]. The fact that the equations of

motion follow automatically but rigorously from the symplectic decomposition (1.23)

is one of the main advantages of this geometric approach to our problem, as opposed

to a more ad hoc approach based on the discussion surrounding (1.16). 5

It then remains to show that ‖w(t)‖H1
x
. h2 on the time scale O(h−1), which we

would like to prove using a suitable adaptation of the Lyapunov functional method

initiated into the theory of orbital stability of single solitons by Weinstein [19]. Un-

fortunately, the presence of the Πz projection in (1.24) corrupts this computation

and only yields a bound ‖w(t)‖H1
x
. h. To eliminate this problem, we construct a

function νz = O(h2), whose only time dependence is through the parameter z, such

that the distorted double-soliton function ũz = uz + νz satisfies

(1.25) ∂tũz = JH ′(ũz) +O(h4 + ‖w‖2
H1)

which is just (1.24) without the Πz projection. The construction of νz is carried out

in §4.

We add this correction ṽz to our soliton manifold M and consider the distorted

manifold M̃ = { ũz }. The solution u to (1.1) now has a decomposition u = ũz + w̃

where ũz satisfies (1.25) and it suffices to prove that ‖w̃(t)‖H1
x
. h2. In other words,

we would like to show that the exact solution to (1.1) is approximately equal to

the solution to the approximate equation (1.25). In §5, a Lyapunov functional is

employed to obtain the needed control on w̃. The Lyapunov functional used is a

superposition of two copies–one for each soliton–of the classical functional, built from

energy, momentum and mass, employed by Weinstein [19] to prove orbital stability

of single solitons. This superposition was previously used by Martel-Merle-Tsai [10]

5The idea that the equations of motions should be Hamilton’s equations for the restricted Hamil-

tonian with respect to the restricted symplectic form was introduced in [7, 8] and supported in-

formally with an argument involving Darboux’s theorem. The equations of motion thus obtained

were used as a guide in the analysis in [6, 7, 8] but the general rigorous connection between the

symplectic decomposition of the flow and the equations of motion, as obtained in our Lemma 3.1,

was not obtained in [6, 7, 8].
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in their study of the orbital stability of spreading multiple solitons. Our presentation

of this component of the argument is a little different from [19] or [10] and more in

line with the abstract orbital stability theory developed by Grillakis-Shatah-Strauss

[4, 5]. Roughly, we prove that if W : L2 → R is a (densely defined) functional such

that the derivative is of order O(h) on M̃ , and if we define L to be the quadratic

part of W above M̃ , then ∂tL is essentially the quadratic part of the Poisson bracket

{H,W}(u) above M̃ , which we show is of order O(h5).

Let us note that h−δ losses occur in several estimates, which were not necessarily

indicated in the above introduction, owing to the fact that in the attractive case |v|
can exceed h by a factor of log h−1 and a decreases below a0, as well as the presence of

an x-multiplication factor in terms involving ∂vjuz in both the attractive and repulsive

cases. We indicate the presence of such losses by writing, for example, h4−. These

losses are more carefully quantified in the concluding summary of the proof in §6.

We emphasize that the methods in §3 and §5, although stated only for the problem

at hand, are fairly general and widely applicable to problems in orbital stability of

single [19, 4, 5] and multiple [11] solitons and the dynamics of solitons in slowly

varying potentials [3, 6, 8, 2, 13], weak rough potentials [1, 7, 15], and the interaction

of two soliton tails, as considered here. The portion of the analysis most specific to the

problem at hand appears in §4, where the approximate solution is constructed. In this

section, we consider the two components of the double-soliton separately and exploit

the group structure of each individual soliton to pull-back to a nearly-stationary

problem, which can be solved by operator inversion. This method was introduced by

Holmer-Zworski [8] to produce an improvement of the result by Fröhlich-Gustafson-

Jonsson-Sigal [3] on the dynamics of single solitons in a slowly-varying potential,

eliminating the uncontrollable errors in the ODEs appearing in [3].

Let us point out some related papers. Marzuola-Weinstein [12] consider the dynam-

ics of symmetric and antisymmetric states in a double well-potential. Krieger-Martel-

Raphaël [9] construct two-soliton solutions with separating components asymptoti-

cally as t → +∞ for the nonlinear Hartree equation, where the long-range effects of

the nonlinearity complicate the analysis but also lead to nonnegligible perturbations

of the asymptotic trajectories. Our analysis is similar in several ways to that of [9],

although our priorties are different – we study the dynamics for a finite (but dynam-

ically significant) time of an initial data that is close to a double-soliton, wheras they

provide infinite time dynamics for an exact double-soliton solution. The problem of

stability of nonintegrable NLS multiple solitons, with components that separate as

t → ∞, has been considered by Perelman [14], Rodnianski-Soffer-Schlag [16], and

Martel-Merle-Tsai [10].

We now remark on where we rely upon the even/odd symmetry assumption on

the solution. While the arguments in §3 yielding (1.21) apply in general, in §4, when

constructing the solution ũz to the approximate equation (1.25), we do make use of the
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symmetry assumption, although we have sketched an argument (not included in this

paper) showing how one can adapt the argument to the general case. The symmetry

assumption also greatly simplifies the computations carried out in Appendix A which

ultimately yield the ODEs (1.9), (1.10), (1.11) in Theorem 1.1. The integrals in the

general case appear very complicated, and we are less confident that we could control

the propagation of O(h4) errors, as previously remarked. However, the one place

where the symmetry assumption is used critically is in obtaining the upper bound

on the Lyapunov function used in §5 to show the closeness of the true solution u

and the solution ũz of the approximate equation (1.25). Our guess is that to resolve

this issue, one would need to restructure the Martel-Merle-Tsai Lyapunov function

in a substantial way. The lower bound on the Lyapunov function, however, carries

through in general.

1.1. Acknowledgements. We thank Maciej Zworski and Galina Perelman for help-

ful discussion related to this paper. J.H. was partially supported by NSF Grant

DMS-0901582 and a Sloan Research Fellowship.

2. Background on solitons, Hamiltonian structure, and Lyapunov

functionals

The NLS equation (1.1) can be put into Hamiltonian form as follows. Take as

the ambient symplectic manifold L2 = L2(R;C) with metric 〈v1, v2〉u = Re
∫
v1v̄2 for

u ∈ L2, v1, v2 ∈ TuL
2 = L2. Let J = −i, viewed as an operator TuL

2 → TuL
2.

The corresponding symplectic form is ωu(v1, v2) = 〈v1, J
−1v2〉u (we henceforth drop

the u-subscript). Define the (densely defined, with domain D = H2) Hamiltonian

H : L2 → R as

H(u) =
1

4

∫
|ux|2dx−

1

4

∫
|u|4 .

Using the metric 〈·, ·〉 defined above, H ′(u) ∈ T ∗uL2 is identified with an element of

TuL
2. The free NLS equation (1.1) is

(2.1) ∂tu = JH ′(u)

Solutions to (1.1) also satisfy conservation of mass M(u) and momentum P (u), where

M(u) =
1

2

∫
|u|2 , P (u) =

1

2
Im

∫
ū ux .

Let φ(x) = sechx and

η(x, µ, a, θ, v) = eiθeiµ
−1v(x−a)µφ(µ(x− a))

Direct computation shows that M(η) = µ and P (η) = v. Consider the manifold of

solitons

M = { η(·, µ, a, θ, v) | µ > 0, θ ∈ R, a ∈ R, v ∈ R } .
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The tangent space at η = η(·, µ, a, θ, v) is

T(µ,a,θ,v)M = span{ ∂µη, ∂θη, ∂aη, ∂vη } .

