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ABSTRACT
In Chapter 1, we consider the 1D Zakharov system

( . .
Ore = Zague F ineue
292 2 2 2
€“0ine — Opne = Oy |ue
tel;_g = uo

nely—o = o

\ atne’t:() =
where u = ue¢ : R x [0,7] — C, and n = n¢ : R x [0,7] — R. We prove the estimate

—111/2 4k
HUHL%OHQIUHFHCIJ> Da"0pull 22 < cexplell(zpuoll ga)luol (1)

for given initial data (ug,ng,n1) € HF N H((x)2dz) x Hk_% X Hk_%, which is
uniform in € as € — 0, by the technique of introducing a suitable pseudodifferential
operator change of variable. This method has been previously applied to derivative
nonlinear Schrédinger (NLS) equations by [Chi96], [KPV98], and the primary new
obstacle here is commuting the pseudodifferential operator past the inverse wave
operator. Applications of (1) to the convergence of u¢ to the solution of the cubic
NLS equation corresponding to initial data ug are also explored.

In Chapter 2, we consider the initial-boundary value problem for the Korteweg-de

Vries (KdV) equation on the right half-line

O+ Ou +udpu =0 for (z,t) € (0,+00) x (0,7
u(0,t) = f(t) fort € (0,7)
u(z,0) = ¢(z) for z € (0, +00)

il
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+1
and prove local well-posedness for (¢, f) € H5(RT) x HS (RT), —% <s< %, s # %,
with the compatibility condition ¢(0) = f(0) for % <s < % On the left half-line, the

corresponding problem is

(Opu+ OPu+udpu =0 for (z,t) € (—00,0) x (0,7)
u(0,t) = f(t) for t € (0,T)
O,u(0,t) = g(t) for t € (0,T)

[ u(z,0) = ¢(x) for x € (—00,0)

1
and we prove local well-posedness for (¢, f,g) € H*(R™) x H%_(RJF) X Hg(RJF),

—% < s < %, s # %, with the compatibility condition ¢(0) = f(0) for % < s <

%. A finite-length interval analogue is also addressed. These results are obtained
through modifications of the technique of [CK02], where a boundary forcing operator
is introduced to set the boundary conditions.

In Chapter 3, we consider the initial-boundary value problem for the nonlinear

Schrodinger equation (NLS) on the right-half line

O+ 02u + Mufu|®" 1 =0 for (z,t) € (0,+00) x (0,T)
u(0,t) = f(t) fort € (0,7
u(z,0) = ¢(x) for x € (0, 4+00)

and prove local well-posedness for (¢, f) € H5(R™) x HQ_Sﬁiﬂ(RJ“), in the case s =0,
1 < a <5, and in the case s = 1, 1 < a < 400 with the compatibility condition
»(0) = f(0). The left half-line problem is actually the same problem since u(z,t)
solves the left-hand problem for ¢(z) and f(t) iff u(—=x,t) solves the right-hand prob-
lem for ¢(—z) and f(t). These results are also obtained through modifications of the
technique of [CK02].
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CHAPTER 1
ESTIMATES FOR THE 1D ZAKHAROV SYSTEM
UNIFORM IN ION SOUND SPEED

1.1 Introduction and summary

Let ug : R¢ — C, ng, ni : RY — R be given, and consider the Zakharov system in
RY:
( Ore = 1A\ Ue F Inele (1.1)

E0%ne — Ane = Aluc|?> (1.2)
ZSe = “6’1&:0 = uo

nely_g = o

\ ”G}tzo =

where ue : RY x [0,7] — C and ne : R? x [0,7] — R. ! The case of — in (1.1) is
called “focusing” (FZS¢), and the case of + in (1.1) is called “defocusing” (DZS¢). In

this chapter, we will concentrate on the case d = 1, where ZS,¢ takes the form:

(

E0%ne — 02ne = 2luel® (1.4)
1D ZSG - ue}t:O = uO

”6’t:0 = 1o

atne }tZO =n1

\

where ue : R x [0,7] — C, and ne : R x [0,7] — R. The strongest local well-
posedness results available for ZS; (¢ = 1) were obtained by [BC96] for d = 2,3

and (ug,ng,n1) € H L L2 x H7!, under a smallness assumption on ug, and then

1. We will often suppress the subscript €, and simply write 4 and n instead of u. and n..

1
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extended by [GTVI7] to general d for (ug,ng,n1) € H* x H' x H'=1 for a range of
k and [ values, without a smallness assumption on ug. Here, H=! = { f € &'(R%) |
1€]71f(€) € LA(RY) }. [GTV97] avoid introducing the assumption n; € H~1, which
appears in many papers on this topic, e.g. [SS79], [AA88], [OT92b]. As [OT92b]
point out, this assumption is especially limiting for d = 1, where S ¢ H~1, since nice
functions like e_a32 fail to have an antiderivative in L2.

By a scaling argument, the [GTV97] result extends to arbitrary e and gives local
well-posedness of ZS¢ on a time interval [0, T¢] whose length depends on e. The case
of | = k—1 for d = 1 appears as part of Prop. 1.2 of [GTV97], and we now state this

result since we will appeal to it later.

Proposition 1 (special case of [GTV97], Prop. 1.2). Ifk > %, and (ug, ng,n1) €
HF x HE=1 % Hk_2, then there exists a unique pair (ue, ne), solving 1D ZS¢ on a time
interval [0, T¢], such that (ue,ne, dne) € C([0,Te); HF x HF=1 x HE=2).

Uniqueness holds with the auxiliary condition that « and n belong to the Bourgain
spaces used in the [GTV97] argument (see [BSZ04] for a discussion of this matter).

As a formal exercise, if we send € — 0 in ZS¢, and assume that u — v for some v,
then by setting e = 0 in (1.2), we expect that v solves the cubic nonlinear Schrédinger

equation

dv = iAv £ i|v]?v
NLS = (1.5)

vl = uo
The case of + in (1.5) is called “focusing” (FNLS), and the case of — in (1.5) is called
“defocusing” (DNLS). In the d = 1 case, we expect u¢ solving 1D ZS, to converge to

v solving

v = 1020 + iv|v)?
1D NLS = (1.6)

V], = uo
In order to prove rigorous results concerning the convergence ue — v as € — 0,
uniform in € bounds on u. are needed. Some such uniform estimates were obtained
by [AAS88] from energy identities, and were applied by [AA88] and [OT92b] to obtain

results on the aforementioned convergence. The purpose of the present chapter is to
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obtain improved uniform bounds in the d = 1 case in order to enhance the convergence
results of [OT92b] in this context. Two methods will be explored for obtaining such
uniform estimates.

The first method, via local smoothing properties for the Schrodinger group eitaﬂ%
and uniform estimates for the inverse reduced wave operators (edy + 83;)_1, is sum-
marized in §1.1.1 and detailed in §1.3. Earlier work in this direction was done by
[KPV95]. The main result of this chapter (Prop. 4) falls into this category, and is
an extension of the [KPV95] result to large initial data. The main advantages of
the local smoothing approach are that (1) it applies to both DZS. and FZS,, and
potentially even other, more general nonlinearities; and (2) it yields uniform bounds
on a smoothing estimate, which has applications to a sharpening of the convergence
ue — v results obtained by [OT92b].

The second method, via energy identities, is summarized in §1.1.2 and carried out
in detail in §1.5. The method is very similar to that appearing in [AAS88], although

there uniform bounds are obtained on ||u(t) |n(t)]] k1 under the assumption
x

[F7
(ug, ng,n1) € H¥2 x HEH1 5 (HR 0 H—1), whereas we shall want to avoid assuming
extra regularity on the initial data, and to this end carry out bounds on |lu(t)]] Hk
Hn(t)”Hg;;,l under the assumption (ug, ng,n1) € H¥ x H*1 x H¥=2 Moreover, we
drop the assumption n; € H~!. The main advantages of the energy method are that
(1) ug is not required to belong to a weighted L? space; and (2) ng and nq are required
to belong only to HE1 and Hk_Q, respectively, rather than Hk_% and Hk_% as in
the local smoothing approach. Its main disadvantage is that it only applies to FZSe,
and not to DZSe.

The applications to the convergence ue — v are summarized in §1.1.3, and detailed
in §1.4. Whether or not the method of [GTV97] itself can be modified to yield uniform

in € estimates remains a topic for future investigation.



1.1.1  Uniform estimates via local smoothing

[KPV95] prove a uniform in € estimate for the solution to the inhomogeneous wave

equation

sup Hvﬂ?De_lFHLQ(QaX[O,T]) < CZ ||FHL2(QQ><[0,T]) (L.7)
aeZd o

where (), is the unit cube centered at the lattice point o € Zd, and c is independent
of e. They also use the smoothing for solutions to the inhomogeneous Schrodinger

equation

sup
aeZd

t . /
Vx/ ez(t—t )Af(,t) dt/
0

<c f
L2(Qax[0,T)) g“ 122(Qax[0.17)

to obtain

Proposition 2 ([KPV95]). Letd > 1. Then 3k > 0,m € Z*,6 > 0 such that for

any

1 3 k43
(ug,ng,ny1) € H” ﬂHkO(\x]mdx) x H"=2 x HF=2 = Xsm, ko= {%]

with ||(ug, no,n1)| x,,, <6, then 3T = T(||(uo,no,n1)l x,,,) > 0 independent of

e <1, and a unique solution (ue,ne¢) of ZSe satisfying the uniform in € bounds

1

k+3g
ko +5up 1D Zuell (g, o) < €

m
HUGHL%HQIg + [[f] ueHL%OHx

Let us analyze the 1D case more carefully. Using the inverse directional derivative

operators
t/e

Piz(x,t) = / z2(x Fs,t—es)ds
s=0

we have

T+
n = —3Py0y(uit) + $P-0p(utd) + ing(x — ) + Ing(z + 1) + %e/
X



Then replace the uniform in € estimate (1.7) with the 1D uniform in e estimates

HPiZHLgOL% < HZHL}CL%
Also use the 1D sharp Schrodinger smoothing estimates

1/2 ;tH2
102 gl o 2 < eluoll

HDx / =0 1)
0

Following the [KPV95] method, we can prove

<
g = CHfHLglCLQT

LL2,

Proposition 3 (Modified [KPV95)). Let k > 4, (ug, ng,n1) € H*NH((x)2dz) x
1 3
H*2 x H*" 2, and assume [{(z)uoll ;2 < %0 Then there is
xT

