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Abstract. We rigorously construct radial H1 solutions to the 3d cubic focusing

NLS equation i∂tψ + ∆ψ + 2|ψ|2ψ = 0 that blow-up along a contracting sphere.

With blow-up time set to t = 0, the solutions concentrate on a sphere at radius

∼ t1/3 but focus towards this sphere at the faster rate ∼ t2/3. Such dynamics were

originally proposed heuristically by Degtyarev-Zakharov-Rudakov [2] in 1975 and

independently later in Holmer-Roudenko [5] in 2007, where it was demonstrated

to be consistent with all conservation laws of this equation. In the latter paper,

it was proposed as a solution that would yield divergence of the L3
x norm within

the “wide” radius ∼ ‖∇u(t)‖−1/2
L2

x
but not within the “tight” radius ∼ ‖∇u(t)‖−2

L2
x
,

the second being the rate of contraction of self-similar blow-up solutions observed

numerically and described in detail in Sulem-Sulem [13, Chapter 7].

1. Introduction

Consider the 3d cubic focusing NLS equation on R3:

(1.1) i∂tψ + ∆ψ + 2|ψ|2ψ = 0,

where ψ = ψ(x, t) ∈ C and x ∈ R3, t ∈ R. The initial-value problem posed with

initial-data in H1
x is locally well-posed and there is a unique solution in C([0, T );H1

x)

on a maximal forward life-span [0, T ). If T <∞, then limt↗T ‖∇ψ(t)‖L2
x

=∞.

During their lifespan, the solutions ψ to (1.1) satisfy mass, energy and momentum

conservation laws.

(1.2) M(ψ(t)) ≡
∫
|ψ(x, t)|2dx =

∫
|ψ0(x)|2dx = M(ψ0),

(1.3) E(ψ(t)) ≡
∫

(|∇ψ(x, t)|2 − |ψ(x, t)|4) dx = E(ψ0),

(1.4) P (ψ(t)) ≡
∫

(ψ̄∇ψ − ψ∇ψ̄) dx = P (ψ0).

The case T <∞ occurs for a large class of initial data (see the discussion in Holmer-

Platte-Roudenko [6]) and in this case we say that the solution blows-up in finite time.

to appear in Transactions of the AMS.
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Numerical results (see Sulem-Sulem [13, Chapter 7]) describe the existence of self-

similar radial blow-up solutions of the form

(1.5) u(x, t) ≈ 1

λ(t)
U

(
x

λ(t)

)
ei log(T−t) with λ(t) =

√
2b(T − t),

where U = U(x) is a stationary profile satisfying the nonlinear elliptic equation

(1.6) ∆U − U + ib(U + y · ∇U) + 2|U |2U = 0.

Numerics suggest that b > 0 can be selected so that a nontrivial zero-energy solution

U to (1.6) exists. Asymptotics as |x| → ∞ show that any solution of (1.6) fails

to belong to Ḣ
1/2
x (and hence H1

x). Nevertheless, it is expected that H1
x blow-up

solutions to (1.1) well-modeled by (1.5) near the origin exist, and the proof remains

an important open problem.

In this paper we consider only radial solutions, thus, P (ψ) = 0. We construct a

family of finite-time blow-up solutions to (1.1) with different dynamics – they focus

toward a sphere, while at the same time the radius of sphere is shrinking. We study

the problem by converting it (via the time-reversal, u(t) 7→ ū(t), and time-translation

symmetry of (1.1)) to one with solutions defined on (0, t0] for t0 > 0 that “start” at

t0 > 0 and blow-up at t = 0 as they evolve backward in time.

Our main result is the following:

Theorem 1.1. For any e ∈ R there exists a radial solution ψ ∈ C((0, t0], H1(R3))

of (1.1) with E(ψ) = e, which starts at time t0 > 0 and, while evolving backwards in

time, blows-up at t = 0, and has the following form:

(1.7) ψ(r, t) = eiθ(t)eiv(t)r/2λ(t)ϕ
(
λ(t)(r − q(t))

)
+ h(r, t), r = |x|, x ∈ R3,

where ϕ(r) = sech(r) and the time-dependent parameters (q, v, λ, θ) satisfy

(1.8)

q(t) = q0t
1/3 q0 = 21/331/6

λ(t) = λ0t
−2/3 λ0 = 2−2/33−1/3

v(t) = v0t
−2/3 v0 = 21/33−5/6

θ(t) = θ0t
−1/3 θ0 = 2−1/33−2/3

and

(1.9) ‖h(t)‖L2(R3) + t2/3‖h(t)‖H1(R3) + t−1/3‖|x|h(t)‖L2(R3) ≤ C t1/3.

Note that it follows from (1.8) and (1.9) that

‖∇ψ(t)‖L2(R3) ∼ t−2/3 and ‖|x|ψ(t)‖L2(R3) ∼ t1/3.

Remarks. 1. Let ϕ be a solution of the nonlinear elliptic equation

(1.10) −ϕ+ ∆ϕ+ 2|ϕ|2ϕ = 0.
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The unique (up to translation) minimal mass H1 solution of (1.10) is called the

ground-state. It is smooth, radial, real-valued and positive, and exponentially decay-

ing (see, for example, Tao [11, Apx. B]). Note that ψ(x, t) = eitϕ(x) is a solution of

(1.1). In one dimension, i.e., d = 1, the ground state of (1.10) is explicit, namely,

ϕ(x) = sech(x). It is this function we use for the profile of the blow-up in (1.7) (and

not the 3d ground state solution of (1.10)).

2. It follows from (1.8) that the solutions given by Theorem 1.1 satisfy ‖ψ‖L2(R3) =

‖ϕ‖L2(R) =
√

2. Applying scaling, one then obtains contracting sphere blow up solu-

tions with an arbitrary mass.

3. We do not address in this note the questions of stability of these solutions (the

numerical and heuristical results of [3] indicate that the behavior (1.7), (1.8) should be

stable with respect to radial perturbations). Still, let us mention that the arguments

developed in the proof of Theorem 1.1 can be easily adjusted in order to produce

blow up solutions of the form

ψ(t) = S(t) + f + oH1(1), t→ 0,

where S(t) is a solution of (1.1) given by Theorem 1.1, and f is an arbitrarily smooth

radial decaying function vanishing to a sufficiently high order at the origin, very much

in the spirit of [1].

4. A numerical visualization of the blow-up described by Theorem 1.1 is given in

Figure 1, courtesy of R. Platte, Arizona State University.

Figure 1. A contracting sphere collapse in the 3d cubic NLS: (a) a con-

centrating layer of the collapsing solution is around r ∼ 0.6, (b) the eventual

collapse at the origin. Courtesy of R. Platte, Arizona State University.

The paper is organized as follows: In §2, we construct (Prop. 2.1) for arbitrary

N ∈ N, an approximate solution ψ(N) satisfying

(1.11) i∂tψ
(N) + ∆ψ(N) + 2|ψ(N)|2ψ(N) = iH(N),
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where

t2k/3‖∇kH(N)(t)‖L2(R3) .k t
(2N−1)/3 , 0 < t ≤ t0(N),

with implicit constant independent of N . To accomplish this, we set

(1.12) ψ(N)(r, t) = eiθeivr/2λU (N)(ρ, t),

where ρ = λ(r − q) is the recentered and rescaled spatial variable and q, v, θ, λ are

t-dependent parameters. We then seek to suitably define the parameters and profile

U (N). We impose the a priori conditions{
v = q′

θ′ = −1
4
v2 − 1

2
v′q + λ2,

which achieve convenient simplifications of the equation that arises when (1.12) is

substituted into (1.11), and enable us to solve for v and θ, once q and λ have been

specified. For additional convenience, we set ω = λ−1q−2 (effectively replacing λ by

ω) and1 χ = U (N) − ϕ (recall ϕ(ρ) = sech ρ). Then (1.11) will follow from

(1.13) |∂`ρ(H~χ+ `(q, ω)~χ+ F(q, ω) + F≥2(~χ))| ≤ C`,µ t
(2N+3)/3e−µ|ρ| , 0 < µ < 1,

where H is the 1D cubic linearized Hamiltonian – H, `, F , and F≥2 are defined

precisely in §2. We then seek a solution to (1.13) by expanding

(1.14) ω(t) =
N∑
k=0

ωkt
2k/3 , q(t) =

N∑
k=0

qkt
(2k+1)/3 , χ(ρ, t) =

2N+2∑
k=1

tk/3χk(ρ) .

Substituting the expansions (1.14) into (1.13), we can organize terms by their order

in t and carry out a recursive construction. The parameter coefficients qk and ωk are

selected at each stage to satisfy solvability conditions for χk+1.