Note that JH ′(η) ∈ T(µ,a,θ,v)M , and thus the flow associated to (1.1) will remain

on M if it is initially on M . Specifically, direct computation shows

(2.2) JH ′(η) = (
1

2
µ−2v2 +

1

2
µ2)∂θη + µ−1v∂aη .

To gain a better understanding of (1.3) and (2.2), we can restrict ω to M to obtain

i∗ω = dθ ∧ dµ+ dv ∧ da ,

where i : M → L2 denotes the inclusion and restrict H to M to obtain

H(η) =
1

2
µ−1v2 − 1

6
µ3 ,

and then note that (1.3) is just the solution to the Hamilton equations of motion for

H(η) with respect to i∗ω:

(2.3)



µ̇ = ∂θH(η) = 0

ȧ = ∂vH(η) = µ−1v

θ̇ = −∂µH(η) =
1

2
µ−2v2 + 1

2
µ2

v̇ = −∂aH(η) = 0

Suppose we knew that JH ′(η) ∈ T(µ,a,θ,v)M and wanted to recover the coefficients as

in (2.2). This could be achieved by noting that

JH ′(η) = ∂tη

= µ̇∂µη + ȧ∂aη + θ̇∂θη + v̇∂vη

= ∂vH(η)∂aη − ∂µH(η)∂θη

Moreover, the functionals M and P , considered as auxiliary Hamiltonians, have as-

sociated Hamilton vector fields

JM ′(η) = −∂θη JP ′(η) = ∂aη .

This enables us to write

(2.4) JH ′(η) = ∂vH(η) JP ′(η) + ∂µH(η)JM ′(η) .

From this, we learn that W ′
(µ,a,θ,v)(η) = 0, where

(2.5) W(µ,a,θ,v)(u)
def
= −∂µH(η)M(u)− ∂vH(η)P (u) +H(u) .

The functional L(µ,a,θ,v)(u) = W(µ,a,θ,v)(u) −W(µ,a,θ,v)(η) is the Lyapunov functional

used in the classical orbital stability theory for (1.1) due to Weinstein [19].
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3. Effective dynamics

Now we turn to the double soliton problem and begin the proof of Theorem 1.1.

Consider the two-soliton submanifold M of L2 given by

M = {uz
def
= η(·, µ1, a1, θ1, v1) + η(·, µ2, a2, θ2, v2) } .

Note that M is just the linear superposition of two single solitons. We adopt the

notation

z = (z1, z2, z3, z4, z5, z6, z7, z8) = (µ1, a1, µ2, a2, θ1, v1, θ2, v2) ,

for coordinates on this manifold M . Next, we give the form of the symplectic orthog-

onal projection operator

Πz : TuzL
2 → TzM ,

Note that TuzL
2 is naturally identified with L2. A consequence of the requirement

that 〈f − Πzf, J
−1∂z`uz〉 = 0, ` = 1, . . . , 8 is that

(3.1) Πzf =
8∑

`,m=1

〈f, J−1∂z`uz〉a`m(z)∂zmuz

whereA(z) = (a`m(z)) is the 8×8 matrix with components a`m(z) = 〈∂z`uz, J−1∂zmuz〉
and A(z)−1 = (a`m(z)) is the inverse matrix.

Let i : M → L2 denote the inclusion. It follows from the definition of A(z) that

the restricted symplectic form i∗(ω) takes the form

(3.2) i∗(ω) =
1

2

8∑
`,m=1

a`mdz
` ∧ dzm .

It also follows by substitution into (3.1) that

ΠzJH
′(uz) = −

8∑
`,m=1

∂z`H(uz) a
`m(z) ∂zmuz

Consequently, the equation ∂tuz = ΠzJH
′(uz) is equivalent to the system of equations

żm = −
8∑
`=1

∂z`H(uz) a
`m(z) m = 1, . . . , 8 ,

which are precisely Hamiltonian’s equations of motion for the restricted (toM) Hamil-

tonian z 7→ H(uz) with respect to the restricted (to M) symplectic form i∗(ω).

We propose to model the solution u to (2.1) by

(3.3) u = uz + w

where uz ∈M is chosen so that the symplectic orthogonality conditions

(3.4) 〈w, J−1∂z`uz〉 = 0 , ` = 1, . . . , 8.
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hold. The fact that such a z exists follows from the implicit function theorem and

the assumed smallness of w. Note that if we assume u(t) solves (2.1), this induces

time dependence on the parameters z ∈ R8. 6

Lemma 3.1 (effective dynamics). Suppose that u evolves according to (2.1) and z,

w are defined by (3.3) so that the orthogonality conditions (3.4) hold. Then

(3.5) ‖∂tuz − ΠzJH
′(uz)‖TzM . ‖w‖2

H1 + max
1≤n≤8

‖J−1∂znΠ⊥z JH
′(uz)‖2

H1 .

Equivalently, considering M as an 8-dimensional symplectic manifold equipped with

the symplectic form i∗(ω) given in (3.2), the Hamilton’s equations of motion for z

induced by the restricted Hamiltonian z 7→ H(uz) approximately hold as follows:

(3.6)∣∣∣∣∣żm +
8∑
`=1

∂z`H(uz) a
`m(z)

∣∣∣∣∣ . ‖w‖2
H1 + max

1≤n≤8
‖J−1∂znΠ⊥z JH

′(uz)‖2
H1 m = 1, . . . , 8

The norm ‖ · ‖TzM is the one induced by the metric 〈·, ·〉uz . As TzM is finite-

dimensional, we have the norm-equivalence to∥∥∥∥∥
8∑
`=1

γ(z`)∂z`uz

∥∥∥∥∥
TzM

∼ max
1≤`≤8

|γ(z`)|

Proof. Since u solves (2.1), we obtain from (3.3) the equation for w:

(3.7) ∂tw = −(∂tuz − ΠzJH
′(uz)) + Π⊥z JH

′(uz) + JH ′′(uz)w +OH1(‖w‖2
H1)

By applying ∂t to (3.4), we obtain

0 = 〈∂tw, J−1∂znuz〉+ 〈w, J−1∂zn∂tuz〉

Here we have used that ∂t∂zn = ∂zn∂t, which holds provided we adopt the con-

vention that ∂z` ż
m = 0 for all 1 ≤ `,m ≤ 8. Substituting (3.7) and using that

〈Π⊥z JH ′(uz), J−1∂znuz〉 = 0, we obtain

(3.8) 0 = A + B + C + D

where

A = −〈∂tuz − ΠzJH
′(uz), J

−1∂znuz〉
B = 〈JH ′′(uz)w, J−1∂znuz〉
C = 〈w, J−1∂zn∂tuz〉
D = 〈O(w2), J−1∂znuz〉

6Note that here w is properly understood as an element of Tuz
L2 and in (3.3) we mean that,

starting at uz we take the flow-forward (by “time” 1) in the direction w. However, using the natural

identification between TuzL
2 and L2, (3.3) makes sense as an equation involving functions in L2.
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Since J∗J−1 = −1 and H ′′(uz) is self-adjoint,

B = −〈w,H ′′(uz)∂znuz〉 = −〈w, ∂znH ′(uz)〉 = −〈w, J−1∂znJH
′(uz)〉

Hence

B + C = 〈w, J−1∂zn(∂tuz − JH ′(uz))〉
= 〈w, J−1∂zn(∂tuz − ΠzJH

′(uz))〉 − 〈w, J−1∂znΠ⊥z JH
′(uz)〉

Let R = ∂tuz − ΠzJH
′(uz) ∈ TzM , and expand with respect to the basis of TzM as

R =
8∑
`=1

γ`(z)∂z`uz .