T = T([luoll g !|no!|Hk_%, HmIIHk_%) >0

(independent of €) and a solution (u,n) to 1D ZS¢ on [0,T] such that Ve, 0 <e <1,

1/2 5k
ol e g+ 10220l o+l g yir < €

with ¢ independent of €, but depending on the norms |[ug| g, [Inoll , 1. [lnall , 3.
H" 2 H" 2

The main result of this paper is the same conclusion without the smallness as-
sumption ||{z)ug|| 2 < 1—10 To prove this, we adapt a method previously developed
by [Chi96], [KPV98] to treat NLS equations having an order 1 nonlinearity. We in-
troduce a pseudodifferential operator B with symbol b(z,§) € SV depending on a
constant M and satisfying

e M < bz, &) < eM

and apply it to the k-th derivative of (1.3) in the form

Ou = i02u + %iupiax(uﬂ) —ifu (1.8)



where

J?—l—g
Favt) = frofe+ 1)+ bmo(o = D+ e [ ) dy
T

The commutator [B,i02] generates a first order term that is negative and whose size
can be controlled by the constant M. In fact, by selecting M = ¢|| <x)u0||L%, this com-
mutator is sufficiently negative to absorb the first order terms B@ﬁ(i%iupiax(uﬂ)).
The key obstacle in showing this is that [B, P+] is not of lower order in x (nor can
it be made small by any other device). It would instead suffice if the composition
BPy B! were bounded independently of M; however, this turns out to be false as
well. This problem is resolved by observing that BP+B~1 is in fact bounded inde-
pendently of M if we restrict to certain spatial frequency ranges, and that BPT B -1
is bounded independently of M on the complementary spatial frequency ranges. The
“error terms” obtained by replacing P+ by —Pjf are handled using positivity prop-
erties of the operators U+ = Pt + P, and using once again that u solves (1.8).
Specifically, we make use of an “extra smoothing” property of solutions of (1.8).
Since 0y ~ i@% in the Schrodinger component and €0y ~ +0, in the reduced wave
components, we expect that 68% ~ Fidy, or in other words, by absorbing an €, we
can convert a second-order term to a first-order term. It turns out that in the needed
spatial frequency zones, the second order term we consider is equivalent to a negative
first-order term that can, therefore, be dropped. To make this a bit more precise,
suppose z solves Oyz = i@%z + first-order terms, and K is an order 0 operator (in x).
Let L/_\z(f, t) = X¢<02(§,t). Then, with ~ meaning “modulo order 0 terms or order

1 terms with an e coefficient,” and (21, z9) = fOT fx 21729 dx dt,

(L_U40:Kz,0:Kz)

~ —e(L_ Uy Koz, K=2)
+e(L_U4KiOz, Kz)
= (L_Uy(e0y) Kz, Kz)
= —i(L_Ut0: Kz, Kz)

— (L_U.DY?K2 DY K2)

Q
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We started with the positive second-order term e(L_U1 0, Kz, 0, K z), and ended with
the negative first-order term —<L_U+DJ}/2KZ, DJ};/QK,Z)7 and thus the original term
is (effectively) zero. Similarly, with I:L\z(g,t) = xe>02(6: 1),

(L U_0yK 2,8, K2) ~ —(LU_DY?K = DY? K 2)

The result is

Proposition 4 (Uniform local smoothing for FZS. and DZS.). Let k > 4,
1 3
(ug, ng,n1) € HY N H((x)2dx) x H*=2 x H*"2. Then 3T > 0 with

-N
T~ (exp(H<flf>uoHH%) +lluoll i +linoll 1+ [lma k_%>
Hy Hy

(independent of €) and a solution (u,n) to 1D ZS¢ on [0,T] such that Ve, 0 <e <1,

_1Di/2

k
lll oo e + 1142 Opull p212, < clexpell(zjuoll gp)lluoll g (1.9)

with ¢ independent of €.
We remark that the proof of this result appearing in §1.3 can probably be adapted

to yield a bound for any given time 7" > 0, provided 0 < € < ¢, where

€0 = ol [luoll g Ix)uol g lImll 1o llmall 3)
H H

1.1.2  Uniform estimates via enerqy identities

We shall assume that 0 < € < 1. The conservation of energy identity [SS79] is

at/ Val? + 32 £ nfu? £ 13> =0 (1.10)
x



where v : R? x [0, 7] — R? 2 is such that
on=V-v 0w = V(n + |ul?)
nfy_g =m0 Vv _g=m

The top row of signs applies to FZS¢ and the bottom row to DZS¢. The introduction
of the variable v requires the assumption n; € H~!. By the Gagliardo-Nirenberg
inequality applied to the term | . n]u]z, we obtain constant in time, independent of e,
bounds on Hu(t)||H%, ||n(t)]|L% for (u,n) solving FZS, with initial data (ug,ng,n1) €

H' x L? x H™1, in the following cases:
e d =1 (with no further assumptions)
e d=2and [[ugl ;2 small.
xT
o d =3, with [[ug| ;1 small, H”OHL% small, and [|ny| ;-1 small.

[GM94] give a partially conserved quantity that avoids the need to assume n; € HL

Decompose nj into low and high frequencies as ny =njy, + nig.
at/ (Vul? £ 1n? + nju)? + 12| = / nyr(n + ui) (1.11)
T T
where v : R% x [0, 7] — R? is defined by

On=V-v+ny 0 = V(n+ |uf)

”}tzo =" v"/}tzo =MN1H

Equivalently,

8t/\Vu]2j:%(n+]u!2)2$%\u\4+62\u\2:/nlL(n—l—uﬂ)
i i

2. Note that v = v, does depend on ¢, although we are following our convention to
suppress this subscript.
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In this form, the identity should be compared with the conservation of energy identity
for NLS:
o [ 1Vul % 3lul’ =0
x

where the top sign is for FNLS and the bottom sign for DNLS. By the Gagliardo-
Nirenberg inequality applied to the term [, lu|*, we obtain the bounds Hu(t)HH% <
c(t), Hn(t)HL% < ¢(t), with ¢ independent of €, for (u,n) solving FZS. with initial
data (ug,ng,n1) € H! x L2 x H1, in the following cases:

e d =1 (with no further assumptions)
e d=2and [[ugl| 2 small.
T

We remark that due to the — signs in (1.10) and (1.11), we are not able to obtain
any information for solutions to DZSe.

For d = 1, we prefer to work in reduced wave variables. As in [GM94], decompose

ny =n1g +nqz7, and let

i€
Then n4 and n— are defined (see §1.5) so that

(€0y £ Op)nt = q%@x (uw)
and n =n +n_ + f, where
1 y—a:—l-%
fat)=he [ “nustdy
Y
In these variables, we derive the identity, for 1D FZS,
O / |8mu|2+(n++%ua)2+(n_—i—%mj)z—%|u|4—|—fu12 = %/[nlL(x—l—%)—i-nlL(x—%)]ua

from which it follows that ||u(?)[| ;1 < c(t)t/2 and [n(t)|l 2 < cft), thus improving the
xT x
bound on ||u(t)[| ;1 over that obtained from (1.11). In dealing with the (ug, ng,n1) €
T
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HF x gF=1 « g2 setting, it appears necessary (if you want to preserve uniformity

in €) to apply Gronwall’s inequality to treat the terms

t
Re z/ /a’;—l(ni + Suw) dyu Ok a (1.12)
0 Jx
and thus we are only able to obtain exponential in time bounds. This result is:

Proposition 5 (Energy estimates). Suppose k > 3, (ug,ng,ny1) € HF x HE=1 %
H'=2 Then ¥ T > 0, there exists eg = €o(T), lwoll g, Inoll e—1, Inall e—2) such
that Ve, 0 < € < ¢q there exists (u,n) solving 1D FZS¢ on [0,T] such that

()l g + I (1] -1 < ch(t)

where ¢ depends on the norms |lug|| g, (70l k-1, and ||n1|| yr—2 and is independent

of €, and h(t) has exponential growth in t.

However, € dependent bounds can be achieved with a ()" bound, for some m €

R*. This is obtained by using integrability of the term
P
Re / 05 (vuu) 0w (1.13)
x

and reducing the order of (1.12) by introducing a factor % The integrability of (1.13)
is limited to the case d = 1. For d = 2, [CS02] obtain a similar result, using a method
developed for Hamiltonian systems by [Bou96] and subsequently refined by [Sta97].
It remains unanswered, even for d = 1, whether or not a (¢)"”* bound holds uniformly

in ¢, for k > 3.

1.1.3 Convergence to NLS

In §1.4, we shall apply the uniform local smoothing estimates obtained in §1.3 to
prove results on the convergence ue — v as € — 0, following the method of [OT92a].
We begin here by summarizing some earlier results.

[AA88] obtained results for d = 1,2, 3, and we quote their result in the case d = 1.
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Proposition 6 (Case d = 1 of [AA88]). If (ug,ng,n1) € H+2 x g1 x (HF N
H™Y), for k >3, then 3 h(t) € L (RY) such that ue solving 1D FZS, satisfies

loc

lue = vll g, < R(B)e!/

Their method is to derive an energy identity in ue — v from the equation solved

by ue — v, obtained by taking the difference of (1.3) and (1.6):
A (u—v) = i02(u —v) —i(n + vi)u + i(|Ju>u — |v]?v) (1.14)

Thus, [AA88] obtain convergence at rate €1/2 with two derivatives of separation be-
tween the space H k42 in which the initial data uq resides and the space H k in which
the convergence ue — v takes place. They do not assume that the initial data belongs
to any weighted spaces. By introducing the modifications of the type appearing in
§1.5, we could remove the assumption ny € H~1 in Prop. 6.

[OT92b] build on the method of [AA88] and obtain, by introducing weights on
the initial data, results for d = 1,2,3. The [OT92b] result in the case d =1 is:

Proposition 7 (Case d = 1 of [OT92b]). If (ug,ng,n1) €S x S x SN H™L, then
VT >0, 3eg>0andc=c(T) >0 such that if 0 < € < €, then ue solving 1D FZS,
satisfies

e = vll poo g < ce (1.15)

in the noncompatible case ng + ugtg # 0 and
2
e =il oo iy < ce (1.16)

in the compatible case ng + ugtg = 0.