In §3, we consider the exact solution ψ with data ψ|t=ε = ψ(N)(ε) for any 0 < ε ≤
t0(N), and prove (Prop. 3.5) that for N sufficiently large, the comparison estimate

(1.15)
2∑

k=0

t2k/3‖∇k(ψ(t)− ψ(N)(t))‖L2(R3) . t2N/3 , ε ≤ t ≤ t0(N),

and localization bound (Prop. 3.6)

(1.16) ‖xψ(t)‖L2(R3) . t1/3

hold, independently of 0 < ε ≤ t0(N). The estimates (1.15) and (1.16) are proved

using a Lyapunov functional G(h) (see (3.8)), built from energy, mass, and radial

momentum.

Finally, in §4, we complete the proof of Theorem 1.1 using estimates (1.15), (1.16)

and a compactness argument.

1In fact, once χ is constructed, we take U (N) to be a cutoff of ϕ+ χ.
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This result was announced and described in detail [9] by G. Perelman in the Anal-

ysis seminar at Université de Cergy-Pontoise in December 2011. In February 2012,
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2. Construction of an approximate solution

We start with writing a solution to (1.1) as

(2.1) ψ(r, t) = eiθ(t)eiv(t)r/2λ(t)U
(
λ(t)(r − q(t)), t

)
.

Substituting it into (1.1) and introducing a rescaled coordinate

ρ = λ(r − q),

we obtain that U = U(ρ, t) solves

(2.2)

i
1

λ2
Ut + Uρρ −

1

λ2

(
θ′ +

v2

4
+
v′ q

2
+
v′ρ

2λ

)
U + 2 |U |2U + i

(
v

λ
− q′

λ

)
Uρ

= − 2

ρ+ λ q
Uρ − i

λ′

λ3

(
1 + ρ ∂ρ

)
U − i v

λ(ρ+ λ q)
U.

Imposing the following two conditions

(2.3)

v(t) = q′(t),

θ′(t) +
v(t)2

4
+
v′(t) q(t)

2
= λ(t)2,

we obtain

(2.4) i
1

λ2
Ut + Uρρ − U + 2 |U |2U = − 2

ρ+ λ q
Uρ

+
q′′ρ

2λ3
U − i λ

′

λ3

(
1 + ρ ∂ρ

)
U − i q′

λ(ρ+ λ q)
U.

We next denote

(2.5) ω =
1

λ q2
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and rewrite (2.4) as

(2.6) i q4ω2 Ut + Uρρ − U + 2 |U |2U = − 2 qω

ρωq + 1
Uρ

+
1

2
q′′q6ω3ρU + i(2q′q3ω2 + ω′ωq4)

(
1 + ρ ∂ρ

)
U − i q

′q3ω2

ρωq + 1
U.

Define the Pauli matrices by

σ1 =

(
0 1

1 0

)
and σ3 =

(
1 0

0 −1

)
.

Split U into the localized part ϕ(ρ) = sech ρ and the external part χ(ρ, t):

(2.7) U(ρ, t) = ϕ(ρ) + χ(ρ, t).

Substituting (2.7) into (2.6) and using the vector notation ~χ =

(
χ

χ̄

)
, we obtain the

following equation for ~χ:

(2.8) H~χ+ l(q, ω)~χ+ F(q, ω) + F≥2(~χ) = 0,

where the components of the left-hand side are defined as follows:

• the Hamiltonian corresponding to the linearization of the 1D cubic NLS i∂tu +

∂2
ρu+ 2|u|2u = 0 around the soliton u(t, ρ) = eit sech ρ:

H = (−∂2
ρ + 1)σ3 − 4ϕ2(ρ)σ3 − 2ϕ2(ρ)σ3σ1 ,

• the linear operator

l(q, ω) = −iq4ω2∂t −
2qω

ρωq + 1
∂ρσ3 + i(2q′q3ω2 + ω′ωq4)(1 + ρ∂ρ)− i

q′q3ω2

ρωq + 1

+
1

2
q′′q6ω3ρσ3,

• the terms independent of χ:

F(q, ω) = l(q, ω)ϕ

(
1

1

)
,

and lastly,

• the higher order terms grouped into

F≥2(~χ) = −4ϕ|χ|2
(

1

−1

)
− 2ϕ

(
χ2

−χ̄2

)
− 2|χ|2

(
χ

−χ̄

)
.

Proposition 2.1. There exist coefficients (ωk)k≥0, (qk)k≥0, with q2 arbitrary and

ω0 = 1, and smooth exponentially decaying functions (χk(ρ))k≥1,

(2.9) |eµ|ρ|∂lρχk(ρ)| ≤ Cl,µ,k, ρ ∈ R,
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for any k ≥ 1, l ≥ 0, and 0 ≤ µ < 1, verifying the orthogonality conditions

(2.10) (Reχk, ϕρ)L2(R) = (Imχk, ϕ)L2(R) = 0, ∀k ≥ 1,

such that the following holds. For any N ≥ 2, if we define

ω(t) ≡ ω(N)(t)
def
= 1 +

N∑
k=1

ωkt
2k/3, q(t) ≡ q(N)(t)

def
=

N∑
k=0

qkt
(2k+1)/3,

and χ(ρ, t) ≡ χ(N)(ρ, t)
def
=

2N+2∑
k=1

tk/3χk(ρ),

then (2.8) approximately holds:

(2.11)
∣∣∂lρ(H~χ+ l(q, ω)~χ+ F(q, ω) + F≥2(~χ)

)∣∣ ≤ Cl,µt
(2N+3)/3e−µ|ρ|,

for 0 ≤ µ < 1, ρ > −1
2
q−1

0 t−1/3, 0 < t ≤ t0(N), with some t0(N) > 0 and with C`,µ
independent of N .

Proof. Writing ω(t) =
N∑
k=0

ωkt
2k/3, q(t) =

N∑
k=0

qkt
(2k+1)/3, χ(ρ, t) =

2N+2∑
k=1

tk/3χk(ρ),

ω0 = 1 and substituting this ansatz into the expression H~χ + l(q, ω)~χ + F(q, ω) +

F≥2(~χ), we get

H~χ+ l(q, ω)~χ+ F(q, ω) + F≥2(~χ) =
2N+2∑
k=1

tk/3(H~χk − ~Dk) + S(t),

S(t) = −
∑

k≥2N+3

tk/3 ~Dk + l1(q, ω)(ϕ

(
1

1

)
+ ~χ),

(2.12)

where

l1(q, ω) =
2 qω(qωρ)2N+3

ρωq + 1
∂ρ σ3 + i

q′q3ω2(qωρ)2N+3

ρωq + 1
,

~Dk =

(
Dk

−D̄k

)
, Dk = D

(0)
k +D

(1)
k +D

(2)
k ,

D
(0)
k , D

(1)
k , D

(2)
k being contributions of F(q, ω)− l1(q, ω)ϕ

(
1

1

)
, (l(q, ω)− l1(q, ω))~χ

and F≥2(~χ) respectively:

F(q, ω)− l1(q, ω)ϕ

(
1

1

)
= −

∑
k≥1

tk/3 ~D
(0)
k (ρ),

(l(q, ω)− l1(q, ω))~χ = −
∑
k≥2

tk/3 ~D
(1)
k (ρ),

F≥2(~χ) = −
∑
k≥2

tk/3 ~D
(2)
k (ρ),



8 JUSTIN HOLMER, GALINA PERELMAN, AND SVETLANA ROUDENKO

~D
(i)
k =

( D(i)
k

−D̄(i)
k

)
. Note that all these sums contain only finite number of terms.

The following structural properties of D
(i)
k will be important for our analysis.

(i) Dependence on qj, ωj χj: D
(0)
k depends on qj, ωj, j ≤ (k− 1)/2, and D

(i)
k , i = 1, 2,

depend on qj, ωj, j ≤ (k − 2)/2, and on χp, p ≤ k − 1, only:

D
(0)
k = D

(0)
k (ρ; qj, ωj, j ≤ (k − 1)/2),

D
(i)
k = D

(i)
k (ρ; qj, ωj, j ≤ (k − 2)/2;χp, p ≤ k − 1), i = 1, 2.

In addition, one has

(2.13) t1/3D
(0)
1 = 2q0(t)ϕρ − iq′0(t)q3

0(t)(ϕ+ 2ρϕρ)−
1

2
q′′0(t)q6

0(t)ρϕ, q0(t) = q0t
1/3,

and for k = 2l + 1, l ≥ 1:

(2.14) D
(0)
2l+1 = D

(0,0)
2l+1 +D

(0,1)
2l+1,

where D
(0,1)
2l+1 = D

(0,1)
2l+1(ρ; qj, ωj, j ≤ l− 1) depends on qj, ωj, j ≤ l− 1, only and D

(0,0)
2l+1

is given by

t(2l+1)/3D
(0,0)
2l+1 =

2(ql(t) + q0(t)ωl(t))ϕρ −
1

2
(q6

0(t)q′′l (t) + 6q′′0(t)q5
0(t)ql(t) + 3q′′0(t)q6

0(t)ωl(t))ρϕ

− i(q3
0(t)q′l(t) + 3q′0(t)q2

0(t)ql(t) + 2q′0(t)q3
0(t)ωl(t))(ϕ+ 2ρϕρ)− iq4

0(t)ω′l(t)(ϕ+ ρϕρ),

(2.15)

ql(t) = qlt
(2l+1)/3, ωl(t) = ωlt

2l/3.