It follows from (3.8) that

(3.9) 〈R, J−1∂znuz〉 = 〈w, J−1∂znR〉 − 〈w, J−1∂znΠ⊥z JH
′(uz)〉+O(‖w‖2

H1) .

We have

∂znR =
8∑
`=1

∂znγ`(z) ∂z`uz +
8∑
`=1

γ`(z)∂zn∂z`uz .

Since w ∈ TzM⊥,

〈w, J−1∂znR〉 =
8∑
`=1

γ`(z)〈w, J−1∂zn∂z`uz〉

and hence

(3.10) |〈w, J−1∂znR〉| . ‖w‖H1‖R‖TzM .

The lemma follows from (3.9), ‖R‖TzM = max1≤n≤8 |〈R, J−1∂znuz〉|, (3.10), and

Cauchy-Schwarz. �

In our case we shall have

‖J−1∂znΠ⊥z JH
′(uz)‖2

H1 . h4− .

We carry out computations of (3.5) in Appendix A and show that (3.5) is equivalent

to (1.19), with error terms O(h4−), even without the even/odd assumption on the

solution. It is further shown in Appendix A that when the even/odd assumption is

imposed and the integrals in (1.19) are explicitly computed, we obtain

µ̇ = (−1)σ(8a− 4)ve−2a +O(h4−)

ȧ = µ−1v + (−1)σ(−4a+
2

3
π2)ve−2a +O(h4−)

θ̇ =
1

2
µ2 +

1

2
v2µ−2 + 18(−1)σe−2a +O(h4−)

v̇ = −4(−1)σe−2a +O(h4−)
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The solution (µ, a, θ, v) is adequately approximated by the ODEs appearing in the

statement of Theorem 1.1.

4. Approximate solution

By Lemma 3.1 and (3.7), the equation for w is{
∂tw = JH ′′(uz)w + Π⊥z JH

′(uz) +OH1(‖w‖2
H1 + h4−)

w
∣∣
t=0

= w0

The next step is to show that there exists a function νz(x) such that ‖νz‖H1 . h2,

whose only time dependence occurs through the parameter z, such that

(4.1) ∂tνz = JH ′′(uz)νz + Π⊥z JH
′(uz) +OH1(h4− + ‖w‖2

H1)

Here it is assumed that z ∈ R8 evolves according to Lemma 3.1, i.e.

(4.2) ∂tuz = ΠzJH
′(uz) +OH1(h4− + ‖w‖2

H1)

The initial data νz
∣∣
t=0

is not prescribed but our structural assumption on νz is fairly

rigid. Note that given (4.2), the assertion that νz solve (4.1) is equivalent to the

statement that ũz
def
= uz + νz solve

(4.3) ∂tũz = JH ′(ũz) +OH1(h4− + ‖w‖2
H1) .

This is an approximate solution to (2.1) (that does not, in general, satisfy the specified

initial data).

Let g : L2 → L2 be the operator attached to the parameters (µ, a, θ, v) that acts

on a function ρ as follows:

(4.4) (gρ)(x) = eiθeiµ
−1v(x−a)µρ(µ(x− a)) .

The inverse action is

g−1ρ(x) = e−iθe−iµ
−2vxµ−1ρ(µ−1x+ a) .

The adjoint action g∗ with respect to 〈·, ·〉 is

g∗ρ(x) = e−iθe−iµ
−2vxρ(µ−1x+ a) = µg−1ρ(x) .

Denote φ(x) = sechx. Then uz = g1φ+ g2φ. We look for a solution νz to (4.1) in the

form

(4.5) νz =
2∑
j=1

αj gjρj ,

where αj = αj(µ1, a1, θ1, v1, µ2, a2, θ2, v2) and gj is the operator corresponding to

(µj, aj, θj, vj). That is, we assume νz can be decomposed into two pieces, each of

which can be pulled back to a stationary equation and solved by operator inversion.

The time dependence of νz occurs only through z.
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The next step is to substitute (4.5) into (4.1). The resulting equation simplifies

provided we assume that each ρj satisfies |ρj(x)| . h2e(−1+)|x| for |x| ≥ 1 as certain

cross terms become OH1(h4−). In this case, (4.1) will be satisfied provided for both

j = 1, 2, we have

∂t(αjgjρj) = JH ′′(gjφ)(αjgjρj)+Π⊥z J((gjφ)2g3−jφ+2|gjφ|2g3−jφ)+OH1(h4−+‖w‖2
H1)

In the proof, we delete the j-subscripts, denote g̃ = g3−j and moreover assume that

α̇j = O(h2). Then we aim to solve

∂t(gρ) = JH ′′(gφ)(gρ) + α−1Π⊥J((gφ)2g̃φ+ 2|gφ|2g̃φ) +OH1(h4− + ‖w‖2
H1)

The form of the operator Π⊥ can be simplified, since we only need to keep the O(1)

and O(h) parts. This equation takes the form

(4.6) ∂t(gρ) = JH ′′(gφ)(gρ) + α−1Π⊥Jgf +OH1(h4− + ‖w‖2
H1)

where, in the case j = 1,

(4.7) f = g−1
1 [(g1φ)2g2φ] + 2g−1

1 [|g1φ|2g2φ]

= eiω1eiω2xµ2
jµ3−jφ(µ3−jµ

−1
j x+ (aj − a3−j))φ(x)2

+ 2eiω3eiω4xµ2
jµ3−jφ(µ3−jµ

−1
j x+ (aj − a3−j))φ(x)2

with

ω1
def
= θ1 − θ2 − µ−1

3−jv3−j(aj − a3−j)

ω2
def
= µ−2

j vj − µ−1
3−jµ

−1
j v3−j

ω3
def
= θ2 − θ1 + µ−1

3−jv3−j(aj − a3−j)

ω4
def
= µ−2

j vj + µ−1
3−jµ

−1
j v3−j

In the case j = 2,

(4.8) f = g−1
2 [(g2φ)2g1φ] + 2g−1

2 [|g2φ|2g1φ] .

with a similar expansion. The only important feature of these expressions is that

e(1−)〈x〉f = O(h2) and e(1−)〈x〉∂tf = O(h3) when θ1 − θ2 is a constant (as in the case

of the even/odd symmetry assumption in Theorem 1.1.

Now we begin the task of pulling back (4.6) – applying g∗ to (4.6), we obtain

(4.9) g∗∂tgρ = g∗[JH ′′(gφ)(gρ)] + α−1g∗Π⊥Jgf +OH1(h4− + ‖w‖2
H1) .