Once again, by introducing the modifications of the type appearing in §1.5, we
could remove the assumption n; € H~!, but only for (1.15) and not (1.16). [OT92b]
borrow the uniform bounds on u provided by [AA88| but carry out a separate analysis

of (1.14). By refining their argument in parts and introducing some power tools of



12

harmonic analysis [KPV93b] to obtain maximal function estimates, we can reduce

the assumptions on the initial data to
(ug,ng,n1) € (H* 20 B ((2)%dz)) x (H*' n LY x (H*n L)
for (1.15) and

(ug,ng,n1) € (H*3 0 HY((2)2dx)) x HM?2 x ¥

and 3 v € L' such that 9, = ni

for (1.16). If, instead of invoking the uniform bounds provided by [AAS88], we instead
use the local smoothing estimate Prop. 4, then we can reduce the assumptions on the

initial data further to
1 1
(ug,ng,n1) € (HF 10 HY((2)2d2)) x (HM 2 nLhYy x (HF2nLl)  (1.17)
for (1.15) and

3 1
(g, no, 1) € (H* 20 H ((2)2dz)) x H* 2 x gF+2 )
and 3 v € L' such that d,v = ni .

for (1.16). Thus, in the noncompatible case, we obtain convergence at rate € with
one derivative of separation between the space H k+1in which the initial data uQ
resides and the space H k in which the convergence u. — v takes place; and in the
compatible case, we obtain convergence at rate €2 with two derivatives of separation
between the space H5+2 in which the initial data uq resides and the space H kin
which the convergence ue — v takes place. [OT92b] show further that the rates e and
€2 in the noncompatible and compatible cases, respectively, are optimal.

An additional bonus of invoking the uniform bound Prop. 4 in place of the bounds
in [AAS8S8] is that convergence can be obtained in the defocusing case as well. That

is, we obtain the convergence (1.15) and (1.16) for u, solving 1D DZS, and v solving
1D DNLS, under the assumptions (1.17) and (1.18). To summarize, the result is:
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Proposition 8 (Convergence of 1D ZS, to 1D NLS). For given (ug,ng,ny), let
ue be the solution to 1D ZS¢ with initial data (ug,ng,n1) on the time interval [0,T]
given by Prop. 4, and let v be the (global) solution to 1D NLS with initial data ug. In
the noncompatible case (ng + ugug) # 0, if

1 1
(ug,ng,n1) € (H* 10 HY((2)2d2)) x (H* 2 nLhY x (HF2nLY)  (1.19)
then
—1~1/25k
)~ Dx %3 (e =) 2 + e — vl ey < ce
where ¢ depends on the norms of the spaces in (1.19). In the compatible case (ng +

uptg) = 0, if

3 1
(ug,ng,n1) € (H*2 0 HY((z)2dw)) x H* 2 x H¥+2 0
and Jv € L' such that Opv = ni .

then

—111/2 4k 2
™" D220} (e = v}l .3, + e = vll e s < ce

where ¢ depends on the norms of the spaces in (1.20).

1.2 Definitions and basic properties of operators

All statements with regard to adjoints and positivity of operators (by which we mean

nonnegativity) are meant with respect to the inner product

T
(z1,29) :/tzo/le(x,t)@(x,t) dx dt

For a given T' > 0 and € > 0, define

t/e t/e
Piz(x,t) = / 2(x Fs,t —es)ds Uxz(z,t) = / z(x Fs,t —es)ds
s=0 s=(t-T)/e

(1.21)



These operators have the properties
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(€0y £ 0z ) Prz(z,t) = 2(x,t) Piz(x,0) =0 Oy Pyz(x,0) = %z(m, 0)

A brief calculation shows that Pf = —P4 + Uy, Ul = Uy, and

0
Piz(z,t) = ﬁ . z(x Fs,t —es)ds

€

Let B be the order 0 in x -do with symbol

b(z, &) = exp [—M (/Ox<s>_2ds) sgn g}

where M > 0 is a constant to be selected. The symbol b(z, §) satisfies

e M < bz, 6) <M

Define L4 as operators in x by L/Jr\f(f) = szof(é‘) and L/_\f(f) = ngof(é‘).

. < mi Pt :
Lemma 1. (a) HPiZHLgOLQT < HZHL}:LQT, and similarly for Py and Ut

(b) We have the bounds
1
|BL+P+B ZHL%OLQT < CHL-FZHL}CLQT
-1
|BL-P{B ZHL%)LQT < CHL—ZHL}CLQT
1
|BL-P_B ZHL%OL% < CHL—ZHLJICL%

-1
IBLyP B 2] ey < cllLizll 2

up to lower order terms in x, where ¢ is independent of M.

(1.22)

(1.23)

(¢c) L+Uy = UyLy, LLPy = PyLy, L+ PY = P{ Ly, and similarly for U-, P—,

and P*.
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(d) Ux = Vixo<i<T, where
S$=-400

Viz(z,t) = / z(x Fs,t—es)ds
S

=—00

and @(5,7’) =d(er £&)2(&, 7). Hence (Utz,z) >0 and
(U2, 22)| < (User, 21) (U 22, 22) /2 (1.24)

Also,

(LaUqz1, 29)| < ([La]Usz1, 20) Y2 La)Us 29, 20) 2 (1.25)
(LaU_z1, 29)| < ([La]U—21, 20) YV {([LL)U_ 29, z9) /2 |

where [L+| indicates that the operator L+ can be either included or omitted in

that position. Finally,

[(L+Usz1,29)| < |21l pap2 122l p1 g2
T T (1.26)
[(LeU-z1, 22)| < llaall g p2 ll22ll 1 2

Proof. (a) follows from Minkowskii’s integral inequality and formulas (1.21), keeping

in mind
0<s<les0<t-es<t

EL<s<le=s0<t—es<T

EL <s<0et<t—es<T
(b)

BP{ B~ 'z(z,t) = /emgb(x,f)}ﬂ_B_lz(f,t) d¢ (1.27)
§

By Fubini:

tje . _—_
PiB=1z(¢t) = / e EB=14(¢,t — es) ds
s=0



16

Substituting into (1.27) and using Fubini:

t/e _ —
BP{ B~ z(z,t) = / /ez(x_s)fb(x, B 1z(6,t — es) dé ds
s=0J¢

Let b%(z,&) = b(x + s,£) and B® be the corresponding operator. Then

t/e ) o
BP B l2(z,t) = / /ez(x_s)gbs(x —5,8)B71z(6,t — es)dE ds
s=0 J¢

t/e
= / (B°B™Yz(x — s,t — es)ds
5=0

Similarly,
0

BPj;B_lz(x,t) = / . T(BSB_l)z(x —s,t—e€s)ds
5=

B*B~1 has symbol, modulo lower order,

T

b(z +5,)b 1 (z,€) = exp {M/ (rY~2dr6%(€)sgn ¢

+s

Ifs>0and >0, then[--] <Oandexp[--]<1. Ifs<O0and & <0, then[--]<0
and exp[---] < 1.

A similar calculation shows

t/e
BP_B lz(z,t) = / (BsB™1)(x + 5,1 — es) ds
s=0

and
0

BP*B 'z(x,t) = / (BsB™ Y (x4 s,t — €s) ds

g t=T

€

where Bj has symbol bg(x, &) = b(x — s,€). BsB™! has symbol, modulo lower order,

T

b — 5,€)b7 12, ) = exp [M | areosme

—S

Ifs>0and{ <0,then[--] <Oandexp[--]<1. Ifs<Oand& >0, then[--]<0
and exp[---] < 1.



(c¢) By Fubini, if L is any multiplier operator with symbol m(§), then

~

, t/e
LP;z = / eEm (&) [/ z(x — s,t — €s) ds] (&) d¢

=0
t/e
:/ / (1= (€) 2(¢, £ — es) dE ds
t/e
:/ (Lz)(x — s,t —es)ds = Py Lz
s=0

(d) Since % <s< = 0<t—es <T, wehave U+ = Vixg<i<7. By Fubini,

AN+

Ve n = [ e ds
Again, by Fubini,
Viem) = [0 7 ds = aler + )36,
We now prove (1.24). For given z1, 29, set w;(x,t) = xo<t<7%j(7,t). Then

(Ugz1,22) :// Viwy (z,t) wo(z,t) dz dt
tJx

:/éﬂ&@ﬂ@@ﬁ@m

=1/dq(§—§)aa(a—5)d£
é’ € €

Apply Cauchy-Schwarz,

(Ut 21, 22)] <jf[1 (/ij (&-i) (57 f) 5)

= (Usz1, 21) V(Ui 29, 20012

1/2

17
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Now we prove (1.25). From Lemma 1c and (1.24),
[(L4Utz21,29)| < (L+U42q, 21>1/2<LiU+22,22)1/2
But, by (1.24) again
(LiUyz1,21) = (Us(Liz1), 21) < (LeUqpzq, 202Uy 21, 21) /2
and hence

<LZ|ZU+217 Zl> < <U+Z17 Zl)

(1.26) is a corollary of (1.25) and Lemma la. O

1.3 Uniform estimates via local smoothing

We start with the solution given by [GTV97], cited in Prop. 1, and prove uniform
bounds for it.

The goal of this section is to prove Prop. 4.

Proof. We shall assume 7" < 1. For convenience, we shall only write out the compu-
tation for 1D FZS¢, although it will be evident that it also applies to 1D DZS,. We
can write 1D FZS¢ (1.3)-(1.4) as

Ou = i02u — intu — ifu (1.28)

where
ny = IF%amPi(uﬂ)
and

J?—FE
Favt) = drofe -+ 1)+ bo(o = D+ e [ ) dy
T

Note that n =nqy +n_ + f.
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1.3.1 Preliminary estimates

In this subsection, we pause to establish some elementary bounds that will be needed

in the proof of Prop. 4.