(ii) Smoothness and decay: if all χj, j ≤ k − 1, verify (2.9), then a similar estimate

holds for Dk:

(2.16) |eµ|ρ|∂lρDk(ρ)| ≤ Cl,µ,k, ρ ∈ R,

for any l ≥ 0 and µ < 1.

(iii) Parity: if for any j ≤ k − 1, vj
def
= Reχj and uj

def
= Imχj satisfy

(2.17) vj(−ρ) = (−1)jvj(ρ), uj(−ρ) = (−1)j+1uj(ρ),

then one has the same property for G+
k

def
= ReDk, G−k

def
= ImDk :

(2.18) G+
k (−ρ) = (−1)kG+

k (−ρ), G−k (−ρ) = (−1)k+1G−k (−ρ).

Our goal now is to show that we can find coefficients q0, q1, . . . , qN , ω1, . . . , ωN (q0

being as in Theorem 1.1 and q2 arbitrary) and functions χ1, . . . , χ2N+2 satisfying (2.9),

(2.10), (2.17) such that

(2.19) H~χk = ~Dk, k = 1, . . . , 2N + 2.
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Estimate (2.11) will then follow from (2.12). As we see below, the equations with

k = 5 require some special care, therefore, we will go explicitly through k = 1, . . . , 5

and then we will proceed by induction.

It will be convenient for us to rewrite (2.19) as

(2.20) L+vk = G+
k , L−uk = G−k , k = 1, . . . , 2N + 2,

where L+ = −∂2
ρ + 1− 6ϕ2, L− = −∂2

ρ + 1− 2ϕ2 are self-adjoint operators in L2(R)

with the spectrum σ(L+) = {−3, 0} ∪ [1,∞), σ(L−) = {0} ∪ [1,∞). One has

L−ϕ = 0, L+ϕρ = 0.

For k = 1 the equations (2.20) give

(2.21) L+v1 = G+
1 , L−u1 = G−1 ,

with

G+
1 = 2q0∂ρϕ+

1

9
q7

0ρϕ, G−1 = −1

3
q4

0(ϕ+ 2ρϕρ),

see (2.13).

Since (G−1 , ϕ)L2(R) = −1
3
q4

0(ϕ + 2ρϕρ, ϕ)L2(R) = 0, the equation L−u1 = G−1 has a

unique solution u1 in L2 satisfying (u1, ϕ)L2(R) = 0. One can compute it explicitly:

u1 =
1

6
q4

0(ρ2ϕ+ c0ϕ), c0 = −
‖ρϕ‖2

L2(R)

‖ϕ‖2
L2(R)

.

The solvability of the equation L+v1 = G+
1 is subjected to the condition

(G+
1 , ϕρ)L2(R) = 0,

which gives

q0 − Aq7
0 = 0, A =

‖ϕ‖2
L2(R)

36‖ϕρ‖2
L2(R)

=
1

12
.

Therefore, we find

(2.22) q0 = 121/6.

Under this solvability condition, the equation L+v1 = G+
1 has a unique solution v1

satisfying (v1, ϕρ)L2(R) = 0, which is given by

v1 = −q0

3
(∂ρ(ρ

2ϕ) + c1ϕρ), c1 = −
(∂ρ(ρ

2ϕ), ϕρ)L2(R)

‖ϕρ‖L2(R)

.

Note that v1 is an odd and u1 is an even function of ρ, in agreement with (2.17), and

they both satisfy (2.9).

Consider (2.20) with k = 2. We have

(2.23) L+v2 = G+
2 , L−u2 = G−2 ,
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where G+
2 = G+

2 (ρ; q0), G−2 = G−2 (ρ; q0) are smooth exponentially decaying functions of

ρ, verifying (2.16), (2.18). Since G+
2 is even and G−2 is odd, the solvability conditions

(G−2 , ϕ)L2(R) = (G+
2 , ϕρ)L2(R) = 0 are satisfied and (2.23) has a unique solution v2, u2

with v2 even and u2 odd, verifying (2.9).

Next consider k = 3, 4. For k = 3 we have

(2.24) L+v3 = G+
3 (q0, q1, ω1, χ1, χ2), L−u3 = G−3 (q0, q1, ω1, χ1, χ2),

with G+
3 (q0, q1, ω1, χ1, χ2), G−3 (q0, q1, ω1, χ1, χ2) verifying (2.16), (2.18). Using (2.14),

(2.15), (2.22), one can write G+
3 , G−3 as

G+
3 = 2(q1 + q0ω1)ϕρ + 4(2q1 + q0ω1)ρϕ+ G̃+

3 ,

G−3 = −(2q3
0q1 +

2

3
q4

0ω1)(ϕ+ 2ρϕρ)−
2

3
q4

0ω1(ϕ+ ρϕρ) + G̃−3 ,
(2.25)

where G̃+
3 = G̃+

3 (q0, χ1, χ2), G̃−3 = G̃−3 (q0, χ1, χ2) depend on q0, χ1, χ2 only, and there-

fore, are determined by now.

Using (2.25), one can write the solvability conditions (G−3 , ϕ)L2(R) = (G+
3 , ϕρ)L2(R) =

0 as

−
q4

0‖ϕ‖2
L2(R)

3
ω1 + (G̃−3 , ϕ)L2(R) = 0,

2(q1 + q0ω1)‖ϕρ‖2
L2(R) − 2(2q1 + q0ω1)‖ϕ‖2

L2(R) + (G̃+
3 , ϕρ)L2(R) = 0,

which gives,

ω1 =
3(G̃−3 , ϕ)L2(R)

q4
0‖ϕ‖2

L2(R)

,

q1 = −2

5
q0ω1 +

(G̃+
3 , ϕρ)L2(R)

10‖ϕρ‖2
L2(R)

.

With this choice of ω1, q1, (2.24) has a unique solution v3, u3 verifying (2.9), (2.10)

with v3, u3 being of the same parity as G+
3 , G−3 : v3 is odd and u3 is even.

The case k = 4 is similar to that of k = 2: we have

(2.26) L+v4 = G+
4 , L−u4 = G−4 ,

with G+
4 even and G−4 odd, depending on q0, q1, ω1, χ1, χ2, χ3 only. Thus, (2.26) has a

unique solution v4, u4 with v4 even and u4 odd, verifying (2.9).

Consider the case k = 5. We have

(2.27) L+v5 = G+
5 , L−u5 = G−5 ,

with G+
5 = G+

5 (q0, q1, q2, ω1, ω2, χ1, . . . , χ4) odd and G−5 = G−5 (q0, q1, q2, ω1, ω2, χ1, . . . , χ4)

even.
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It follows from (2.15), (2.22) that

G+
5 = 2(q2 + q0ω2)ϕρ +

4

3
(q2 + 3q0ω2)ρϕ+ G̃+

5 ,

G−5 = −2

3
(4q3

0q2 + q4
0ω2)(ϕ+ 2ρϕρ)−

4

3
q4

0ω2(ϕ+ ρϕρ) + G̃−5 ,
(2.28)

where G̃±5 = G̃±5 (q0, q1, ω1, χ1, . . . , χ4) are determined by now. Substituting this rep-

resentation into the solvability conditions (G−5 , ϕ)L2(R) = 0, (G+
5 , ϕρ)L2(R) = 0, we

obtain

(2.29) ω2 =
3(G̃−5 , ϕ)L2(R)

2q4
0‖ϕ‖2

L2(R)

,

(2.30) −4q0ω2‖ϕρ‖2
L2(R) + (G̃+

5 , ϕρ)L2(R) = 0,

which means that one has to have

(2.31) q3
0(G̃+

5 , ϕρ)L2(R) = 2(G̃−5 , ϕ)L2(R).

Note that (2.29), (2.30) do not contain q2, therefore, it can be chosen arbitrarily

(as soon as we can show that (2.31) holds). To check (2.31), we proceed as follows.