First, we aim to simplify the term g∗[JH ′′(gφ)(gρ)] in (4.9). Let Kg(φ) = H(gφ). It

follows that K ′g(φ) = g∗H ′(gφ) and K ′′g (φ) = g∗[H ′′(gφ)(g•)]. By direct substitution,

we compute:

Kg(u) = µ3H(u) + µvP (u) +
1

2
v2µ−1M(u)
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Since g∗J = Jg∗, we have

(4.10)
g∗[JH ′′(gφ)(g•)] = JK ′′g (φ)

= µ3JH ′′(φ) + µvJP ′′(φ) + 1
2
v2µ−1JM ′′(φ)

Second, we seek to simplify the term g∗∂tgρ in (4.9). Define the operators

∂̃µ
def
= ∂µ

∣∣
(1,0,0,0)

= ∂xx

∂̃a
def
= ∂a

∣∣
(1,0,0,0)

= −∂x

∂̃θ
def
= ∂θ

∣∣
(1,0,0,0)

= i

∂̃v
def
= ∂v

∣∣
(1,0,0,0)

= ix

Let

(4.11)

∂̄µ
def
= g∗∂µg = ∂xx− iµ−2vx = ∂̃µ − µ−2v∂̃v

∂̄a
def
= g∗∂ag = −µ2∂x − iv = µ2∂̃a − v∂̃θ

∂̄θ
def
= g∗∂θg = iµ = µ∂̃θ

∂̄v
def
= g∗∂vg = iµ−1x = µ−1∂̃v

It follows from the chain rule that

g∗∂tg = µ̇∂̄µ + ȧ∂̄a + θ̇∂̄θ + v̇∂̄v .

Using (3.5),

(4.12)
g∗∂tg = vµ−1∂̄a + 1

2
µ2∂̄θ +OH1(h2)

= vµ∂̃a + 1
2
µ3∂̃θ +OH1(h2)

Finally, we aim to simplify the term g∗Π⊥Jgf in (4.9). We will show that

(4.13) g∗Π(µ,a,θ,v)Jgf = µΠ(1,0,0,0)Jf

Using that J∗J−1 = −1 and (4.11), we obtain

g∗ΠJgf = 〈Jgf, J−1∂agφ〉g∗∂vgφ− 〈Jgf, J−1∂vgφ〉g∗∂agφ
+ 〈Jgf, J−1∂µgφ〉g∗∂θgφ− 〈Jgf, J−1∂θgφ〉g∗∂µgφ

= −〈f, ∂̄aφ〉∂̄vφ+ 〈f, ∂̄vφ〉∂̄aφ− 〈f, ∂̄µφ〉∂̄θφ+ 〈f, ∂̄θφ〉∂̄µφ

Substituting (4.11), after a few cancelations we obtain

µ−1g∗ΠJgf = −〈f, ∂̃aφ〉∂̃vφ+ 〈f, ∂̃vφ〉∂̃aφ− 〈f, ∂̃µφ〉∂̃θφ+ 〈f, ∂̃θφ〉∂̃µφ

= + 〈Jf, J−1∂̃aφ〉∂̃vφ− 〈Jf, J−1∂̃vφ〉∂̃aφ

+ 〈Jf, J−1∂̃µφ〉∂̃θφ− 〈Jf, J−1∂̃θφ〉∂̃µφ

which establishes (4.13).
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Note that it follows from (4.13) that

g∗Π⊥(µ,a,θ,v)gJf = µΠ⊥(1,0,0,0)Jf

Using the expressions (4.10), (4.12), and (4.13), the equation (4.9) converts to

vµ∂̃aρ+ 1
2
µ3∂̃θρ+ µ∂tρ = µ3JH ′′(φ)(ρ) + µvJP ′′(φ)(ρ)

+ α−1µΠ⊥(1,0,0,0)Jf +OH1(h4− + ‖w‖2
H1)

Noting that JP ′′(φ) = ∂̃a and JM ′′(φ) = −∂̃θ, the equation becomes

1
2
µ3JM ′′(φ)ρ+ µ3JH ′′(φ)ρ− µ∂tρ = −α−1µΠ⊥(1,0,0,0)Jf +OH1(h4− + ‖w‖2

H1)

Hence we see we should take α = µ−2 so that the equation becomes

1
2
JM ′′(φ)ρ+ JH ′′(φ)ρ− µ−2∂tρ = −Π⊥(1,0,0,0)Jf +OH1(h4− + ‖w‖2

H1)

Now apply J−1 to obtain the equation

(4.14) Sρ = J−1µ−2∂tρ− J−1Π⊥(1,0,0,0)Jf +O(h4− + ‖w‖2
H1)

where the operator

S(ρ)
def
= 1

2
M ′′(φ)(ρ) +H ′′(φ)(ρ) = 1

2
ρ− 1

2
∂2
xρ− 2|φ|2ρ− φ2ρ̄

is self-adjoint with respect to the inner product 〈u, v〉 = Re
∫
uv̄. The kernel is

spanned by ∂̃aφ and ∂̃θφ.

Lemma 4.1 (properties of S).

(1) For any f ∈ H1, let F = J−1Π⊥(1,0,0,0)Jf . Then F satisfies the orthogonality

conditions

〈F, ∂̃θφ〉 = 0 , 〈F, ∂̃aφ〉 = 0(4.15)

〈F, ∂̃µφ〉 = 0 , 〈F, ∂̃vφ〉 = 0(4.16)

(2) For any F satisfying (4.15), S−1F is defined and satisfies the boundedness

properties

‖S−1F‖H1 . ‖F‖L2 ,(4.17)

‖eσ〈x〉S−1F‖H2 . ‖eσ〈x〉F‖L2 .(4.18)

for 0 ≤ σ < 1.

(3) For any F satisfying (4.15) and (4.16), S−1F satisfies the orthogonality prop-

erties

〈S−1F, ∂̃θφ〉 = 0 , 〈S−1F, ∂̃aφ〉 = 0(4.19)

〈J−1S−1F, ∂̃θφ〉 = 0 , 〈J−1S−1F, ∂̃aφ〉 = 0(4.20)
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Proof. Item (1) is immediate from the definition of Π(1,0,0,0). For item (2), we recall

that kerS = span{∂̃aφ, ∂̃θφ} and moreover, 0 is an isolated point in the spectrum of

S. Thus S−1 : (kerS)⊥ → (kerS)⊥ is bounded as an operator on L2. The inequality

(4.17) follows from this and elliptic regularity. To prove (4.18), it suffices to show

that for any G and any |σ| < 1, we have

(4.21) ‖G‖H2 . ‖eσxSe−σxG‖L2 + ‖e−2|x|G‖L2

Indeed, (4.18) follows by taking G = eσxS−1F , appealing to (4.17), and separately

considering σ > 0 and σ < 0 with |σ| < 1. To establish (4.21), we calculate

(4.22) eσxSe−σxG = (S + σ∂x − 1
2
σ2)G

= (
1

2
(1− σ2) + σ∂x −

1

2
∂2
x)G− 2φ2G− φ2Ḡ

and hence

(
1

2
(1− σ2) + σ∂x −

1

2
∂2
x)G = eσxSe−σxG+ 2φ2G+ φ2Ḡ

On the left-hand side, we have an operator with symbol 1
2
(1− σ2) + σiξ + ξ2, which

dominates 〈ξ〉2 under our assumption on σ. From this and the fact that |φ(x)|2 ≤
e−2|x|, we conclude (4.21).

For item (3), (4.19) follows from the fact that S−1 : (kerS)⊥ → (kerS)⊥. To

establish (4.20), we note that by (4.16),

0 = 〈F, ∂̃µφ〉 = 〈S−1F, S∂̃µφ〉

and similarly

0 = 〈F, ∂̃vφ〉 = 〈S−1F, S∂̃vφ〉

and thus it suffices to establish that S(∂̃vφ) = J−1∂̃aφ and S(∂̃µφ) = J−1∂̃θφ. To

prove these equalities, recall

(4.23) 0 = W ′(η) = (
1

2
µ2 +

1

2
µ−2v2)M ′(η)− µ−1vP ′(η) +H ′(η)

Taking ∂v and evaluating at (µ, a, θ, v) = (1, 0, 0, 0) gives

S(∂̃vφ) = P ′(φ) = J−1∂̃aφ .