Lemma 2 (Weighted norm estimates).
ol ey < ool + Tl (1.20)
Yl (ol + T2l )
Proof. The equation Oyu = i@%u — inu implies
Oy (zu) = i0%(xu) — 2i0pu — in(zu)
Estimating by the “energy method,”

()25 = rol2g + 2Re (<20 — in(eu), 20
xT x
= ||xu0||%2 — 4Re i(Opu, zu)
x

2
< llzuolizg + cTllOwull ooz loull oo 2
Replace T by T’ and take the supremum over 0 <77 < T,

o < |lzugl2y + T Opul (1.30)
T L.’K

2
L¥L2

Observe that dyu = i(()%u — inu implies

Oy (20pu) = i02(x0pu) — 2i02u — i(Oyn)(zu) — in(xdzu)
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Estimating by the “energy method,”

|l20au(T)]I}

||L2 = ]|x8xu0||%2 + 2Re (—2i0%u — i(Dpn)(zu) — in(xdpu), Oru)

2 2
< ll2duuoliyz + Tl0zul oo 2 lwduull oo 2
+ T 0enll oo 2 lvull Lge rge w0l o 2
Use the interpolation estimate

1/2
Il e < Nl 100 (o) o

to obtain
2 2 2 21192 4 4 2
HxaquL%)LQ < ||ZE83;U0H 2 + HUOH 2 +CT ||a UHLOOLQ +CT ||a$nHL%>L%quHL%OL%
(1.31)
(1.30) and (1.31) together give (1.29). O

Lemma 3 (An estimate for the maximal function).
j 7\1/2 1/2
> okl 3 e < AT 2l g1 + T 0l bl (0192

Hapull 200 < ATV (@)ug | 1 + eT(T >1/2(|IUI|LooH2 1l oo gl e)ull oo pry)

(1.33)
Proof of claim. Theorem 3.1 of [KPV93b] provides the estimate
ito3 1/2
€% uoll 3 o0 < (1) llugll g (1.34)
and consequently
! 1(t—t / 1/2
| ety <ol Ry (1.35)
0 L3LY e
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The integral representation for ZSe is

u = 0%y — 2/ ¢i(t=t)0z (nu)(t) dt! (1.36)
0

For 0 < j < k — 2, apply &, to (1.36) and estimate with (1.34) and (1.35) to obtain

' 1/2)147 1/2)197
030l 3 oo < () 20kl gy + (1) 20k ()| 3 g1

1/2 1/2
< ofT) 2ol s + DTN g il g i

To prove the second estimate,
Op({)u) = i0F({w)u) = 2i(Dp (@) dou — (95 (x) Ju — infa)u
which has integral equation form
(@Yu = e (Z)ug + /O =0 (0 ()t — i(0 )t — il () d
Applying the estimates (1.34) and (1.35)

[()ull e < e(T)V 2l @)uol gy + T (Y210 ()0t o 1

+ ()02 )l o gy + TN )] o g
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Lemma 4 (Bound for n). For k > 3,

U2

||a]£_1ni||L%oL% < CH<$>U||L2L00H< > akuHLQLQ (1.37)

+ clluoll g 1l oyt + T2 w2

LwHk
k—2
1
+ T2 Il oo 3 HafuuLzLoo
7=0

k-1 k-1 -
10 fHL%L%fSﬂV%: thg-+€W% nﬂh@

and hence, for 0 < e <1,

10 k
Il g1 < 2lmoll g +2<T>Hn1HH§_2 +ell(@)ull  poelltn) ™ D “OFull 12,2
2k+1 2k—
1/2 1/2
+e(T)luoll 3 uuuLooncT/ (D)2l
k—2
1
T 2l oo e D 19l 3 0
7=0

(1.38)
Proof.
0k ()25 = 30 ny, 010k ~Hn)

Since 905 n, = —e1okn, + %6_18];(@4@),

[Chd +(D)]72 (O g, —okng + Lok (ua))

_ 1
2
1
—‘5j<3k ", O (un))

Since OF~ln, = 20kP+(uu)

|25~ g (T)117, <P+a’f<uu> ok (ua))



Writing Py = (Pt — %U+) + %UJr and using that Py — %UJr is skew-adjoint,

_ 1 _ _
185~ (D)2 = 16U+ 05 (i), 05 (ut))

Proceeding,
_ 1 1, _
|0y (D)7 = ~(0pU 405 (ut), 0% ()
= —(0U40y (u), 0 (u))
= / U0k Y (wa)|,_ 0k (wa)|,_, do
X
— | Uy (i) |0 (ui)|,_p d
+0z (ut)|,_pOy (utl)|,_p dx
X
k—1/, - ki -
+(U40; " (utt), 9,0y (ut))
Now
U 0F (ui) (w,1) = — Uy ety ™2 (u) (x, 1) — 05~ (uit)(x —
+ oy () - L+ L)
Hence,
105 (T)|2 5 = T+ T+ 111
where

IT=

Il =

I = (U405 (u), 8,0F (ui))
—6/U—i—ata]xf_Q(ua)}t:Oalfg(ua)’tzO dx
X

+ 6/ U+at3§_2(“a)}tzTalg(“m}t:T dx
X

- /x 2 (i) (z, 0)0 (uir) (x, 0) da
+ / k=2 (wa)(zx + L, 7)o (wat)(x, 0) da
+ / 2 (ui)(z — L, 0)0% (wt) (z, T) da

€

- /x 2 (i) (z, T)OF (wt) (x, T) du

t

€’

0)

23

(1.39)
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To address Term I, use d(utt) = mé)%u — iu@%a, (ﬁ?(f) = i(sgn f)f(f)),

2

k—2

1| < Uy (@d%u + udka), H Dy (udku — udka))| + T ZuaﬂuHLQLoo HuHLOOHk
7=0

s k—2 2
k 2
< ||Dy/ " (aogu)||3 1112 +cT ZH@JUHLQLOO HuHL%oHJ;g
7=0
by Lemma 1d, (1.26)
k-2 2

1/2

2 k '
< ellw)ullpg el 2) ' Dy "0l 1212 +cTIIU||Loon ZH%UHL%L%o
j=0

where above, we have used the following Leibniz rule for fractional derivatives

D20 DY) 9 Du s < e | S 1080l | g + 102271
7=0

1/2

with f = HD,, (9k_1u and ¢ = 4. Turning to Term II,

-2, k(i
‘H’ < EHU—i—ataa: (uu)HL%OL%HaJ)(uu)HL%OL%

k=2, - k() -
< T30~ (i) e 2 105 ) 0

< CTHuHLoon

Turning to Term III,

E1( k=1, - 2
1] < |05 (ua)|,— OH 2 + 110 (wi)|,_pll7 2
k— 1 k— 1
+2Ha (ut ’t THL?Ha uu ’t 0||L2

k— 1 k— 1 =
< 2|05 (uw ’t OH —i—2||(9JU (uw ’tzT”L%
2k+1 2k—1

< clluoll, £ HuHLOOHk
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by interpolation and L? conservation. Substituting into (1.39), we obtain

k—1 2 2 —111/245k 12 4
05 n (D)7 < ellfe)ullFy oolte) Dy OrulTapa + Tl
2
k=2 2k+1 2k—1

2 j “k k
Tl ;)II%UHL%L%O +eluol gl %

There is a similar bound for |95~ 1n_(T )Hiz It is evident from the definition of f
x
that

k—1 k—1 k—2
51 H(T) 2 < 2105 ol 3 + €l
It remains to bound ||n[[;2. We use a reformulation of 1D FZS, derived in §1.5,
x
n+uti = LePyoy(ui) + Py (ut) (1.40)
1 £y, 1 b1 [T

+ 40+ ugiio) @ = £)+ 0+ o)+ )+ de [ mw)dy

Upon applying the estimate e[| Prw(T)[| ;2 < [|wl]| 1 ;2, this gives
z T
-+ ) (Tl < WUl 1 3 + mo -+ woioly + Tl 2

We complete the estimate by using Oy (u@i) = it 02u — iu 0. O

Now we will collect the results of this subsection and put them in a form that we
can apply directly, later. We shall use the notation p(-- ) to represent a polynomial
expression in the listed quantities. We assume 0 < 7" < 1. Plug (1.29) into (1.33) to

obtain
)l 3 < ell@uoll gy + Tolul e gz Il 1) (L41)

Plug the (easily obtained from (1.40)) estimate

2
Il gy < Imoll gy + Il + 1l
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into (1.41) to get

@bl 2z < ell(@uoll gy +Tp (HnoHH%, Il 2. uuuL%oH%) (1.42)

Now plug (1.42) into (1.38) to obtain

—~1pl/25k
[ —— p(H@)UoHH%, ol 1 Il 1)~ D 20wl
k-2 (1.43)
ey 3 ua%uHL%L%o)
Plug (1.43) into (1.32) to get
E—2
> ||<9§:UHL%L%o < clluoll g1 +Tp(---) (1.44)
7=0

where p has the same dependence as in (1.43). We shall apply (1.42), (1.43), and
(1.44) in the argument below.

1.3.2 Diagonalization

The aim of this subsection is to prove (1.65) below. We shall use the notation p(- - -)
to represent a polynomial expression in the listed quantities. Beginning with the

representation (1.28) for 1D FZS,, namely,
Opu = i02u £ Liudy Py (utt) — iuf (1.45)
apply 6’;, and let y = Glxcu. Then

Oy = i@%y + %iu@xpiﬂy + %iu@xpiug — i@lg(uf) + 91 (1.46)



27

where
g1 = —i Z Cj%lni(?%?u + %z Z CjuPi(%lu%Qﬂ)
J1t+jo=k J1tJja=k+1
J1<k—1 1<
Ja<k
Note
/ k-2 2
< 71/2 1/2
H91HL2TL§, <c HniHL%ng/g—1HUHL%9H§ + T jgo H%UHL%L% HUHL%QH;g

The goal of the diagonalization is to eliminate the i%iu@xpiugj term from (1.46).