Consider ω(1)(t) = 1 + ω1t
2/3, q(1)(t) = q0t

1/3 + q1t, χ
(1)(ρ, t) =

∑4
k=1 t

k/3χk(ρ). By

our construction, they verify

(2.32)

H~χ(1) + l(q(1), ω(1))~χ(1) + F(q(1), ω(1)) + F≥2(~χ(1)) = t5/3 ~D(ρ) +
1

1 + ω(1)q(1)ρ
S(ρ, t),

where ~D =
( D
−D̄

)
, D = −G̃+

5 − iG̃−5 , and S(ρ, t) admits the estimate

(2.33) |eµ|ρ|∂lρS(ρ, t)| ≤ Cl,µt
2, ρ ∈ R,

for any l ≥ 0 and µ < 1. Define

(2.34) z(x, t)
def
= eiθ1(t)+iv1(t)r/2λ1(t)(ϕ+ χ(1))(λ1(t)(r − q(1)(t)), t),

where λ1, v1, θ1 are given by (2.3), (2.5) with q = q(1) and ω = ω(1). Then z(t) solves

(2.35) izt + ∆z + 2|z|2z = R0(x, t) +R1(x, t), x ∈ R3,

where (by (2.32) and (2.33))

R0(x, t) = −t5/3eiθ1(t)+iv1(t)r/2λ3
1(t)D(λ1(t)(r − q(1)(t))),

and R1 satisfies

(2.36) ‖R1‖L2(R3) ≤ C t2/3.

Consider the energy E(z(t)) =
∫

(|∇z(x, t)|2 − |z(x, t)|4)dx. It follows from (2.35),

(2.36), (2.34) that

(2.37)
d

dt
E(z(t)) = αt−1 +O(t−2/3), t→ 0,
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with

(2.38) α = − 2

3q8
0

(
q3

0(G̃+
5 , ϕρ)L2(R) − 2(G̃−5 , ϕ)L2(R)

)
.

On the other hand, using the definition of z(t), we can write an expansion of E(z(t))

in powers of t1/3:

(2.39) E(z(t)) =
0∑

k=−4

tk/3ck +O(t1/3), t→ 0,

with some constants ck. Comparing this expansion to (2.37) one gets c−4 = · · · =

c−1 = 0 and α = 0, which is precisely (2.31).

Verifying the solvability conditions (2.29), (2.30) results in the fact that the system

(2.27) has a unique solution v5, u5 satisfying (2.9), (2.10) with v5 being odd and u5

being even.

To finish the proof of Proposition 2.1, we proceed by induction. Suppose we have

solved (2.20) with k = 1, . . . , 2l − 1, l ≥ 3, and have found qj, ωj, j ≤ l − 1, and χp,

p ≤ 2l − 1, verifying (2.9), (2.10), and (2.17). Consider k = 2l, 2l + 1. For k = 2l we

have

L+v2l = G+
2l(qj, ωj, j ≤ l − 1;χp, p ≤ 2l − 1),

L−u2l = G−2l(qj, ωj, j ≤ l − 1;χp, p ≤ 2l − 1),
(2.40)

with G+
2l being even and G−2l being odd, verifying (2.16). Therefore, the equation (2.40)

has a unique solution v2l, u2l with v2l even and u2l odd, that satisfies (2.9).

Consider k = 2l + 1. We have

L+v2l+1 = G+
2l+1(qj, ωj, j ≤ l;χp, p ≤ 2l),

L−u2l+1 = G−2l+1(qj, ωj, j ≤ l;χp, p ≤ 2l),
(2.41)

where G+
2l+1 is odd and G−2l+1 is even. From (2.15), (2.22) one has

G+
2l+1 = 2(ql + q0ωl)ϕρ −

4

3
((2l2 − l − 7)ql − 3q0ωl)ρϕ+ G̃+

2l+1

G−2l+1 = −2q3
0

3
((l + 2)ql + q0ωl)(ϕ+ 2ρϕρ)−

2lq4
0

3
ωl(ϕ+ ρϕρ) + G̃−2l+1,

(2.42)

where G̃±2l+1 depends only on qj, ωj, j ≤ l − 1;χp, p ≤ 2l. Using this representation

one can write the solvability conditions (G−2l+1, ϕ)L2(R) = 0, (G+
2l+1, ϕρ)L2(R) = 0 as

− q4
0lωl
3
‖ϕ‖2

L2(R) + (G̃−2l+1, ϕ)L2(R) = 0,

2ql(2l
2 − l − 6)‖ϕρ‖2

L2(R) − 4q0ωl‖ϕρ‖2
L2(R) + (G̃+

2l+1, ϕρ)L2(R) = 0,



3D NLS CONTRACTING SPHERE BLOW-UP 13

which gives

ωl =
3(G̃−2l+1, ϕ)L2(R)

lq4
0‖ϕ‖2

L2(R)

,

ql =
1

2(2l2 − l − 6)

(
4(G̃−2l+1, ϕ)L2(R)

lq3
0‖ϕρ‖2

L2(R)

−
(G̃+

2l+1, ϕρ)L2(R)

‖ϕρ‖2
L2(R)

)
.

After verifying the solvability conditions, one finds v2l+1, u2l+1 as the unique solution

of (2.41) satisfying (2.10). �

Define truncation functions θj ∈ C∞c (R) by

(2.43) θ0(ζ) =

{
1, |ζ| ≤ 1

200

0, |ζ| ≥ 1
100

, θ1(ζ) =

{
1 for |ζ| ≤ 1

20

0 for |ζ| ≥ 1
10

.

For each N ∈ N, introduce

(2.44) U (N)(ρ, t) =

(
ϕ+

2N+2∑
k=1

tk/3χk(ρ)

)
θ0(ρωq).

Note that

(2.45) suppU (N) ⊂
{
|ρ| ≤ 1

100qω

}
.

By construction each approximation U (N) solves (see equation (2.4))

(2.46) i
1

λ2
U

(N)
t + U (N)

ρρ − U (N) + 2 |U (N)|2U (N) = − 2

ρ+ λ q
U (N)
ρ

+
q′′ρ

2λ3
U (N) − i λ

′

λ3

(
1 + ρ ∂ρ

)
U (N) − i q′

λ(ρ+ λ q)
U (N) +RN(ρ, t),

where the remainder RN is supported in {|ρ| ≤ 1
100qω
} by (2.43) and (2.45), by (2.11)

for each N ∈ N there exists a time t0(N) > 0 such that RN satisfies the following

bounds

(2.47) |∂kρRN(ρ, t)| ≤ Ck e
−µ|ρ| t(2N+3)/3 for 0 < t ≤ t0(N), k = 0, 1, 2, ...,

with the constants µ and Ck independent of N .

Observe also that from (2.44) (the first term is time-independent ϕ), we have by

(2.9) that

(2.48) |∂kρU (N)(ρ, t)| ≤ C e−µ|ρ| for 0 < t < t0(N), k = 0, 1, 2, ... .

For each N ∈ N we set ψ(N) by

(2.49) ψ(N)(r, t) = eiθ(t)eiv(t)r/2λ(t)U (N)
(
λ(t)(r − q(t)), t

)
.
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Then ψ(N) solves

(2.50) i∂tψ
(N) + ∆ψ(N) + 2|ψ(N)|2ψ(N) = iH(N)(x, t),

where

(2.51) H(N)(r, t) = ieiθ(t)eiv(t)r/2λ3RN(λ(r − q(t)), t).

By (2.47), it follows that

‖∂krH(N)(t)‖L2(R3) ≤ Ckλ
3+kt(2N+3)/3‖1|r−q|≤λ−1‖L2(R3),

and hence,

(2.52) t2k/3‖∂krH(N)(t)‖L2(R3) ≤ Ckt
(2N−1)/3 for 0 < t ≤ t0(N), k = 0, 1, 2, ... .

Proposition 2.2. Given e ∈ R, we can choose q2 in the construction in Prop. 2.1

such that the energy of the approximate solution E(ψ(N)) estimates as

(2.53) |E(ψ(N))(t)− e| ≤ Ct
2N
3
−1 for 0 < t < t0(N).

Proof. The following two estimates are straightforward consequences of (2.50) and

(2.52):

(2.54)

∣∣∣∣ ddt‖ψ(N)(t)‖2
L2(R3)

∣∣∣∣ ≤ C t
2N−2

3 for 0 < t ≤ t0(N),

and

(2.55)

∣∣∣∣ ddtE(ψ(N))(t)

∣∣∣∣ ≤ C λ2 t
2N−2

3 for 0 < t ≤ t0(N).

Consider q−2(t)λ−3(t)E(ψ(N))(t). By construction of ψ(N), it admits an expansion in

positive powers of t1/3 (compare to (2.37), (2.38)):

(2.56) q−2(t)λ−3(t)E(ψ(N))(t) =

K(N)∑
k=0

βkt
k/3 +O(t∞), t→ 0,

where βk depends on χp, p ≤ k, and on ωj, qj, j ≤ k/2. More precisely, for k = 2l

one has

(2.57) β2l =
4

3
(ωl + (2l + 3)

ql
q0

) + β̃2l, l ≥ 0,

with β̃2l = β̃2l(χp, p ≤ 2l;ωj, qj, j ≤ l − 1) depending on χp, p ≤ 2l, and on ωj, qj,

j ≤ l − 1, only. From (2.55), (2.56), we deduce β0 = · · · = β3 = 0 and

|E(ψ(N))(t)− q−4
0 β4| ≤ Ct

2N
3
−1 for 0 < t ≤ t0(N).