Taking ∂µ of (4.23) and evaluating at (µ, a, θ, v) = (1, 0, 0, 0) gives

S(∂̃µφ) = −M ′(φ) = J−1∂̃θµ

�

Recall that the task is to solve (4.14) where f is either (4.7) or (4.8). At this point,

we impose the even/odd solution assumption as in Theorem 1.1 which implies that
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θ1−θ2 is constant. The other time dependent parameters in (4.7), (4.8) are all slowly

varying so that ∂tfj = O(h3). Thus, we can solve (4.14) by iteration. Let7

(4.24) ρ1 = −S−1J−1Π⊥(1,0,0,0)Jf

By Lemma 4.1(1)(2), this is well-defined with ρ1 = O(h2−) and satisfying all the

needed regularity properties. With ρ2 as yet undefined, we plug ρ1 + ρ2 into (4.14)

to obtain

Sρ2 = J−1µ−2∂tρ
1 + J−1µ−2∂tρ

2 +O(h4− + ‖w‖2
H1)

As mentioned previously, ∂tf = O(h3−) and thus

J−1µ−2∂tρ
1 = −J−1µ−2S−1J−1Π⊥(1,0,0,0)J∂tf

is also O(h3−). By Lemma 4.1(3), in particular (4.20), with F = J−1Π⊥(1,0,0,0)J∂tf ,

we have that

F̃
def
= J−1µ−2∂tρ

1 = −J−1µ−2S−1F

satisfies the condition (4.15), and hence we can apply Lemma 4.1(2) with F replaced

by F̃ . That is, the function

(4.25) ρ2 def
= S−1F̃ = −S−1J−1µ−2S−1J−1Π⊥(1,0,0,0)J∂tf

satisfies all the needed regularity properties. Note further that ∂tρ
2 = O(h4−). Upon

substituting ρ1 + ρ2 into (4.14) with ρ1 defined by (4.24) and ρ2 defined by (4.25), we

find that equality holds with O(h4−) error.

Thus we have successfully constructed a solution to the approximate equation (4.1).

We summarize our conclusions in the next lemma.

Lemma 4.2 (approximate solution). Recall the operator gj associated to (µj, aj, θj, vj)

defined in (4.4) and fj defined in (4.7) (j = 1) or (4.8) (j = 2). Let ρ1
j be given by

(4.24) and then let ρ2
j be given by (4.25). Then ρkj for 1 ≤ j, k ≤ 2 satisfy

‖e(1−)〈x〉ρkj‖H2 . h1+k− ,

Let

νz = µ2
1g1(ρ1

1 + ρ2
1) + µ2

2g2(ρ1
2 + ρ2

2)

Suppose that the parameter z ∈ R8 evolves according to the ODEs obtained from

Lemma 3.1 (in the same phase or opposite phase case). Then νz(x) solves (4.1).

7As indicated earlier, ρ can stand for either ρ1 or ρ2. The superscript introduced here is different

and meant to indicate part of an asymptotic expansion for either function. In other words, we have

ρj = ρ1j + ρ2j for both j = 1, 2.
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5. Lyapunov functional

The final step is to show that the true solution u to (2.1) is approximately the

approximate solution ũz = uz + νz. For this purpose, we introduce a Lyapunov

functional. First, some general considerations. We consider the “perturbed” 8-

dimensional manifold

M̃ = { ũz | z ∈ R8 }
Introduce the notation w̃ = u − ũz (so that w = w̃ + νz). Now it follows from (4.1)

that

(5.1) ∂tũz = JH ′(ũz) + F .

where F = OH1(h4− + ‖w̃‖2
H1).

Suppose that Wz : L2 → R is a densely defined functional. We write ∂z`Wz : L2 →
R to indicate partial derivatives with respect to z and

W ′
z(u) ∈ T ∗uL2 '

metric g
TuL

2 ' L2

to indicate partial derivatives with respect to u (ignoring the interdependence between

z and u given by (3.3), (3.4)).

Suppose that Wz can be extended to a differentiable functional H1 → R; then

for each u ∈ H1, we have a bounded linear map W ′
z(u) : H1 → R which, under

the aforementioned identification, becomes a function belonging to H−1. In fact, our

choice of Wz is differentiable at all orders as a map H1 → R, which is to say that

W
(k)
z (u) : H1 × · · · ×H1︸ ︷︷ ︸

k copies

→ R is a bounded k-multilinear map.

We further assume that ∂z`Wz(u) = 0 unless |ż`| . h. Let

(5.2) Lz(u) = Wz(u)−Wz(ũz)− 〈W ′
z(ũz), w̃〉 .

That is, Lz(u) is the quadratic part of Wz(u) above the base manifold M̃ . Now

viewing u = u(t) and z = z(t) in accordance with (3.3), (3.4) (and thus reinstating

the interdependence between z and u), we have, for any functional Gz : L2 → R,

∂tGz(u) = 〈G′z(u), ∂tu〉+
8∑

k=1

[∂zkG](u)żk .

This leads to:

Lemma 5.1. Suppose that u solves (2.1) and z evolves so that ũz solves (5.1), and

that Lz(u) is given by (5.2), the quadratic part of Wz(u) above M̃ . Then

(5.3) ∂tLz(u) = {H,Wz}(u)− {H,Wz}(ũz)− 〈{H,Wz}′(ũz), w̃〉 − E1 + E2 ,

where

E1
def
= 〈W ′′(ũz)F, w̃〉+ 〈W ′(ũz), [JH

′(u)− JH ′(ũz)− JH ′′(ũz)w̃]〉
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and

E2
def
=

8∑
k=1

([∂zkWz](u)− [∂zkWz](ũz)− 〈[∂zkW ′
z](ũz), w̃〉) żk

In other words, ∂tLz(u) is, up to error E1 and E2, the quadratic part of {H,Wz}(u)

above M̃ . Note that E2 just involves the quadratic part of [∂zkW ](u) above M̃ .

In the typical application of this lemma (as for our Wz, defined below), we have

bounded operators W ′′
z (ũz) : H1 → H−1 and W ′′′

z (ũz) : H1 ×H1 → L2 which implies

the bound

|E1| . ‖F‖H1‖w̃‖H1 + ‖W ′(ũz)‖H1‖w̃‖2
H1

Thus, one just needs ‖F‖H1 . h3 and ‖W ′(ũz)‖H1 . h; in our case we in fact have

the stronger statements ‖F‖H1 . h4− and ‖W ′(ũz)‖H1 . h2−. Moreover, in our case

we will have

|E2| . h2−‖w̃‖2
H1

since µ̇, v̇ = O(h2−).

Proof. By (5.2),

∂tLz(u) = ∂tWz(u)− ∂tWz(ũz)− ∂t〈W ′
z(ũz), w̃〉

We compute each of the three terms on the right-hand side separately.