Let us drop the P_ terms for convenience. Define the operator
Viz(z,t) = z(x — %, 0)
and also the operators (8;]%]”(5) = —5_2X|§|2Rf(5))
— 1 —2_
S+y = —qudx Prud 3y
-1 —9_
Q+y = —quVyud py
Note that Sy is of order —1 and @)+ is of order —2. Let
z=y— 54y — Q¥

We then compute

hSiy= — i(@tu)axPjLu@;]%g - %6_1u3xV+U3x_]%37 - iuaxpjt(@tu)@;]%@
— ud, Prud 3 (0,7)

Q17 = —HOu)Viud, 3y + T tudeViud, 2y
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Thus:

Oz = Oy — 0S4y — Q1Y
= Oy + 1uds Prud, 307 + go (1.47)

where
92 = +1 () 0y Pyud 25 + Judp Pi(0pu)d 37 + 1(0pu)Viud, 27

We have the estimate:

1/2 '
H92HL2TL% < T H@tUHL%L%o !%UHL%L% HUHL%OHg—l

1/2
+ T fu oo

1
2|
=0

1 .
>0kt gip | ol e
J:

1/2
+ 2| 9yul| o pgellull Lo rgo ul

L%Hﬁ*l
/ k-2
1/2
<P g1 32 100y ol
j:

Substituting (1.46) into (1.47),

Oz = 102y + %waxmay + %iu@xP+ug — ik (uf)
+ 1udy Prud A(—i0%5 — Yiud, Prug — Yiad, Py + 0k (af) + ¢1)
+91+ 92
= i@% — ii@%u@xp+u8x_]%g — iza:%uwua;}%y + %iu@xPJrﬂy + %iu@xPJrugj
+ udy Prud (—i0%5 — Yiud, Pyug — Yiud, Py +i0k(af) + 1)
— 05 (uf) + g1+ g2

= i0%2 + Liudy Pray — idk (uf) + g3
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where g3 = g4 + g5 and

g1 = —3i02u0y Pyud) 3y — 1iudy Prud 3057 + Siud, Pyug
g5 = — 3i02uViud, 3y — $iudy Prud 20y Pyuj — $iudy Prud, fudy Py iy
+ %z’uaxP+u8;]%8§(a )+ iuaxP+u8; 1%?1 +91+ 92

Note that g4 is the combination of three first order terms that sum to an order 0

term. In fact, since
L iudy Prud? g0 2y — Yiudy Prud 2025 + Yiudy Prug = —iud, P .
10z Prudy 0, gy — 1iudy Prud, g0y + giudy Pruy = —3iudy Pru(X|¢|<R)Y

we have

3
1/2 2 1/2 '
oz sz < T2 Rl g+ T | X 10%ulszie | Wil e
]:

(1.48)

For g5, we have the estimate

1
1/2 1/2 '
bl =+ T g+ 1 | 210l | Il
1 ) 2
1/2
e S Wbz | Vol
j:
2

1
L ZuagcuuL%L%o 1\ ol a2 + g2l 2 12

=0
/ k-2
1/2
< P2 | X 100l g g Vg 1 g
j:

(1.49)
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For temporary convenience, we shall set G = %iu@xPJrﬂy — zﬁf(u f) and thus
Oz =022+ G+ g3 (1.50)
Applying B to (1.50), we obtain
8Bz = iBd%z + BG + By (1.51)
Direct computation from the symbol b(x, ) for B shows
B2z = 02(Bz) 4 2iM(z) 2BDyz + Ez (1.52)
where E is an order 0 symbol. Substituting (1.52) into (1.51):
Bz = i02(Bz) — 2M () 2BDyz + BG + Ez + Bgs (1.53)
By the fundamental theorem of calculus:
HBz(T)H%% = HBZ(O)\@% +2Re (B2, Bz)
Substituting (1.53),
HBz(T)Hi% = || B=(0) y@% + 2Re (i02(Bz) — 2M () "2BD,z + BG + Ez + Bgs3, Bz)
and therefore

|BAT) |2, =I1B2(0))2

5 —4MRe ((z) 2BD;z, Bz) + 2Re (BG, Bz)
v (1.54)

2
+ (D)3l 3 131202 13 + DI 1o
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We now convert (1.54) to a similar statement with y in place of z. Using that

z=y— S+y — Q+y, we find:

— 4MRe ({z) 2BD,z, Bz)
— —4MRe ({z)"2BD,y, By)

) (1.55)
+4MRe ((z)"“BDyy, S+§ + Q+7)
+4MRe ((z) " ?BDy(S+7 + Q+7), Bly — S+7 — Q+7))
Using that:
9 2
- i ,

102545l 572 < T2 | D 10%ul g pec | el oot

J=0 (1.56)

e 1/2), 12
|3%Q+?JHL%L2T < T HUHL%H%HUHL%H%

1
)
j=0

1
>
j=0

we get:

2 ) 2
-2 _ _ 2
MI() 8D S15+ Q4] < elMT | gy + 3108wz | Il
]:

(1.57)

and

M|{{x)"2BDy(S+7 + Q+7), By — S+7 — Q+9))| (1.58)

9 4

] 2
<c(M)T |1+ HUHLOOHQ + HagZUHLQLOO ull? oo 1k
Tz e lp LT Hy
J:
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Applying (1.57) and (1.58) to (1.55):

— 4MRe ({(z)"2BD,z, Bz)

k—2
< —AMRe ((2)"2BDay, By) + c(M)Tp | 3 102l 2 oo Il o g
j=0
(1.59)

We also have
2Re (BG, Bz) = 2Re (BG, By) — 2Re (BG, S+y + Q1)
We handle the second term in two pieces:

|(Bu0y Pruy, B(S+7 + Q+7))|
1

1
1/2 ‘ o - _
< c(M)TY el 2 po > H&%HHL%L%O HUHL%ng > H@%(S+y+62+y)HL%L2T
j=0 j=0

and

(BOE(uf), B(S+3 + Q+9))]
1
< c<M>T1/2HuHL%OH51||fr|L%oH51 S 10h(S1g + Q+9)llz2 12
7=0

and therefore:

k—2

2Re (BG, Bz) < 2Re (BG, By)+c(M)Tp ZO H%UHL%L%O, HfHL%OHglg_l’ HUHL%OH;g
j:
(1.60)

We now claim, for 0 <¢ < T,

1
1B2() = By(t)] 2 < e(M) (@ + T) Pl g Il oo prt) (16D
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Noting that Bz(t) — By(t) = —BS+y(t) — BQ+y(t), to prove (1.61), rewrite:

BS1j(t) = — Budy Pyud, 2y(t)
= — 1 Bu(ed; + 02) Prud, {y(t) + Te Buds Pyud, 5y(t)
— 1 Buud, 3y(t) + 1 BuViud, 2y(t) + yeBuPyoy(ud, y(t))

Using EHPer(t)HL% < HyHLlTL% < THyHL%;L% to address the third term, we obtain
. (M), 1o
1BS:5(0) 3 < Sl o0 Il o2
+o(M)T |ull o pge (llull Loe rge + IOrull Leorge)
-2 -2
X (HatanyHL%oL% + HanyHL%OL%)

c(M)
R2
el gy (el e s+ Il 2l c-2)

IN

2
el Zeo oo Il oo i

Direct estimates give
. (M) 1o
1BQ+7M g = —pa lullzge pgollel poo g
Combining yields (1.61). Applying (1.59), (1.60), (1.61) to (1.54), (1.54) becomes:
||By(T)||i% S||By(0)||%% — 4MRe ((x)"*BDyy, By) + 2Re (BG, By)

+ C(M)HgsHLzTL%Hy -S4y — Q+§HL2TL%

_ 12
) T (1.62)
#3008 e Wl
j:

2
1
#o00) (3 +7) ol g Il )
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Applying (1.48), (1.49),

||By(T)||i% S||By(0)||i% — 4MRe ((z) "> BDyy, By) + 2Re (BG, By)

1 2 (1.63)
+c(M) T+TR+<ﬁ—|—T) p
where
k-2
=2 | L 10 ligaie I I et I e (1.64)

As we explain in more detail in §1.3.5,

_ _ 1/2
~4MRe ((z)"2BDyy, By) < M| (x) " BDY*5ul>y 5 + c(M)T]ul?,
bt T

Take R ~ T~Y5 >> 1, so that TR + (R_2 —i—T)2 ~ TY5(1 + T3/5)2. Replace
Yy = Glx‘;u. Then, with

G = Jiudy Pyudku — Jiudy P_udfu — idk (uf)

we have 12
1BOEu(T) |25 + M|[(z) ' BD: “05ul%5 5
x x =T
(1.65)

< [|Buo|[35 + |(BG. BIu)| + c«(M)T>(T)%p

with p a polynomial in the quantities (1.64).

1.3.3  Conclusion

The aim of this subsection is to complete the argument assuming:

Main Claim. With G = %iuax}qaa’;u — %z‘uaxp_aa’;u —idF (uf), we have

_ 1/2
|<BG,Ba’;u>|Sc||<x>ur|§%L%o||<x> 'BDy/ 8’£ur|§%L2T +e(M)TY?p  (1.66)
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with
— 1/2 e
p —p<HUHL%oH§, l{z) ' D/ "0 il g2, K@)ull 2, ||n||L%oH§—17
k—2
Hf” k— 17Z||ajuHL2LOO>
L Hy =0
and ¢ independent of M.
This claim will be proved later in §1.3.4, although now we shall assume it and

complete the remainder of the argument. As a consequence of (1.66) and (1.42),

(1.43),

1/2

(BG. Bofu)| < cl@uoly @) BD 0kl + DT (16)

where p is a polynomial expression

1/2 5k
p(H(@UoHH%,HnoH S Y[ E5 Di/%9 uHLsz,
H, 2 H, 2

x x

= (168)
Il e 3 ua%uHL%L%o>
J:

Setting M ~ [[{z)ugl| 1, applying (1.67) to (1.65), and applying (1.43) to (1.64),
xT
(1.65) reduces to

1/2

|BOW(T)]2, + a) " BDY 20kul2, 5 < [Bokuol2, +e(M)TY?p  (1.69)
T o z

with p as in (1.68). By the strict positivity of b(z, £), namely b(z, &) > e~ M and the

sharp scalar Garding inequality, we have

_ 1 2 1/2
M) D 0l s < ) T BDN *0ful g

Since, in addition, B and B~! are bounded operators on L? with norm eM , (1.69)
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implies

1/2

||8’£U(T)Hi% + (@) Dy " ul|7y o < 64M||8’£UO||2% + (M)2eHM T2y (170)

L212. =

Replacing T by 7" and taking the supremum over 0 < 7" < T', and adding the bound

(1.44), and also L? conservation of u, we obtain (1.9). O

1.8.4 Proof of Main Claim

Our goal is to estimate |(BG, Bd%u)|, where G = %iu@xPJrﬂ@Iju - %zuaxp_aa’;u —
0% (uf). We shall separately estimate

|{ Budy Py w0k u, Bo%u)| (1.71)
|{ Budy P—udFu, Bo%u)| (1.72)
|( Bk (uf), Boku)| (1.73)

beginning with (1.71). Decompose
uaxP+118]£u = u@xL+P+H(()]£u — u@xL_P_tﬂal;u + u@xL_UyZ(()];u
and consider the corresponding decomposition

(Budy Pyudku, Bo%u) = (BudyLy Pyudku, Boku) — (BudyL— Piudku, Boku)
+ (Budy LUy adFu, Bo%u)
=141 411 (1.74)

We first address Term I in (1.74). We use < and ~ to mean “modulo lower order

terms” arising from commutators. Rigorous treatment of commutators is deferred to



§1.3.5.