Therefore, if we fix q2 by requiring 4
3
(ω2 + 7 q2

q0
) + β̃4 = eq4

0, then we get (2.53). �
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3. Comparison to exact solution

Let us begin with some notational conventions for this section. We exclusively use

the real inner product

(3.1) 〈ψ1, ψ2〉L2(R3) = Re

∫
R3

ψ1(x)ψ2(x) dx

on L2(R3) as well as the related 1D version

〈ψ1, ψ2〉L2(0<r<∞) = Re

∫ ∞
r=0

ψ1(r)ψ2(r) dr.

Note that

〈ψ1, ψ2〉L2(R3) = 4π〈rψ1(r), rψ2(r)〉L2(0<r<∞).

For a (densely defined) functional A : L2(R3)→ R, via the inner product (3.1) we

identify A′(ψ) with a function and A′′(ψ) with an operator, which is self-adjoint with

respect to (3.1). Let

J
def
= −1

2
i

and note that, with respect to the inner product (3.1), J∗ = −J . Define the Poisson

bracket

{A,B}(ψ) = 〈JA′(ψ), B′(ψ)〉,
which yields a functional {A,B} : L2(R3)→ R.

We find it convenient to state estimates in terms of the time-dependent scaled

Sobolev norms:

(3.2) ‖h‖Xk(R3)
def
=

k∑
j=0

t2j/3‖∇jh‖L2(R3).

Most frequently, we use the case k = 1:

‖h‖X1(R3)
def
= t2/3‖∇h‖L2(R3) + ‖h‖L2(R3).

By default X1 = X1(R3), although we shall have occasion to use the variant X1(0 <

r <∞), which has the expected definition.

We shall frequently need the following radial Sobolev inequality. For any radial

function f ,

(3.3) ‖f · 1r∼t1/3‖L∞(R3) . t−1/3‖∇f‖1/2

L2(R3)‖f‖
1/2

L2(R3) . t−2/3‖f‖X1(R3).

Recall the function ψ(N)(t) defined on 0 < t ≤ t0(N) by (2.49). For any 0 < ε ≤
t0(N), let ψ(t) be the solution to (1.1) such that

ψ(ε) = ψ(N)(ε)

(so ψ depends on ε and N but this is suppressed in our notation). Let

h(t)
def
= ψ(t)− ψ(N)(t).
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Each of the Propositions 3.2, 3.3, 3.4, 3.5, and 3.6 in this section references ψ and

h defined as above. All bounds stated will be valid for 0 < t ≤ t0(N). All implicit

constants (indicated through the notation .) will be independent of ε and N .

Note that (1.1) can be written as

(3.4) ∂tψ = JE ′(ψ),

while (2.50) can be written as

(3.5) ∂tψ
(N) = JE ′(ψ(N)) +H(N),

where H(N) is defined in (2.51) and satisfies (2.52).

Recalling (2.43), define the radial localized momentum

(3.6) Pq(ψ) = Im

∫
R3

(
θ1

(r − q
q

))2

ψ̄ ∂rψ dx.

Define the functional

(3.7) W (ψ) =

(
1 +

v2

4λ2

)
︸ ︷︷ ︸

O(1)

M(ψ)− v

λ2︸︷︷︸
O(t2/3)

Pq(ψ) +
1

λ2︸︷︷︸
O(t4/3)

E(ψ),

where M(ψ), Pq(ψ), and E(ψ) are the mass, localized radial momentum, and energy

functionals defined in (1.2), (3.6), and (1.3). Define the Lyapunov functional

(3.8) G(h)
def
= W (ψ)−W (ψ(N))− 〈W ′(ψ(N)), h〉.

The statement and proof of the following Lemma are based on Holmer-Lin [4,

Lemma 5.1].

Lemma 3.1. For G(h) as defined in (3.8), we have

(3.9) ∂tG(h) = {E,W}(ψ)− {E,W}(ψ(N))− 〈{E,W}′(ψ(N)), h〉 − E1 + E2,

where

E1
def
= 〈W ′′(ψ(N))H(N), h〉+ 〈W ′(ψ(N)), JE ′(ψ)− JE ′(ψ(N))− JE ′′(ψ(N))h〉,

E2 is the result of the time derivative landing on any of the parameters in W , and

H(N) is as in (3.5).

Explicitly,

(3.10) E2 = (
1

2
vv̇λ−2 − 1

2
v2λ−3λ̇)(M(ψ)−M(ψ(N))− 〈M ′(ψ(N)), h〉)

+ (−v̇λ−2 − 2vλ−3λ̇)(Pq(ψ)− Pq(ψ(N))− 〈P ′q(ψ(N)), h〉)

− λ−2λ̇(E(ψ)− E(ψ(N))− 〈E ′(ψ(N)), h〉).
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Proof. We write expressions for the time derivatives of each term in (3.8), dropping

the terms that lead to (3.10). First, from (3.4),

(3.11)
∂tW (ψ) = 〈W ′(ψ), ∂tψ〉

= 〈W ′(ψ), JE ′(ψ)〉.

Next, from (3.5),

(3.12)
∂tW (ψ(N)) = 〈W ′(ψ(N)), ∂tψ

(N)〉

= 〈W ′(ψ(N)), JE ′(ψ(N)) +H(N)〉.

Finally, from (3.4) and (3.5),

(3.13)

∂t〈W ′(ψ(N)), h〉 = 〈W ′′(ψ(N))∂tψ
(N), h〉+ 〈W ′(ψ(N)), ∂tψ − ∂tψ(N)〉

= 〈W ′′(ψ(N))(JE ′(ψ(N)) +H(N)), h〉

+ 〈W ′(ψ(N)), JE ′(ψ)− JE ′(ψ(N))−H(N)〉.

Taking (3.11) minus (3.12) minus (3.13), and noting the cancelation of 〈W ′(ψ(N)), H(N)〉
in (3.12) and (3.13), we obtain

(3.14) ∂tG(h) = 〈W ′(ψ), JE ′(ψ)〉 − 〈W ′(ψ(N)), JE ′(ψ(N))〉

− 〈W ′′(ψ(N))(JE ′(ψ(N)) +H(N)), h〉

− 〈W ′(ψ(N)), JE ′(ψ)− JE ′(ψ(N))〉.

Since

{E,W}(ψ) = 〈JE ′(ψ),W ′(ψ)〉,

we compute

(3.15) 〈{E,W}′(ψ(N)), h〉 = 〈JE ′′(ψ(N))h,W ′(ψ(N))〉+ 〈JE ′(ψ(N)),W ′′(ψ(N))h〉.

Now, (3.9) follows from (3.14) and (3.15). �

Recall the definition of the Xk norm in (3.2). By processing the terms in Lemma

3.1, we obtain the following upper bound on ∂tG:

Proposition 3.2. Let G(h) be defined as in (3.8) and suppose2 ‖h‖X1 ≤ 1. Then

(3.16) |∂tG(h)| . t−1‖h‖2
X1 + t‖H(N)‖2

X1 .

This bound is valid for ε ≤ t ≤ t0(N), and the implicit constants are independent of

ε and N .

2This is part of the bootstrap hypothesis. In fact, the argument ultimately yields the much

stronger estimate ‖h‖X1 ≤ t2N/3.
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Proof. To apply Lemma 3.1, we need to bound E1, E2, and to compute the Poisson

bracket {E,W}.
Computation yields (here, θ1 is short for θ1((r − q)/q)),

(3.17)
E ′(ψ) = −2∆ψ − 4|ψ|2ψ

= −2∂2
rψ − 4r−1∂rψ − 4|ψ|2ψ,

and, for convenience, taking α = ∂r(θ
2
1) + 2r−1θ2

1, we have

(3.18) P ′q(ψ) = −i(2θ2
1∂rψ + αψ).

First, we address E1. We have

(3.19) W ′(ψ(N)) = 2 (1 +
1

4
v2λ−2)︸ ︷︷ ︸

O(1)

ψ(N) − i vλ−2︸︷︷︸
O(t2/3)

(2θ2
1∂rψ

(N) + αψ(N))

+ λ−2︸︷︷︸
O(t4/3)

(−2∆ψ(N) − 4|ψ(N)|2ψ(N)).

By (3.19) and (3.3), we obtain

‖W ′(ψ(N))‖L2 . ‖ψ(N)‖X2 . 1.

However, this ignores the fact that the leading order term in ψ(N) is the push-forward

of ϕ(ρ) = sech ρ, which leads to a vanishing term in (3.19). Thus, we in fact have

(3.20) ‖W ′(ψ(N))‖L2 . t1/3.