∂tWz(u) = 〈W ′
z(u), ∂tu〉+

8∑
k=1

[∂zkWz](u)żk

= 〈W ′
z(u), JH ′(u)〉+

8∑
k=1

[∂zkWz](u)żk(5.4)

where we invoked (2.1). Second, we compute

∂tWz(ũz) = 〈W ′
z(ũz), ∂tũz〉+

8∑
k=1

[∂zkWz](ũz)ż
k

= 〈W ′
z(ũz), JH

′(ũz)〉+ 〈W ′
z(ũz), F 〉+

8∑
k=1

[∂zkWz](ũz)ż
k(5.5)
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where we invoked (5.1). Finally, we compute

∂t〈W ′
z(ũz), u− ũz〉
= 〈W ′′

z (ũz)∂tũz, u− ũz〉+ 〈W ′
z(ũz), ∂tu− ∂tũz〉

+
8∑

k=1

〈[∂zkW ]′(ũz), u− ũz〉żk

= 〈W ′′
z (ũz)JH

′(ũz), w̃〉+ 〈W ′′(ũz)F, w̃〉+ 〈W ′
z(ũz), JH

′(u)− JH ′(ũz)〉

− 〈W ′(ũz), F 〉+ 〈
8∑

k=1

[∂zkW ]′(ũz), w̃〉żk

(5.6)

Taking (5.4) minus (5.5) minus (5.6), noting the cancelation of +〈W ′
z(ũz), F 〉 in (5.5)

with −〈W ′(ũz), F 〉 in (5.6), we obtain (5.3). �

To produce Wz(u), we use an idea of Martel-Merle-Tsai [10]. Let

Ψ(x) =

{
1 if x ≥ 1

0 if x ≤ −1

such that (Ψ′(x))2 . min(Ψ(x), 1−Ψ(x)). Set δ = 4/(log h−1) = 4/a0, so 0 < δ � 1.

Introduce the localizations ψ2(x) = Ψ(δx) and ψ1(x) = 1 − Ψ(δx), and set Mj(u) =

M(ψ
1/2
j u) and Pj(u) = P (ψ

1/2
j u). Define

(5.7) Wz(u)
def
= −

2∑
j=1

∂H(ηj)

∂µj
Mj(u)−

2∑
j=1

∂H(ηj)

∂vj
Pj(u) +H(u)

=
1

2

2∑
j=1

(µ2
j + µ−2

j v2
j )Mj(u)−

2∑
j=1

µ−1
j vjPj(u) +H(u)

The Lyapunov functional Lz(u) we use is then defined as in (5.2).

Lemma 5.1 facilitates the computation of ∂tLz(u), since Wz(u) is built from “nearly

conserved” quantities. Indeed, we have the following Poisson brackets:

{H,Mj}(u) =
1

2
Im

∫
ψ′j ūux

{H,Pj}(u) =

∫
ψ′j(

1

2
|ux|2 −

1

4
|u|4)− 1

8

∫
ψ′′′j |u|2

It thus follows from Lemma 5.1 that

(5.8)

∂tLz(u) =
1

2

2∑
j=1

(µ2
j + µ−2

j v2
j )〈{H,Mj}′′(ũz)w̃, w̃〉 −

2∑
j=1

µ−1
j vj〈{H,Pj}′′(ũz)w̃, w̃〉

+O(‖w‖3
H1)− E1 + E2
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For our choice of Wz(u), as remarked earlier, we have suitable bounds for E1 and E2.

Moreover, once one imposes the even/odd solution assumption of Theorem 1.1, we

have µ1 = µ2 and v2
1 = v2

2, so the first term in (5.8) disappears.8 Hence

(5.9) |∂tLz(u)| . ((|v1|+ |v2|)δ + h)‖w̃‖2
H1 + h3‖w̃‖H1 + ‖w̃‖3

H1

Since |vj| . h−1 log h−1 and δ ∼ (log h−1)−1, the term (|v1|+ |v2|)δ . h.

Now we turn to the matter of obtaining a lower bound for Lz(u). First note that

〈W ′′
z (ũz)w̃, w̃〉 = Lz(u) +O(‖w̃‖3

H1) .

Given that ‖ν̃z‖H1 . h2−, we have

(5.10) 〈W ′′
z (uz)w,w〉 = Lz(u) +O(h4−) +O(h0+)‖w‖2

H1 .

The needed lower bound for the left-hand side will be established below in Lemma

5.2.

For the single-soliton case, we have coercivity for the classical functional from

Weinstein [19], which we now recall. Taking η = η(·, µ, a, θ, v) and

R(µ,a,θ,v)(u)
def
= −∂H(η)

∂µ
M(u)− ∂H(η)

∂v
P (u) +H(u)

=
1

2
(µ2 + µ−2v2)M(u)− µ−1vP (u) +H(u)

then

(5.11) ‖w‖2
H1 . 〈R′′(η)w,w〉,

provided we assume the orthogonality conditions

〈w, J−1∂µη〉 = 0 , 〈w, J−1∂aη〉 = 0 ,

〈w, J−1∂θη〉 = 0 , 〈w, J−1∂vη〉 = 0 .

A direct proof of (5.11) is possible; see [7, Prop. 4.1].

We now prove a similar argument for the double-soliton functional Wz(u) defined

in (5.7). Before proceeding, we record the formulae

(5.12)

M ′′
j (u) = ψj

P ′′j (u) = −iψ1/2
j ∂xψ

1/2
j = −1

2
iψ′j − iψj∂x

H ′′(u) = −1
2
∂2
x − 2|u|2 − u2C

where C denotes the operator of complex conjugation.

8In fact, this is more easily seen by observing that once µ1 = µ2 and v21 = v22 , we have that the

first term in (5.7) becomes M(u), whose Poisson bracket vanishes. We included the localization in

this term to illustrate the difficulty in treating the asymmetric case – one would not have that the

first term in (5.8) is O(h5).
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Lemma 5.2. Suppose w satisfies the orthogonality conditions (3.4). Then

(5.13) ‖w‖2
H1 . 〈W ′′

z (uz)w,w〉 .

Proof. Denote wj = ψ
1/2
j w, j = 1, 2. Note that w1 +w2 6= w, although 1 = ψ1 +ψ2 ≤

ψ
1/2
1 + ψ

1/2
2 ≤ 2. Define functionals

Wj(u) = −∂H(ηj)

∂µj
M(u)− ∂H(ηj)

∂vj
P (u) +H(u)

= 1
2
(µ2

j + µ−2
j v2

j )M(u)− µ−1
j vjP (u) +H(u)

We claim that

(5.14)

∣∣∣∣∣〈W ′′(uz)w,w〉 −
2∑
j=1

〈W ′′
j (ηj)wj, wj〉

∣∣∣∣∣ . δ2‖w‖2
H1

and

(5.15)

∣∣∣∣∣‖w‖2
H1 −

2∑
j=1

‖wj‖2
H1

∣∣∣∣∣ . δ2‖w‖2
H1

We now establish (5.14). Note that (see (5.12))

〈W ′′(uz)w,w〉 −
2∑
j=1

〈W ′′
j (ηj)wj, wj〉

= 〈(H ′′(uz)− ψ1/2
1 H ′′(η1)ψ

1/2
1 − ψ1/2

2 H ′′(η2)ψ
1/2
2 )w,w〉

The operator appearing on the right-hand side can be decomposed into A1 +A2 +A3

where

A1
def
= −1

2
(∂2
x − ψ

1/2
1 ∂2

xψ
1/2
1 − ψ1/2

2 ∂2
xψ

1/2
2 )

A2
def
= −2(|uz|2 − ψ1|η1|2 − ψ2|η2|2)

A3
def
= −(u2

z − ψ1η
2
1 − ψ2η

2
2)C

We compute A1 explicitly:

A1 =
2∑
j=1

(−1

2
ψ′j∂x −

1

4
ψ−1
j (ψ′j)

2 − 1

2
ψ′′j ) = −1

4

2∑
j=1

ψ−1
j (ψ′j)

2

where we have used that ψ1 +ψ2 = 1 in the second equality. We have (ψ′j)
2 . δ2ψj by

the corresponding property of Ψ and thus A1 is a multiplication operator with symbol

bounded by δ2. By the support properties of ψ1, ψ2, we obtain that the multiplication

operators A2, A3 have symbols bounded by h. This completes the proof of (5.14),

and the proof of (5.15) is similar.
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By the orthogonality conditions (3.4),

〈w1, J
−1∂zjuz〉 = −〈(1− ψ1/2

1 )w, J−1∂zjuz〉 ,

and we have, for example

〈w1, J
−1∂µ1uz〉 = −〈(1−ψ1/2

1 )w, J−1∂µ1uz〉 = −〈(1−ψ1/2
1 )w, J−1∂µ1η1〉 . h1/2‖w‖L2 ,

due to the fact that ‖(1 − ψ1/2
1 )J−1∂µ1η1‖L2 . h1/2. Hence, by the coercivity of the

classical Lyapunov functional (see discussion surrounding (5.11)), we have that

2∑
j=1

〈W ′′
j (ηj)wj, wj〉+ h‖w‖2

L2 &
2∑
j=1

‖wj‖2
H1 ,

From this and (5.14), (5.15), we obtain (5.13). �

6. Conclusion of proof

In this section, we conclude the proof of Theorem 1.1.