1| ~ [(u[BL4 Py B~YaBDY 0k, BDY *0 )|
_ 1/2 _ 1/2
< |L+aBDY k| Iz laBDY 2ok

2 1 1/2 Ak
< ellwyul}g o) BDA *0full 5

where ¢ is independent of M, by Lemma 1b, (1.23). We also have

2 1 1/2 ok
11} < clleyul}g oo )~ BDR "0kl 5

UHL}CL%

37

(1.75)

(1.76)

by Lemma 1b (1.23), and similar manipulations. We now consider term III in (1.74).

Let A = B*B. Note: In the calculations below, we shall often use the property

Oz (Aw) = Adyw + A'w, but omit the term A’w, since these terms are simpler to

address than those already present.

We have

11 ~ (L_ 0, Uy adFu, 1A u)
= (L_0,U4 0, (a0F 1), uAdku)
— (L0, U (8,0)0F Vu, uAdE)
— (L_Uy 8, (00l ), uAdE )
— (L_Uy 0y (0dF 1), (0p0) AdR )
— (LU 0y((0,0) 05 ), wADu)
and thus, by Lemma 1d, (1.25) and (1.26),

1| < JY2K12 4 o ZW“HL%M ||u||
7=0

(1.77)
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where

1 _ N
J = (U4 0r (a0 ), 0p(ay ™~ u))

K = e(L_Uy a A0y, A0k 1u)

The term J is treated by a calculation similiar to that in Lemma 4. The result is

2 ~1p1l/25k 112
k—2 )
+D HUHL%OH!;a ZO HagﬁuHL%L%Oa HnHL%)H!UCfl
J:

Now we analyze K. Using (1.28),

K = —Re ie(L_UuAd0F  u, u A0k 1u)
+ Re €(L_UaA Y nu), u A0+ 1u)
= — Re i(L_ Uy eds (@A ), uAdk 1)
+ Re ie(L_Uy (0;0) (A0 ), uAdET )
+ Re €(L_UaA Y nu), u Aok 1)

Apply Lemma 1d (1.25) and Cauchy-Schwarz to the second and third terms to obtain
K < —2Re i(L_Uyedy(uA0F 1), uAd 1)
+ (U (01) AV, (0y1) ADF )
+ (UL a A (nu), wAOF 1 (nu))
= —2Re i(L_Uy eds (@A ), uAdiT1u) + K
where

2 2 2 2
K1 < eTe(M) | 0|72 ;00 + Ul 72, soll7l oo rrk—1 [ ul| oo 17k
LEL L3L LR H; LPHy
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Continuing, we use that Uy (ed; + 0y) = —z(z — %, 0) + z(x — % + %,T) to get

K < 2Re i{L_Uy 05 (0 A1), uAdE 1)
— 2Re i((L_aAdktu)(z — L+ L T, aAdktLu)
+2Re i((L—aAdELu)(z — L,0), uAdE T ) + Ky
= 2Re i(L_ Uy, (@A), uAOE 1) + Ky

where
2

Ky < K1+ C(M)THUH%%QH%HUHL%H%
Continuing,
K < 2Re i(L_UyuAdFu, uAOF+1u)
+ 2Re i(L_Uy (00) AOF ~Lu, wAOE T u) + Ky
= 2Re i(L_Uy aAdFu, 0, (0 Ak u))
— 2Re i(L_Uy aAOFu, (9,1) Adku)
— 2Re i(L_Uy (8;0) A0 1w, (9,1) AD%w)

— 2Re i(L_Uy 0y ((8;0) AOF 1), uAdEw) + Ko

= 2Re i(L_UyuAd%u, 0, (4AIFw)) + K3 (1.79)

where, by Lemma 1d (1.26),
9 | 2
2
K3 < Ky + o(M)T 2% 92l 2150 | lelo0
j:

Remarkably, the first term in (1.79) is negative, i.e.

K < —2Re (U L_ DY (@Ad%u), L_DY?(aAdku)) + K3 < K3
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That is,

2112 2
K < eTe(M) (naxuum g el o ) ol e

2

2 ] 2
Tl ey [ g+ (AT _Zua%uuL%L%o Jul

2
< Te(M)p HUHLoon,Z !WUHLzLooa Il oo gyt (1.80)
7=0
Substituting bounds (1.78), (1.80) into (1.77), we see that Term III in (1.74) is

bounded as:

2

1/2
| < 7 2e(M)p HUHLOOHkvzHajuHLQLOWHnHLOOHk 1l
7=0

1 2
/ akuHLQLQ

(1.81)
Collecting (1.75), (1.76), and (1.81) as bounds for each term in (1.74), we have

1/2

(1L.71) < ell{@hulp oo )~ DOl o+ THAT) 2

with ¢ independent of M. (1.72) is handled similar to (1.71). Finally, we estimate
(1.73). Decompose

Bk (fu) = Budkf)+ Y ¢;BOMudRf)

and thus:

(BOE(uf), Boku) = (Budlif, Boku) + 3" ¢;(B(Oud2f), Boku)

J1tjo=k
Jjo<k—1

=I+1I
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Below, < means “mod lower order terms”. Rigorous treatment of commutators is

deferred to §1.3.5.

1| = (B(udyf), Boju)]

< ‘<H D1/2

1/2

051, (w)a B (z) " BDY *oku))|
OB ey H<w>uHL%L%oHB*< )" 'BD;

c(M)||Hz Dy

1/2
< ||HyD) / a’quLgLQ

1/2 1/2

-1 2 -1

2 2 2 2 1 m1/2 ok
< c(M)(ellnol|” , 1 +e Hmll k_%)HI(ﬂcWHL%L%OIK z)” " BDy / Oy u ||

: L2 L2
Hy Hy

11| < (B} ud? f, BOku)
1, 2 k
o(M)T 040 F1 o pa 10Kl e 2

2
< DTS g g 0

Hence

2 2 2 2 1 1/2
(178) < e (elinol? _y + il )+ el o) BDY 200l
H, 2 H, 2 =T
2
eI g 1101

(1.82)

1.3.5 Rigorous treatment of commutators

We shall need the following Leibniz estimates for fractional derivatives: if y = Glx‘;u,
ddy(x,t) € L2L for j = 0,1,2, 1 = 1,2, and &b(z) € L for j = 0,1,2, and
o(x) € HZ, then
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1/2 1/2
| L $10: Py oy — iDy *¢1 Pigo Ly Dy vl2.r2

2 (1.83)
<c| I Z’|39]«"¢l||L%L%O ||U||L2TH§
1=1,23=0
. ~1/2 1/2
| L6100 P} oy + D 61 PE b LDyl 12 1
2 (1.84)
<c| T1 X lodoulyzpze |l e
1=1,2j=0
IL— 102Uy poy — 910xL—Usdoyll ;2 2
T+
2 (1.85)
<ol TI X100l gy | llll 2
1=1,2 j=0
102 (b0f) = 0D3/* Fll 12 12 < ellbllge + 10:b]l 2501 £1 (1.86)
z v T2z = AAPloge woNLge N2 2 '
1L leLs Al zp2, < el 71 2 (1.87)

Indeed, assuming (1.83)—(1.87) hold, we explain how to rigorously carry out the

commutator argument in the proof of the Main Claim. Let
xz
bo(,6) = o |21 [ (5) 2]
0
so that BLy = b4+ L4+ and BL_ =b_L_. Then

BudyPruy = BLyudy Pyuy — BL_udy Pluy + BL_ud, Uty
= by LyudyPruy — b—L_udy P uy + BL_ud,Uyuy
=1+ 11+ III
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We shall address Term 1.

[~ by Lyudy Pruy

~ ibs DY *uPyaLy DYy by (1.83)
~ DY uPyaLy DYy by (1.86)
— iDY *ulby Py aBLy DYy (1.88)

By the proof of Lemma 1b (1.23),
—1
Hb+P+b+ ZHL%OLQT < CHZHL%LQT

with ¢ independent of M. Pairing (1.88) with By,

1/2 1/2
(D3 *ulb+ Pb;JaBLy Dy y, By)
S 1/2 1 2
= (ulb+ Prb7aBLy Dy %y, Dy By)
S 1/2 1/2
— (ulbs Peb;aBLy DYy, DY %0y Lay)

+ (ulby Py aBLy DY 2y, DY 0 L_y)

~ (u[b+P+bjrl]aBL+Dx/2 DY Loy) by (1.86)
u Yy
ulpy Pov7YaBLy DY %y b DY 2L
= (ulbs Pyb;aBLy Dy *y, BDY )

-1 1
§||<I>UHL%L2TH<$> BL+D.1? yHL%L%W) BDJ: yHL2L2 (1.89)
Moreover,
() ' BLy. Dy %y = (2)” 1b+L+D” ?