We have

(3.21) E ′(ψ)− E ′(ψ(N))− E ′′(ψ(N))h = ψ(N)h2 + h3

(ignoring complex conjugates). In the pairing 〈W ′(ψ(N)), JE ′(ψ) − JE ′(ψ(N)) −
JE ′′(ψ(N))h〉, each term will have a factor of ψ(N), which localizes to r ∼ t1/3.

By (3.21), (3.3), and (3.20), it follows that

(3.22)

|〈W ′(ψ(N)), JE ′(ψ)− JE ′(ψ(N))− JE ′′(ψ(N))h〉|

. ‖W ′(ψ(N))‖L2(‖ψ(N)‖L∞‖h · 1r∼t1/3‖L∞‖h‖L2 + ‖h · 1r∼t1/3‖2
L∞‖h‖L2)

. t−1‖h‖2
X1 .

From (3.19), we find that W ′′(ψ(N)) is an operator of the form

(3.23) W ′′(ψ(N)) = O(1) +O(t2/3)(∂r + α) +O(t4/3)(∆ + (ψ(N))2 ).

In the expression, 〈W ′′(ψ(N))H(N), h〉, the presence of the function H(N) gives local-

ization to r ∼ t1/3, and hence, (3.3) is applicable. It follows from (3.23) and (3.3)

that

(3.24) |〈W ′′(ψ(N))H(N), h〉| . ‖H(N)‖X1‖h‖X1 . t−1‖h‖2
X1 + t‖H(N)‖2

X1 .
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Combining (3.22) and (3.24), we obtain the bound

(3.25) |E1| . t−1‖h‖2
X1 + t‖H(N)‖2

X1 .

Next, we compute the bound on E2. Working with (3.10), we obtain

(3.26) |E2| . t−1‖h‖2
X1 .

Next, we compute the Poisson bracket {E,W}. However, since {E,E} = 0 and

{E,M} = 0, we have {E,W} = − v
λ2
{E,Pq}. Substituting (3.17) and (3.18) and

performing numerous integrations by parts, we obtain

{E,Pq}(ψ) = Re

∫
(−i)E ′(ψ)P ′q(ψ) dx

= 8πRe

∫ ∞
r=0

(−∂2
rψ − 2r−1∂rψ − 2|ψ|2ψ)(2θ2

1∂rψ̄ + αψ̄) r2 dr

= 8π

∫ ∞
r=0

|∂rψ|2 (∂r(θ
2
1r

2)− 4θ2
1r + αr2)︸ ︷︷ ︸

∼ t−1/3r2 1
r∼t1/3

dr

+ 8π

∫ ∞
r=0

|ψ|4 (−∂r(θ2
1r

2) + 2αr2)︸ ︷︷ ︸
∼ t−1/3r2 1

r∼t1/3

dr

+ 8π

∫ ∞
r=0

|ψ|2 (−1

2
∂r(αr

2) + ∂r(rα))︸ ︷︷ ︸
∼ t−1r2 1

r∼t1/3

dr.

From this, it is apparent that the quadratic (in h) part of {E,Pq}(ψ) satisfies

|vλ−2||{E,Pq}(ψ)− {E,Pq}(ψ(N))− 〈{E,Pq}′(ψ(N)), h〉|

. t1/3‖∇h‖2
L2 + t1/3‖ψ(N)‖2

L∞‖h‖2
L2 + t−1/3‖h‖2

L2

. t−1‖h‖2
X1 .

This furnishes a bound on the main term in (3.9), while E1 and E2 have been bounded

above in (3.25) and (3.26). Thus, the bound (3.16) follows from Lemma 3.1. �

We next write the remainder h as the push-forward of a function f :

(3.27) h(r, t) = eiθ(t)eiv(t)r/2λ(t) f
(
λ(t)(r − q(t)), t

)
and recalling that ρ = λ(r − q), define f1 as the truncation

(3.28) f1(ρ, t)
def
= θ1

(
ρ

λq

)
λ1/2

(ρ
λ

+ q
)
f(ρ, t).

Note that due to the support of θ1 (which restricts |ρ| � t−1/3), we have that

λ1/2(ρ/λ+ q) ∼ 1.

Let

ξ0 = iϕ , ξ1 = −∂ρϕ , ξ2 = ϕ+ ρ∂ρϕ , ξ3 = iρϕ,
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where ϕ(ρ) = sech ρ, and, recalling that J = −1
2
i and J−1 = 2i, define

(3.29) κj
def
= 〈f1,

1
2
J−1ξj〉L2(−∞<ρ<∞).

Define the projection operator

(3.30) Pf1 = −κ2(f1) ξ0 + κ0(f1) ξ2 − κ1(f1) ξ3 + κ3(f1) ξ1.

The following proposition establishes the coercivity of the functional G(h).

Proposition 3.3. Let G(h) be defined as in (3.8), and suppose that ‖h‖X1 ≤ t2/3.

Then

(3.31) ‖h‖2
X1 . G(h) +

3∑
i=0

|κi|2,

where κj, j = 0, 1, 2, 3, are defined in (3.29). This bound is valid for ε ≤ t ≤ t0(N).

The implicit constant is independent of ε and N .

Proof. From (3.8),

(3.32) G(h) = 〈W ′′(ψ(N))h, h〉+ E3,

where E3 takes the form

E3 = O(t4/3)

∫
ψ(N)h3 +O(t4/3)

∫
h4.

Hence,

(3.33)

|E3| . t4/3‖ψ(N)‖L∞‖h · 1r∼t1/3‖L∞‖h‖2
L2 + t4/3‖h‖4

L4

. ‖ψ(N)‖X1‖h‖3
X1 + t4/3‖∇h‖2

L2‖h‖L2

. ‖h‖3
X1 + t−2/3‖h‖4

X1

≤ 1

4
δ‖h‖2

X1 ,

where in the second line we have applied (3.3) in the first term and used the 3D

Gagliardo-Nirenberg inequality (since there is no spatial localization to r ∼ t1/3 in

this term). From (3.7), we have that W ′′(ψ(N)) is the operator

W ′′(ψ(N)) = 2

(
1 +

1

4
v2λ−2

)
+ 2ivλ−2θ2

1∂r

+ 2λ−2(−∂2
r − 2r−1∂r − 4|ψ(N)|2 − 2(ψ(N))2C),

where C is the operator of complex conjugation. For convenience, let

B
def
= 2

(
1 +

1

4
v2λ−2

)
+ 2ivλ−2θ2

1∂r

+ 2λ−2(−∂2
r − 4|ψ(N)|2 − 2(ψ(N))2C)



3D NLS CONTRACTING SPHERE BLOW-UP 21

and

D
def
= 2

(
1 +

1

4
v2λ−2

)
− 2λ−2∂2

r .

Then using that ∂2
r r = r∂2

r + 2∂r, we obtain

(3.34) 〈W ′′(ψ(N))h, h〉L2(R3) = 〈B(rh), rh〉L2(0≤r≤∞).

Let θ2 = (1− θ2
1)1/2 so that h = θ2

1h+ θ2
2h. Substituting this decomposition into the

right side of (3.34), we get

(3.35)

〈W ′′(ψ(N))h, h〉L2(R3) = 〈B(rθ1h), rθ1h〉L2(0<r<∞) + 〈D(rθ2h), rθ2h〉L2(0<r<∞) + E4,

where

E4 =
2∑
j=1

(
2λ−2(〈2(∂rθj)∂r(θjrh), rh〉+ 〈(∂2

rθj)rθjh, rh〉)
)

arises from the commutator of ∂2
r and θj. These terms are lower order, however, since

an r-derivative on h “costs” t−2/3 in the definition of the X1 norm, whereas ∂r landing

on θj gives only the penalty of t−1/3. Specifically,

(3.36) |E4| . t1/3‖h‖2
X1 ≤

1

4
δ‖h‖2

X1 .

By (3.35) and (3.36),

(3.37) G(h) = 〈B(rθ1h), rθ1h〉L2(0<r<∞) + 〈D(rθ2h), rθ2h〉L2(0<r<∞) + E3 + E4.

Define the operator

A
def
= (1 + ∂2

ρ + 4ϕ2 + 2ϕ2C).

Substituting (3.27), (3.28), we obtain

〈B(rθ1h), rθ1h〉L2(0<r<∞) = 〈Af1, f1〉L2(−∞<ρ<∞).

Recalling (3.30), it is a classical fact (see for example [7, §4]) that there exists δ > 0

such that

(3.38) δ‖f1 − Pf1‖2
L2(R) ≤ 〈A(f1 − Pf1), (f1 − Pf1)〉L2(R).

As a projection operator, P satisfies P 2 = P and P ∗ = P (adjoint with respect to

the 〈·, ·〉 inner product defined by (3.1)). Hence,

‖f1 − Pf1‖2
L2(R) = ‖f1‖2

L2(R) − ‖Pf1‖2
L2(R).