Recall that h = e−a0 which implies that a0 = log h−1, and that we are in the

even/odd solution setting with (1.7), (1.8) in place.

We introduce 0 < δ � 1. The constant δ is absolute and is chosen sufficiently

small in terms of the accumulation of numerous other absolute constants appearing

in several estimates. In our argument, c will represent a large absolute constant that

may change (typically enlarge) from one line to the next. At the conclusion of the

argument, we can finally declare that δ should be taken small enough that cδ < 1
2
.

This does not constitute circular reasoning since one could tally up all of the absolute

constants (the c’s) in each estimate in advance of executing the argument and suitably

define δ a priori but this is not a practical manner of exposition.

Recall that we started by defining

w(t) = u(t)− uz(t)

where z was selected by the implicit function theorem so that orthogonality conditions

(3.4) hold. By continuity of the flow in H1, this is possible at least up to some small

positive time. Let T be the supremum of all times 0 < T ≤ h−1−δ for which

‖w‖L∞
[0,T ]

H1
x
≤ h3/2(6.1)

|v| ≤ h1−δ(6.2)

a ≥ a1−δ
0(6.3)

Note that the requirement (6.1) implies

‖w‖3
H1 ≤ h‖w‖2

H1 + h3‖w‖H1 ,

and enables us to discard cubic error terms in w in our estimates.
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In the course of the argument that follows, we work on the time interval [0, T ]. At

the conclusion of the argument, we are able to assert that either T = δh−1 log h−1 or

that (6.2) or (6.3) fail to hold at t = T .

It follows from the decomposition (1.22) and the bootstrap assumptions (6.2), (6.3)

above that (see Appendix A)

sup
1≤n≤8

‖J−1∂znΠ⊥z JH
′(uz)‖H1

x
≤ h2−cδ

Let

ε
def
= h4−cδ + ‖w‖2

L∞
[0,T ]

H1
x

By Lemma 3.1 and the computations in Appendix A, the ODEs

µ̇ = (−1)σ(8a− 4)ve−2a +O(ε)

ȧ = µ−1v + (−1)σ(−4a+
2

3
π2)ve−2a +O(ε)

θ̇ =
1

2
µ2 +

1

2
v2µ−2 + 18(−1)σe−2a +O(ε)

v̇ = −4(−1)σe−2a +O(ε)

hold on [0, T ]. By the first of these equations and (6.1), (6.2), (6.3), we have |µ−1| ≤
h2−cδ. From the above ODEs and (6.1), (6.2), (6.3), we can deduce bounds on µ̇, ȧ, θ̇,

and v̇ that justify the estimates involved in the construction of νz in §4 summarized

in Lemma 4.2. The result is that

(6.4) ‖νz‖H1
x
. h2−cδ

and (5.1) holds with

‖F‖H1
x
. ε .

By (5.9),

(6.5) |∂tLz(u)| . h‖w̃‖2
H1 + h3‖w̃‖H1 + ‖w̃‖3

H1

where we recall that w̃ = w − νz. By (6.4), ‖w̃‖H1 . ‖w‖H1 + h2−cδ, we obtain from

(6.5) that

(6.6) |∂tLz(u)| . h‖w‖2
H1 + h5−cδ .

From (5.13) and (5.10), the bound

(6.7) ‖w‖2
H1 . Lz(u) + h4−cδ

holds. Combining (6.6) and (6.7), we obtain the bound

|∂tLz(u)| . hLz(u) + h5−cδ

By Gronwall’s inequality, it follows that

Lz(u) . ecthh4−cδ .
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Provided we restrict to t . δh−1 log h−1, this implies

Lz(u) . h4−cδ

Reapplying (6.7), we obtain

(6.8) ‖w‖H1 . h2−cδ .

At this point, we can declare that δ should have been taken sufficiently small so that

cδ < 1
2
, where c is as it appears in (6.8). It follows that (6.1), (6.2), (6.3) can only

break down provided T & δh−1 log h−1 or if either (6.2) or (6.3) fails at t = T .

We will see the from the following ODE analysis that (6.3) always holds; in the same

phase (even solution, attractive) case, the assumption (6.2) first fails at T ∼ h−1, and

in the opposite phase (odd solution, repulsive) case, (6.2) remains valid and we can

reach T ∼ h−1 log h−1.

Since we now restrict to t . δh−1 log h−1, we can assume that (6.8) holds and thus

ε . h4−cδ.

Let z̃ = (µ̃, ã, θ̃, ṽ) solve

˙̃µ = (−1)σ(8ã− 4)ṽe−2ã

˙̃a = ṽ

˙̃θ =
1

2
µ̃2 +

1

2
ṽ2µ̃−2 + 18(−1)σe−2ã

˙̃v = −4(−1)σe−2ã

These tilde equations appear in the statement of Theorem 1.1 without tildes. Note

that the ˙̃a and ˙̃v equations can be solved separately as discussed in §1. Let ā = µa− ã
and v̄ = v − ṽ. Then we get the system{

˙̄a = v̄ +O(h3−cδ)

˙̄v = −2(−1)σe−2ãā+O(h4−cδ)

Let γ = (ā)2 + h−2v̄2. Then, substituting

γ̇ . hā(h−1v̄) + (h1/2ā)h
5
2
−cδ + (h−1/2v̄)(h

5
2
−cδ)

By the inequality αβ ≤ α2 + β2, we obtain

γ̇ . hγ + h5−cδ

By Gronwall’s inequality,

γ . echt(γ0 + h4−cδ)

It follows that

|ā| . h2−δ, |v̄| . h3−cδ
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These errors only affect the µ̇ equation at order h4−cδ so µ is only affected at order

h3−cδ. Given this, the θ̇ equation is only affected at order h3−cδ. Thus, the impact on

θ is of size h2−cδ. In conclusion

|θ̄| . h2−cδ |µ̄| . h3−cδ

Thus

‖uz − uz̃‖H1 . h2−cδ

Since uz in Theorem 1.1 in fact means uz̃, this completes the proof of Theorem 1.1.

Appendix A. Computations

We shall carry out the computations of the ODEs appearing in (3.5) in Lemma 3.1

and show that they are equivalent to (1.19), with errors of size O(h4−). This is carried

out without making the symmetry assumption on the solution. When the even/odd

symmetry assumption is imposed, we will carry out the integrals appearing in (1.19)

and show that the ODEs claimed in the statement of Theorem 1.1 hold.