Ly (x)

Ly {x) b+L+Dg/ y by (1.87)
zL+(1:>_1b+L+Dx/ y+ Lo(z)"W_L_DY%y by (1.87)

Li(z)™
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and therefore, into (1.89), we can substitute

1 1
|(z)"'BLy Dy y!IL2L2 < () "'BDY yHLsz
Term II is handled similarly. For Term III,

(BL_ud,Utuy, By) = (L_ud,Uiuy, B*By)
~ (uL_0,Uuy, B*By) by (1.85)
= (L-Uyay, 0y(uB"* By))

and then proceed with the argument in §1.3.4. Next, we show that

1/2

~AM (@) 2B Dy, By) < ~M|[(#) By 1 + Myl (190)
T

Indeed,

B*(x)"?BDyy = (L1by + L-b-){x) (b4 Lt +b-L-)Dyy
~ Ly DY b ()20, L. DYy by (1.86)
+ L_DY?b_(\ "2, L, DYy
+ Ly DY 20, ("2 L_DY?y
+ L_DY?b_ (o "%_L_DY?%y
— DB (2)2BDL/?,

establishing (1.90).
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1.4 Convergence to NLS

1.4.1  The noncompatible case (ng + ugtg) # 0

Here, we suppose that k > 4,
1 1
(ug, ng,m1) € (H*T1 N HY((2)%dx)) x (H* 2 n LY x (H*2n L)
We then have the uniform bound on HUHL%?H];H’ I <x>_1Di/28§+1uHL%L% furnished
by Prop. 4. We shall establish convergence at the optimal rate € (optimal in the
noncompatible case ng + ugtg # 0) of the solution ue of 1D ZS, to the solution v of
1D NLS in H* ase — 0. Again, for convenience in exposition, we restrict to 1D FZSe,

although the result applies just as well to 1D DZS,. It will be shown in §1.5 that
1D FZS¢ can be reformulated as

dyu = i02u — %ieuP+8t(uﬂ) - %ieuP_at(uﬂ) — ifiu — i€ fou + iuful? (1.91)

where

fi(z,t) = §(ng +ugtip)(z + L) + 5(ng + ugtip)(z — L)

Subtract (1.6) from (1.91):

O (u—v) = 102 (u—v) +iu|u|> —ivjv|> — %ieufﬁ.ﬁt(ml) - %ieuP_at(uﬂ) —ifiu—iefou
(1.92)
Apply BOF (here, we may take M = 1 in the symbol b(z, €)), taking y = 9% (u — v):

By = iBO%y +iBk (ulul> —v|v|?) — Lie BOF [Py oy (uir)] — i BOY ( fru) — ie BOY( fou)
(1.93)

Direct computation from the definition of B gives

BO2y = 02(By) + 2i(z) " 2BD,y + Ey (1.94)
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where E is an order 0 operator. By the fundamental theorem of calculus and (1.93),
(1.94),

HBy(TN@% = —Re 2((z) *BDyy, By) + Re (Ey, By)
— Re i(B% (ulu|? — v|v|?), By) — Re ie( BO¥[uPy0;(uii)], By)
— Re i(BO;(fiw), By) — Re ie(B} (fou), By)
— —Re 2((z)"2BDyy, By) + Re (Ey, By) + I+ 11+ 111+ 1V (1.95)

We begin by addressing Term I. Since
wutt — ot = (u — v)ut + v(u — v)u + vv(u — v) (1.96)

we have

T
2 2 B 2
1< el g+ 1017 ) /0 Ju(t) = v(t) 2,

T

Now we address Term I1. Using 9} (ui) = it 02u — iu 024,

IT = Re e(Bud; P+ (u 8§+1u - u8£+1a), By)
+ Re Z cje<B(8§;1u)Pi(5’£2u 8%312), By)

J1tJjotj3=k+2

Jo,j3<k+1
<k
=11, + I,
Note:
k-1 2
| < €T ZOH&%UHL%L%o ||U||L%OH§+1H?JHL%H§
]:
k-1 4
22 2 1 2
< 1
< T ;) 108l 150 | e s+ ol
Also

I, = (i HDY Py (@ 01 — w5+ 1a), DY (3 Ay))
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and thus, ignoring commutators,

2 —111/29k+1 —11/2
o] < cell(a)ull 5 oo )™ D205 a3 2 [10) 7D 2l

2 4 —1n11/259k+1, 2 1 —-1p1/2 112
< e )l fg o102 Do 20wl o+ fll ()~ D3y

2L I L2312

Term III is

M= - Rei(B[fi(du). By) ~Rei Y (B3 f107u), By)

J1t+jo<k
1<j1<k
0<jo<k—1

— I, + 11T,

The treatment of Term III, is subtle, and is deferred to §1.4.2. We now address Term
III;. Using that 0x(ng + uptg)(x £ %) = Fedi(ng + uptp)(x £ %), we have (with
A= B*B)

I, ; = —Re z’e/OT/mata%l‘lfl &2 Ay
- +Reie | ' [ A o o
+ Re ie/OTL%I_lfl 0y (12u) Ay
—Re ze/xafgl‘lfl(T) &2 u(T) Ay(T) da

The last two terms are treated by Cauchy-Schwarz, and therefore, we drop these

terms, leaving only the first term. Into this term, we substitute

Oy = 02y + i0F (ulul? — v|v]?) — LiedF [Py (u)] — i0F(fru) — ied¥(fou)
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which gives five terms for us to consider:

T . .
[l ; ~ Re e / / A i o) 92
0 x
T . .
I Ree /0 / A 1y 02) O (aluf? — Tl0f?)
T . .
~ 1Re 62/0 [CA(%I_lf1 OPu) O i POy (uid)]
T . .
— Re e/ /A(afcl_lfl 2u) oF (fra)
0 T

T . .
“Re / / ALy 0120) R (o)
0 x

=A+B+C+D+E

We first consider Term A. Suppose j; < k — 1. Then, after two integrations by parts

T . .
A=Reec / / O2A@ L fy 022u))
0 T

Since j; — 1 < k — 2 and j9 < k — 1, we can bound this term by Cauchy-Schwarz.
Suppose now that j; = k.

T
A= —Ree/ /A[a’;flu]axg

0 T
T

+ Re e/ /8xA’[6’;_1f1 ul
0 T
t

+ Re e/ /8xA[6’;_1f1 Apu]
0 Jzx

The last two terms are bounded by Cauchy-Schwarz, leaving us with the first term.

In the first term, we split the derivative on ¢ as i H Dal;/ 2D31;/ 2 and bound as (ignoring

commutators)

1/2 —-11/2
A < (D *0f ) )l 2 1) T D2l 22

1/2 _ 1 1/2
<
_JT!W+%%MHQQWMﬁWW>DxM@%

T
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and then apply Cauchy-Schwarz. Term B can also be addressed by Cauchy-Schwarz
and (1.96). After an integration by parts

T . .
C= +1Re & /0 / 0 AN fy 02u) B8 uPe Oy (ui)

To address Term D, we expand by Leibniz:
T L . :
D=—Ree Y. Cj/ /A(a%l f10%2u) 033 fr 0%t
jatig=k 70 Y
and then bound as:
_— . . .
< 1 2 3 4
D;| < GHA(% f10% U)HL%L%H% f107 UHL%L%
1—1 2 3 4
SEH% fl% UHL%L%H% fla% UHL%L%
_— _ , _
< eH%l leL%OLQTHag:QUHL%L%H%?)fluL%OLQTHa%UHL%L%O

and use that H&%f]_HLOOLQ < 61/2"5%(710 + uptp)| ;2. To address Term E, we also
z L z
expand by Leibniz:

T . . . )
E—-ked Y o [ [a@l ol ok pyofta
0 Jx

J3tija=k
The terms E; are bounded in the same way as D; above:
o i1 : : .
|Ej| Se ||557:1 flHL%OL%H&?UHL%L%O’|a:]53f2“L%OL%Ha:{"4UHL%L%O
When j3 > 1, we have

OB folw,t) = 508 g (@ + 1) — 30 g (o - 1)

€ €

and thus
) 1
102 fall o 2, < €208 mall
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When j3 = 0, we use
a:—l-z

o] < [ (o) ds < T2 2 (1.97)

€

and thus || fol| ooy2 < Te 12|my |;2- The ¢~ 1/2 factor is canceled by the €!/2 factor
z L z

in the bound H&%l_lleL%OLQT < 61/2“&%1_1(710 - uoﬂo)HL%. Now we turn to Term

IV. By a Leibniz expansion

IV=-Reic Y c;{BO2 f200u], By)

J1ti2=k
If 1 < j; <k, then 8%1]”2 = &%1_1711(3: + %) - &37;1_1711(95 — %) and bound as
1V, < €708 foll o 2 1082l e Il .2

< ellmll gr—allell poo k1Yl oo 2

If j1 = 0, then use Hf2HL§9LgO < |[n1]l;1 and bound as
X
k
V] < eTHszL%OLgO||axUHL%oL%||y||L%oL%

It is this term that forces the requirement nq € L'. Combining the above bounds for

Term I, II, III, and IV, we have from (1.95)

_ 1/2
05 (e = ) (D)2 + 1) 7 D3P0k (u = )2y

T
2 1 2 2
< e + Lu— + —0)(®)|2 , dt
> C€ ZHU UHL%OH%‘ C/O H(U U)( )HH%‘
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Replacing T by 7", and then taking the supremum over 0 < T’ < T, we have

2 —11/2 9
6 (u =)l + ) T D2 0k (= )35
2 1 2 T 2
< e +§Hu—vHL%OH§+c/O I(u = 0) Ol (1.98)

To (1.98) we need to add an L2 estimate of u —v. This is obtained by performing an
energy estimate on (1.92) directly, which gives

I (u — v)(T)H%% = Re i(ulul? — w|v|*,u — v) — JeRe i(uPLdy(ui),u — v)
— Re i(fiu,u — v) — Re ie( fou, u — v)
=T+ I+ T 41V (1.99)

The estimates for I and II are straightforward.

01 < 11l ol g g u=vllnge rge < ellmo+uoioll o el 2 fu—vll e 1

Similarly,

1/2
V| < e1t/ 1fallzgergellullpz p2lle = vll oo 2

and then use the estimate HfQHL%oL%o < [[n1ll;1. Applying the bounds for I, II, III,
and IV to (1.99), we have

T
lu — Uy@%%% <+ c/o I (u — v)(t)||i% dt + u — v||i%oH% (1.100)
Adding (1.98) and (1.99), and applying Gronwall’s inequality,

2 —111/2,5k 2 2
Ju— ]2 ()7 Dy ) g < ce

_I._

1.4.2  Maximal function estimates
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Qof(€) = X0 _on(2)f(€), and for j < 0, set Q;f = 0. Put ¥ = 3,3 Q;.
This notation will be used a bit loosely, with @; in one line defined in terms of a
different 7 (sharing, of the course, the same essential properties) than in the previous

line.
111, = (B[f1 Ou), By)
=3 <B Qi1 Vhu+ i fi Qidfu+ D> Qif1Qjady| , BI(u— v>>
J |a]<2

(1.101)

The first piece and third piece of (1.101) are treated similarly. Of these two, we only
address the first piece. Recall A = B*B.