Also,

‖APf1‖L2(R) + ‖Pf1‖L2(R) .
3∑

k=0

|κj|.
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Applying this to (3.38), we obtain

δ‖f1‖2
L2(R) ≤ 〈Af1, f1〉2L2(R) +

3∑
j=0

|κj|2.

Substituting back (3.27), (3.28), we obtain

(3.39) δ‖rθ1h‖2
L2(0<r<∞) ≤ 〈B(rθ1h), (rθ1h)〉L2(0<r<∞) +

3∑
j=0

|κj|2.

Directly from the definition of B, using integration by parts, we get

(3.40) t4/3‖∂r(rθ1h)‖2
L2(0<r<∞) . 〈B(rθ1h), (rθ1h)〉L2(0<r<∞) + ‖rθ1h‖2

L2(0<r<∞).

The inequalities (3.39) and (3.40) together yield

(3.41) δ‖rθ1h‖2
X1(0<r<∞) ≤ 〈B(rθ1h), (rθ1h)〉L2(0<r<∞) +

3∑
j=0

|κj|2.

Directly from the definition of D via integration by parts,

(3.42) δ‖rθ2h‖2
X1(0<r<∞) ≤ 〈D(rθ2h), (rθ2h)〉L2(0<r<∞).

Summing (3.41) and (3.42), we obtain

(3.43) δ(‖rθ1h‖2
X1(0<r<∞) + ‖rθ2h‖2

X1(0<r<∞))

. 〈B(rθ1h), (rθ1h)〉L2(0<r<∞) + 〈D(rθ2h), (rθ2h)〉L2(0<r<∞) +
3∑
j=0

|κj|2.

Combining (3.37) and (3.43), we obtain

(3.44) δ(‖rθ1h‖2
X1(0<r<∞) + ‖rθ2h‖2

X1(0<r<∞)) . G(h) +
3∑
j=0

|κj|2 − E3 − E4.

Again, by the fact that commutators are of lower order, we have

(3.45) δ(‖rθ1h‖2
X1(0<r<∞) + ‖rθ2h‖2

X1(0<r<∞)) = δ‖h‖2
X1(R3) + E5,

where

(3.46) |E5| . t1/3‖h‖2
X1 .

Combining (3.44) and (3.45), and making use of error estimates (3.33), (3.36), and

(3.46), we obtain (3.31). �

We now come back to our original substitution (2.1) and the equation (2.2) for

U (i.e., to our solution before the conditions (2.3) were enforced) and the equation

(3.49) for U (N). Consider a four parameter (λ1, θ1, q1, v1)-family of profiles:

(3.47) φ(N)(λ1, q1, θ1, v1, r, t)
def
= eiΘ(r,t)λ̃(t)U (N)(λ̃(t)

(
r − q̃(t)

)
, t)
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with

Θ(r, t) = θ(t) + θ1 + (v(t) + v1)r/2, λ̃(t) = λ1λ(t), q̃(t) = q(t) + q1.

Here, the parameters λ1, q1, θ1, and v1 are assumed time-independent, and recall that

the (time-dependent) parameters θ(t), λ(t), q(t), v(t) satisfy conditions (2.3). For the

sake of brevity, we write ρ = λ̃(r−q̃), ṽ = v+v1, and U (N), which stands for U (N)(ρ, t).

Let

(3.48) F (N)(r, t) = i∂tφ
(N) + ∆φ(N) + 2|φ(N)|2φ(N).

Using the definition (3.47), the above is equivalent to

F (N)(r, t) = eiΘ(r,t)λ̃(t)
(
iU

(N)
t + λ̃2U (N)

ρρ

)
+ 2|φ(N)|2φ(N) −

(
θ̇ +

v̇r

2
+
ṽ2

4

)
φ(N)

+ i eiΘ(r,t)
(

˙̃λU (N) + ṽλ̃2U (N)
ρ + λ̃( ˙̃λ(r − q̃)− λ̃ ˙̃q)U (N)

ρ

)
+ eiΘ(r,t) 2λ̃3

ρ+ λ̃q̃
U (N)
ρ + i

λ̃ṽ

ρ+ λ̃q̃
φ(N).

Recalling (2.46), multiplying it by λ̃3 and substituting into the second and third terms

in the above, we obtain

(3.49)

F (N)(r, t) = eΘ(r,t)λ̃3(t)

[
i

(
1

λ̃2
− 1

λ2

)
U

(N)
t +

(
1− γ̃

λ̃2

)
U (N) + i

v1

λ̃
U (N)
ρ

+
v̇

2
ρ

(
1

λ3
− 1

λ̃3

)
U (N) + i

λ̇

λ

(
1

λ̃2
− 1

λ2

)(
1 + ρ ∂ρ

)
U (N)

+i

(
ṽ

λ̃(ρ+ λ̃q̃)
− v

λ(ρ+ λ q)

)
U (N) +

(
2

ρ+ λ̃q̃
− 2

ρ+ λ q

)
U (N)
ρ +RN(ρ, t)

]
,

where γ̃ = θ̇ + ṽ2/4 + v̇q̃/2 and ρ = λ̃(r − q̃).
Define

(3.50)

η0(r, t) = ∂θ1 φ
(N)
∣∣∣
λ1=1,θ1=q1=v1=0

,

η1(r, t) =
1

λ(t)
∂q1φ

(N)
∣∣∣
λ1=1,θ1=q1=v1=0

,

η2(r, t) = ∂λ1φ
(N)
∣∣∣
λ1=1,θ1=q1=v1=0

,

η3(r, t) = (2λ(t) ∂v1 − q(t)λ(t) ∂θ1)φ
(N)
∣∣∣
λ1=1,θ1=q1=v1=0

.

Solving for i∂tφ
(N) in (3.48) and using (3.49) (and commutation of derivatives), we

obtain

(3.51) i∂tη0 = E ′′(ψ(N))η0 +H(N),



24 JUSTIN HOLMER, GALINA PERELMAN, AND SVETLANA ROUDENKO

(3.52) iλ−1∂t(λη1) = E ′′(ψ(N))η1 + i
1

2
λ−1v̇ η0 +OX(t−2/3),

(3.53) i∂t(η2) = E ′′(ψ(N))η2 − 2iλ2 η0 +OX(t−1),

(3.54) iλ ∂t(λ
−1η3) = E ′′(ψ(N))η3 − 2iλ2 η1 +OX(t−1).

Proposition 3.4. Suppose that ‖h‖X1 ≤ t2/3. There exists σj satisfying

(3.55) |κj − σj| . t1/3‖h‖X1

so that

(3.56) |∂tσ0| . t−4/3‖h‖2
X1 + ‖H(N)‖X1 ,

(3.57) |λ−1∂tλσ1| . t−1|σ0|+ t−2/3‖h‖X1 + ‖H(N)‖X1 ,

(3.58) |λ∂tλ−1σ2| . t−4/3|σ0|+ t−1‖h‖X1 + ‖H(N)‖X1 ,

(3.59) |λ∂tλ−1σ3| . t−4/3|σ1|+ t−1‖h‖X + ‖H(N)‖X1 .

These bounds are valid for ε ≤ t ≤ t0(N), and the implicit constants are independent

of ε and N .

Proof. Let

µ(r)
def
= θ1((r − q)/q)λ−1/2r−1

(note that µ(r) = O(1)) and also let

Ξj(r, t)
def
= µ(r)eiθeivr/2λ ξj(λ(r − q)).

Recall ηj, j = 0, 1, 2, 3, from (3.50) and observe that

(3.60) Ξj = ηj +OL2(R3)(t
1/3),

where the error term results from ϕ being replaced by U (N) (see (2.44)). A change of

variables calculation gives

κj = 1
2
〈f1, J

−1ξj〉L2(−∞<ρ<∞) = 1
2
〈h, J−1Ξj〉L2(R3).

Define

(3.61) σj = 1
2
〈h, J−1ηj〉L2(R3).

then by (3.60) κj − σj satisfies the bound (3.55). Then

∂tσ0 = 1
2
〈∂th, J−1η0〉+ 1

2
〈h, J−1∂tη0〉.

Substituting (3.71) and (3.51), we obtain

∂tσ0 = 1
2
〈J(E ′′(ψ(N))h+ 4ψ(N)|h|2 + 2ψ(N)h2 + 2|h|2h)−H(N), J−1η0〉

+ 1
2
〈h, J−1(JE ′′(ψ(N))η0 +H(N))〉.
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Since J∗ = −J and E ′′(ψ(N)) is self-adjoint with respect to 〈·, ·〉, we have the can-

celation 〈JE ′′(ψ(N))h, J−1η0〉 + 〈h, J−1JE ′′(ψ(N))η0〉 = 0. Estimating the remaining

terms, we obtain (3.56). Similarly, using the estimates (3.52) - (3.54), we obtain the

rest of (3.57)-(3.59). �

Proposition 3.5. For a sufficiently large N , independent of 0 < ε < t0(N), we have

(3.62) ‖h‖X1 ≤ t2N/3, ε ≤ t ≤ t0(N).