Denote uz = η1 + η2. Let L = {1, 2, 5, 6} denote the indices that refer to the left

soliton and R = {3, 4, 7, 8} denote the indices that refer to the right soliton. The

coefficient matrix of the symplectic form is

(a`m) = A =

[
0 −I
I 0

]
+O(h2−)

where the O(h2−) contributions come from a`m with ` ∈ L and m ∈ R (and vice-versa,

but of course a`m = −am`). Fortunately, we do not need to compute these terms.

Note that

(a`m) = A−1 =

[
0 I

−I 0

]
+O(h2−)

In fact, we can substantially reduce the complexity of computation in applying

Lemma 3.1 by observing that JH ′(uz) decomposes into terms parallel to M plus

other terms which are O(h2−). To this end, we expand:

H ′(uz) = H ′(η1) +H ′(η2) +H ′′p (η1)η2 +H ′′p (η2)η1 +O(h4) ,

where

Hp(u) = −1

4

∫
|u|4 .

Moreover, we have

JH ′(η) = ∂vH(η)∂aη − ∂µH(η)∂θη .

Hence,

(A.1) H ′(uz) =
8∑
j=1

bjJ−1∂zjuz +H ′′p (η1)η2 +H ′′p (η2)η1
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where

b2 = ∂v1H(η1) , b4 = ∂v2H(η2) , b5 = −∂µ1H(η1) , b7 = −∂µ2H(η2)

and all other bj = 0. Observe that 〈H ′′p (η1)η2, ∂z`uz〉 = O(h4−) for any ` ∈ R and

〈H ′′p (η2)η1, ∂z`uz〉 = O(h4−) for any ` ∈ L. Note further that for ` ∈ L (and hence

∂z`uz = ∂z`η1) we have

(A.2) 〈H ′′p (η1)η2, ∂z`uz〉 = 〈η2, H
′′
p (η1)∂z`η1〉 = ∂z`〈η2, H

′
p(η1)〉

Similarly, for ` ∈ R and (and hence ∂z`uz = ∂z`η2) we have

(A.3) 〈H ′′p (η2)η1, ∂z`uz〉 = 〈η1, H
′′
p (η2)∂z`η1〉 = ∂z`〈η1, H

′
p(η2)〉

From (A.1),(A.2), and (A.3), we obtain

∂z`H(uz) = −
8∑
j=1

bjaj` + ∂z`〈η1, H
′
p(η2)〉+ ∂z`〈η2, H

′
p(η1)〉

It follows that the equations (3.6) reduce to

żm = bm −
∑
`∈L

∂z`〈H ′p(η1), η2〉a`m −
∑
`∈R

∂z`〈H ′p(η2), η1〉a`m +O(h4−)

It suffices in this sum to discard O(h2−) terms in a`m. Thus we obtain the equations



ż1 = b1 + ∂z5〈H ′p(η1), η2〉+O(h4−)

ż2 = b2 + ∂z6〈H ′p(η1), η2〉+O(h4−)

ż3 = b3 + ∂z7〈H ′p(η2), η1〉+O(h4−)

ż4 = b4 + ∂z8〈H ′p(η2), η1〉+O(h4−)

ż5 = b5 − ∂z1〈H ′p(η1), η2〉+O(h4−)

ż6 = b6 − ∂z2〈H ′p(η1), η2〉+O(h4−)

ż7 = b7 − ∂z3〈H ′p(η2), η1〉+O(h4−)

ż8 = b8 − ∂z4〈H ′p(η2), η1〉+O(h4−)
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In more direct language, these equations are

µ̇1 = + ∂θ1〈H ′p(η1), η2〉+O(h4−)

ȧ1 = +∂v1H(η1) + ∂v1〈H ′p(η1), η2〉+O(h4−)

µ̇2 = + ∂θ2〈H ′p(η2), η1〉+O(h4−)

ȧ2 = +∂v2H(η2) + ∂v2〈H ′p(η2), η1〉+O(h4−)

θ̇1 = −∂µ1H(η1)− ∂µ1〈H ′p(η1), η2〉+O(h4−)

v̇1 = − ∂a1〈H ′p(η1), η2〉+O(h4−)

θ̇2 = −∂µ2H(η2)− ∂µ2〈H ′p(η2), η1〉+O(h4−)

v̇2 = − ∂a2〈H ′p(η2), η1〉+O(h4−)

We note that these equations hold in general, without assuming that the solution

is even or odd.

The next step is then to compute 〈H ′p(η1), η2〉 and 〈H ′p(η2), η1〉. Let φ(x) = sechx.

We have

(A.4)

〈H ′p(η2), η1〉 =− Re
(
ei(θ2−θ1)ei(µ

−1
1 v1a1−µ−1

2 v2a2)µ3
2µ1

×
∫
ei(µ

−1
2 v2−µ−1

1 v1)xφ3(µ2(x− a2))φ(µ1(x− a1) dx
)

At this point we will make the even/odd assumption. In the even case, we may set

(A.5) (µ, a, θ, v)
def
= (µ1,−a1, θ1,−v1) = (µ2, a2, θ2, v2)

Then θ1 − θ2 = 0 . In the odd case, we may set

(A.6) (µ, a, θ, v)
def
= (µ1,−a1, θ1 − π,−v1) = (µ2, a2, θ2, v2)

Then θ1 − θ2 = π.

In either the even or odd case, we find that µ̇ = µ̇1 = µ̇2 = O(h3−), from which it

follows that

(A.7) µ = µ1 = µ2 = 1 +O(h2−)

Take σ = 0 in the even case and σ = 1 in the odd case. We compute the equations for

µ̇2, ȧ2, θ̇2, v̇2 by carrying out the appropriate derivative of (A.4), and then evaluating

the resulting expression using (A.7), (A.5), (A.6). By residue calculus computations

and asymptotic expansion,

α(ξ, a)
def
=

∫ +∞

−∞
e−ixξ φ3(x− a)φ(x+ a) dx

= e−2a[4 + (2− 4a)iξ + (−π
2

6
+ 2a− 2a2)ξ2 +O(ξ3)] +O(e−4a)
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and

β(ξ, a)
def
=

∫ +∞

−∞
e−ixξ [φ3]′(x− a)φ(x+ a) dx

= e−2a[4 + (6− 4a)iξ] +O(h4−)

We find that

µ̇ = (−1)σ Re[−iα] +O(h4−)

ȧ = µ−1v + (−1)σ Re[+iaα + ∂ξα] +O(h4−)

θ̇ =
1

2
µ2 +

1

2
v2µ−2 + (−1)σ Re[(iva+ 3)α + v(∂ξα)] + Re(aβ − i∂ξβ) +O(h4−)

v̇ = (−1)σ Re[−ivα− β] +O(h4−)

where α, ∂ξα, and β are evaluated at ξ = −2v.

Substituting, we obtain

µ̇ = (−1)σ(8a− 4)ve−2a +O(h4−)

ȧ = µ−1v + (−1)σ(−4a+
2

3
π2)ve−2a +O(h4−)

θ̇ =
1

2
µ2 +

1

2
v2µ−2 + 18(−1)σe−2a +O(h4−)

v̇ = −4(−1)σe−2a +O(h4−)

The system (µa, v) can be solved with error O(h2−); from which (a, v) can be

recovered with error O(h2−). At this accuracy the dynamics are comparable to{
ȧ = v

v̇ = −4(−1)σe−2a

Then µ can be solved with “explicit” order h2 term coming from the order h3 term

in the equation for µ̇, and then θ̇ can be obtained with error of size h2.
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