Proof. This will be proved by a bootstrap argument invoking the estimates obtained

in Props. 3.2, 3.3, and 3.4. Recall that

(3.63) ‖H(N)‖X1 ≤ t(2N−1)/3.

We make the following bootstrap assumption:

(3.64) ∀ 0 < t ≤ t0(N), ‖h‖X1 ≤ 2t2N/3.

Assumption (3.64) will be validated provided we can show, using Propositions

3.2, 3.3, and 3.4, that (3.64) reinforces itself – specifically that (3.62) holds as a

consequence.

By (3.64), (3.63) inserted into (3.16)

|∂tG(h)| . t4N/3−1.

Integrating, we obtain

(3.65) G(h) = G(h(t))−G(h(ε)) .
1

N
t4N/3.

By (3.64), (3.63), inserted into (3.56),

|∂tσ0| . t(2N−1)/3.

Integrating over [ε, t] using that σj(ε) = 0, we obtain

(3.66) |σ0| . t(2N+2)/3.

By (3.64), (3.63), (3.66) inserted into (3.57) and (3.58), we obtain

|λ−1∂tλσ1| . t(2N−2)/3 , |λ∂tλ−1σ2| . t(2N−3)/3.

Integrating, we obtain

(3.67) |σ1| . t(2N+1)/3 , |σ2| .
1

N
t2N/3.

Inserting (3.64), (3.63), (3.67) into (3.59), we obtain

|λ∂tλ−1σ3| . t(2N−3)/3.

Integrating, we obtain

(3.68) |σ3| .
1

N
t2N/3.
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By (3.55), κj can be replaced by σj in (3.31). By (3.65), (3.66), (3.67), (3.68) inserted

into (3.31),

‖h‖2
X1 .

1

N
t4N/3,

and hence, (3.62) holds by taking N sufficiently large.

�

In order to construct the solution advertised in Theorem 1.1, we will carry out a

compactness argument. For this compactness argument, we need higher regularity

(H2) control and tighter localization:

Proposition 3.6. For N taken large enough so that Prop. 3.5 holds, we have the

further bounds

(3.69) t4/3‖∇2h‖L2(R3) . t
2N
3
−1

and

(3.70) ‖xψ(t)‖L2(R3) . t1/3

for ε ≤ t ≤ t0(N), with implicit constants independent of N and 0 < ε ≤ t0(N).

Proof. Recall

(3.71) ∂th = J(E ′′(ψ(N))h+ 8ψ(N)|h|2 + 4ψ(N)h2 + 4|h|2h)−H(N),

where

JE ′′(ψ(N)) = +i(∆ + 4|ψ(N)|2 + 2(ψ(N))2C)
and C denotes the operator of complex conjugation. We have available H1

x control of

h and thus seek a “higher-order energy estimate”. Applying ∂j (j = 1, 2, 3) to (3.71),

we obtain

(3.72) ∂t∂jh = JE ′′(ψ(N))∂jh+ A(h) +B(h, ∂jh)− ∂jH(N),

where A(h) contains terms of the form ψN ·∂jψN ·h (up to complex conjugation) and

B(h, ∂jh) denotes terms that contain one power of ∂jh or ∂jh̄ and at least one power

of h. Thus ∂jh, modulo error terms, satisfies at the linear level the same equation

satisfied by h itself. Let

ψ̃
def
= ψ(N) + ∂jh .

Then by (3.5) and (3.72),

(3.73) ∂tψ̃ = JE ′(ψ(N)) + JE ′′(ψ(N))∂jh+ A(h) +B(h, ∂jh) +H(N) − ∂jH(N).

Note the expansion

(3.74) JE ′(ψ̃) = JE ′(ψ(N) + ∂jh) = JE ′(ψ(N)) + JE ′′(ψ(N))∂jh+ JF,
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where

F
def
= E ′(ψ̃)− E ′(ψ(N))− E ′′(ψ(N))∂jh

= 4ψ(N)|∂jh|2 + 2ψ(N)(∂jh)2 + 2|∂jh|2∂jh.

Using the expansion (3.74), the equation (3.73) becomes

(3.75) ∂tψ̃ = JE ′(ψ̃) +D − JF,

where

D
def
= A(h) +B(h, ∂jh) +H(N) − ∂jH(N).

We now use the functional G that appeared in Lemma 3.1 and Prop. 3.2, 3.3, where

we replace ψ by ψ̃. Specifically, in place of (3.8) we take

G(∂jh)
def
= W (ψ̃)−W (ψ(N))− 〈W ′(ψ(N)), ∂jh〉.

A slightly modified version of Lemma 3.1 follows, in which (3.75) is applied in place

of (3.4), and the following identity is obtained in place of (3.9)

∂tG(∂jh) = {E,W}(ψ̃)− {E,W}(ψ(N))− 〈{E,W}′(ψ(N)), ∂jh〉 − E1 + E2,

where

E1 = 〈W ′′(ψ(N))H(N), ∂jh〉 − 〈W ′(ψ̃)−W ′(ψ(N)), D − JF 〉

+ 〈W ′(ψ(N)), JF 〉

and E2 is the same as in (3.10), but with ψ replaced by ψ̃. The proof of Prop. 3.2

modifies accordingly, to yield in place of (3.16)

(3.76) |∂tG(∂jh)| . t−1‖∂jh‖2
X1 + t

4N
3
−3

Indeed, E1 is estimated using ‖W ′(ψ(N))‖L2 . t1/3, and

‖F‖L2 + t2/3‖1r∼t1/3∇F‖L2 . t−4/3‖∂jh‖2
X1

‖D‖L2 + t2/3‖1r∼t1/3∇D‖L2 . t−2‖h‖X1 + t−4/3‖h‖X1‖∂jh‖X1

By an argument following the proof of Prop. 3.3,

(3.77) ‖∂jh‖2
X1 . G(∂jh) +

3∑
i=0

|κ̃i|2,

where κ̃i = 〈∂jh, 1
2
J−1Ξi〉 and Ξi is given in (3.60). The equations (3.76) and (3.77)

can be combined to yield (3.69).

Next, we will establish (3.70). The pseudoconformal conservation law (see Strauss

[10, p. 13]) is

(3.78) ∂t

(
1

2
‖(x+ 2it∇)ψ‖2

L2(R3) − 2t2‖ψ‖4
L4(R3)

)
= 2t‖ψ‖4

L4(R3).
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By energy conservation,

(3.79) ‖ψ‖4
L4(R3) = ‖∇ψ‖2

L2(R3) − E(ψ) . t−4/3.

By (2.53), E(ψ) = E(ψ(N)(ε)) ∼ 1 (independently of ε), and hence, (3.79) yields

‖ψ‖L4(R3) . t−1/3.

Applying this to (3.78), we obtain

‖(x+ 2it∇)ψ‖L2(R3) . ‖(x+ 2it∇)ψ(N)
∣∣
t=ε
‖L2(R3) + t1/3.

By the localization of ψ(N) to |x| ∼ t1/3, we have

‖(x+ 2it∇)ψ(N)(t)‖L2 ∼ t1/3,

from which (3.70) follows. �

4. Proof of Theorem 1.1

Fix N sufficiently large so that Propositions 3.5 and 3.6 are applicable. Let t0 =

t0(N). For any sequence εj → 0, let ψj be the solution to (1.1) as described at the

beginning of §3 with ε = εj. By Proposition 3.5 and 3.6, we have

‖ψj(t0)‖X2(R3) + t−1/3‖xψj(t0)‖L2 . 1

with implicit constant independent of j. By the Rellich compactness theorem, we can

pass to a subsequence such that ψj(t0) → ψ0 in X1(R3). Let ψ be the solution to

(1.1) with ψ(t0) = ψ0. By Proposition 3.5

(4.1) sup
εj≤t≤t0

‖ψj(t)− ψ(N)(t)‖X1(R3) ≤ t2N/3.

By continuous dependence on initial conditions in the Cauchy problem, for each fixed

0 < t ≤ t0, we have ψj(t) → ψ(t) in H1(R3) as j → ∞. Hence, we can send j → ∞
in (4.1) to obtain

sup
0<t≤t0

‖ψ(t)− ψ(N)(t)‖X1(R3) ≤ t2N/3.

This yields the bound on the first two terms in (1.9). To deduce the bound on the

third term in (1.9), we follow the argument in the proof of Proposition 3.6 utilizing

the pseudoconformal conservation law.
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E-mail address: galina.perelman@u-pec.fr

The George Washington University, Washington, DC, USA

E-mail address: roudenko@gwu.edu