> (BIQjf1 W ;0ku], BOK(u — v))

J
=3 (02A4[Q; f1 ¥ 0ku], 0K (u — v))
J
2
= ZOZXA@‘“) Qo™ f1 Q20 u), k2 (u — v))
a=uU 7

where le is defined in terms of %, Q? is defined in terms of ()i, and A2-a)
i

means the operator with 8%_0‘ applied to the symbol of A. Now, we use that 0, f1 =
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€0t f1, and integrate by parts in ¢ to obtain

ZZ / QLo f1(T) Q20K 1u(T) AR~k (u — v)(T) da

040]

-3 [ Q0 @2k a0 AT T a0

ony

- Z > Qo fr 01Q30% u, ARTIOE2 (u — v)

a=0 j
2
=) Q)oY f Q30 u, APV 0,05 2 (u — v)
a=0 j
=A+B+C+D

Estimating:

Al + B| < ZZeHQ 05 il e e Q08 ™ wull oo 2105~ (u = 0)ll oo 2
a=0 j

k—1 k—2
>~ 1 H3 T LOOL2 T - LOOL2
< ellfull galloz ] 107" (u = v)]]

2 2 k—1 k—2
< 12108 ey + 1062 = ) 2

Similarly,

2 2 2 k—1, 12 1 k—2 2

For Term D, transfer one z-derivative oft 8t8]£_2(u—v) and (if @ = 0) one z-derivative
off 6’;_1u onto 0% f1. Convert 0, f1 = €0y f1, and proceed by integration by parts as

2

above. This will furnish an € coefficient, and a typical term is

&> (Q)0 f1 Q305 u, AdFOy P (u —v))

J
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We then use the bound
182052 (u = 0) poo 2 < 0705 >ull oo o + 10705 ull oo 2 <
t O Lger? = 19 % L§OL2 t O LPL2 =
Now we consider the second piece of (1.101). We may assume j > 1.

= Z(B[‘I’jfl Q;0%u), B (u — v))

1/2

~ Z (s fy Q;0ku, DY AH, DY 0k~ (u — v))

:Z< DY, 1y Q;0%u), QAH, DY 05 (u — v))

J
1/2 DL/
= >0y w1 Qjalsﬁu]HL%LlTHQjAHx ok (u - o)l 20
J

AH, is a composition of Hilbert transforms and multiplication operators, and after
some work (because of the presence of (), the symbol of the Hilbert transform can

be smoothed at the origin), we have essentially,

k DL/2gk—1
<2 A1l g 13 19 D5 0kl 3511 D220 (0 = )

1/2
< 7 .D1/2ak 2
< clno + ool | 3 1Qi0Y 20kl
J
1/2

1/2 gk—1 2
D10 Ds o = v)lFg
J

where we have used that || f1][; 00,1 < €[|ng + ugtig|| ;1. Now we appeal to Claims 1
z L z
and 2 below.

The needed estimates for the Schrédinger group S(t) = (it appear in [KPV93b].
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For convenience, define the operator Z on a function h(z,t) as

Tht) = /01f St — (') at’

Lemma 5.
1QiS®Sl 100 < c2/21Qj0 12 (1.102)

;

llQjblipypz  (1103)
1QZhl 3 pge < 4 2211QjhlI s pz (1104)

20 :h 1.105
\ HQj HL%L% ( )

1 1
Claim 1. Assume (ug,ng,n1) € (H* 0 H((2)2dz)) x H* 2 x H*=2. Then,

assuming the uniform bounds furnished by Prop. 4,
400 12 1/2
2 : k.12
HQij aquLQLOO <c
: r=r
J=0
Proof of Claim 1. With y = 8Ix"u, u solving ZS¢, we can write
Oy = 102y + %z‘upiaa’;“u —ig1 — 0¥ (ufy) — iedF (ufo)

where g1 is a sum of terms of the form (&%1U)P+(&%271 6‘%314), J1,72,73 < k,

filzt) =no(z — L) +np(z + 1)

Equivalently,

y = S(t)0%ug+ $iT(uPradpy) —iZ(g1) —iZIE (ufy) —i€Zok (ufz) = A+B+C+D+E
(1.106)
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We now apply Z 1Q;D 1/2( )HLQLOO to each term. The case Qg is straightforward,
7=0
and thus below we assume j > 1.

Term A. By (1.102),
1/2 2 1 2 2
> 1Q; D 2S00k 0125 1 < 03 10,05 ol < clluol s
J J
Term B. See treatment of Term A in the proof of Claim 2 below (without the -

coefficient).

Term C. By (1.104),

“+00
1/2 2 1A 2 2
13D (a0l e < T 30 PN Qanll5s 45 < T llonll g 12 + N0l 2)

Term D.

D%k (uf) anQj Dy (03 ok f1) + Q; Dy (w A f1)

a=1

Q;D
u 1/2 1/2
= 3" QD (05w 05 f1) + QD3 (Wju ok 1)
a=1

+00
+ QD @Qu k) + 30 3T @D (Quu Qusokh)

a=j—35|<2

=Dy + D9+ D3+ Dy

Dy is treated using (1.103).

1/2
D1 (W ju Qo Iy 1
J

pL/2

k
< CSUPH\I/]'UH lLooZHQ] 9 f1HL00L2
J

1/2

k
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For the terms Dy, D3, and D4, we instead use (1.104).
Term E. Similar to Term D. 0

1 1
Claim 2. Assume (ug,ng,n1) € (H* ' NHY((z)2dz)) x (H* 2nLY) x (HF~2nLY).

Then, assuming the uniform bounds furnished by Prop. 4,

+00

1/2
1/2 ok—1 2
> (10,020 = o)y, ) < oo e = gy
Jj=0

Proof of Claim 2. Set y = %1 (u —v). Then, with fi(z,t) = (ng + ugig)(z £ %),

y = —5ieZd L (uPydy(u)) — TOE(ulul?® — vjv]?) —iZoh L (ufy) — ieZ0E " Hufy)
=A+B+C+D

(1.107)

Term A. Using 0;(ua) = if)%ua —iu 8%11 and expanding by the Leibniz rule, we

obtain a sum of terms, with a representative difficult component being uP+ﬂ(9§+1u.

eDi/QQquP+68£+1u
1/2

=€eID,;'"Q; /t/eu(x ) (z— s)a(x — s, t —es) (x — s) LT u(z — 5.t — es) ds
= x Wy 0 ) ) x )
S=

t/e
~ eIQ} / Wilu(z,t) (x — s)u(z — s,t — es)]
s=0
X D;/zQ?[@v - s>_18§+1u(x —s,t—e€s)|ds

2

where we have kept only the most difficult component. Now apply >~ [|(- )] 72700
el
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and apply (1.103).

t/e
<e€ ) (x — s)u(x — s, t — €s)]
2
1/2622[( )1 (e — st — es)] ds
L2,
< 622 [ [u I—S>ﬂ(x—s,t—es)]||i%L§L%o (1.108)

1 2 —19k+1 2
< D2 Qi — )~k e — st~ )l
by Minkowskii. Use that
- 2

sup [ u(z, £) {z — s)a(z — s,t — es)][1% ) 2,00
J vlsbp
2

< t)(z — — 5,1t —
= ||U(l‘, )<ZE S>U(l‘ S, GS)HL%L%L%O

2 2
= ||u(l‘7t)HL%L%OH(‘r - S>U(l‘ - S7t - GS)HLEL%—?

4
<
and

1/2 —19k+1 2 —111/2 5k+1
S 1QDY (= 970k e = syt = )iy 5 < clla) D0k 2y
Substituting into (1.108),

4 1/2
(1.108) < ee[{e)ull o )~ D3 205 02y
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Term B. By (1.104),

1/2 -1 2 24112
> 1022 QyTok ™ (ulul? — vlol) 5 0
J

= 2102505 (ulul® = vl P)II7, 1o
J

< CTHU_UHi%?Hﬁ
Term C.
k
1/2 _ 1/2 —— 1/2 _
QD3 Tk (ufi) = @Dy 3 T(Ak u g f1)+Q Dy T (kM f1) = C1+Co
a=1

We further decompose the product in Cg in frequencies:

Cy = Q; DY *T(Q;0E Yuw, 1) + QD3 *T(w,05 uQ; 1)

+00
+ 3 Y D PT(QudE  uQu sh)

B]<2 a=j—3

=Co1+Co2+Co3

In terms Co 9 and Cg 3, z-derivatives can be transfered to f1 and converted to €0;.
We will in a similar manner address term Cq. But first, let us address term Co ;. By

(1.105),

1/2 _
ZH%JH%L%O <> 1Q;0:D1/*(Q;0k 1U‘I’jf1)!|%%L1T
J J

1/2
< S IQH@ D oW )T
J

2 211/2k 112
< csup [0 1201 S0 NIQIDL P0kul?,
j x ; =T

2 _ 2 21/2qk 112
< ce ||n0+u0u0||L}CZHQ3D$ aquL%L%O
J
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We appeal to Claim 1 for a bound on the second term. Turning to Cy, we use the

identity (integration by parts in the definition of 7)

I[&t/h(t')](t) = i@%Ih(t) + h(t) — S(t)h(0) (1.109)
Recalling that a > 1,
= Q; Dy * Tk~ wag 1)

_Qj 1/2 (ak—a—lueataa—lfl)
= eQ; DY 1o (k1w 001 fy) — Q; DY PT((Br 0k~ u) 09 L )

Invoking (1.109),
Cl,a: iEQj 1/21-62(6143 a—1 aa 1f)
+eQ; Dy P (@ Vu(t) a1 f1(1))
— QD2 S(1) (05 u(0) 971 71(0))

— eQ; Dy Tl u) 0 ]

=C1a1+C1,02+C1a3+Cra4 (1.110)

For a = k — 1, we further decompose Cq 41

. 1/2 — . 1/2 — . 1/2
ieQ; DY 2(02u 082 1) + 2ieQTDY * (0,u 0L f1) + ieQ, DY (w0 f1) (1.111)
and the last of these three terms we decompose in frequencies:
. 1/2 . 1/2
ZerIDx/ (u 8I£f1) = ZerIDx/ (Wju ij)];fl) (1.112)

+ieQ D, *(Qu w0k 1)
+ieQiT S S DAQuQ, sk

v=7-3|B|<2

For the first piece in (1.112), we use (1.103), while for all other components in (1.112)
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and (1.111) and all &« < k — 2, we use (1.104).

k—1
2 2112 2
<
ZJ:O; !|Cl,a,1||L%L%o < ce T!|UHL%OH§+1||J”1HL%OH§
2 1/2 koro\2
+ ce ZHQij (Wju Qjaxfl)HLgch%
j

2 2 2 30112 1/20k » 12
< T 111 g+ el D2 20k 1 g

Returning to the other components in (1.110),
2 2 /2 ak—a—1 -1 2
> [Cra2lp 0 < e S lQDy 2@k L) o8 ON 7
J J

<o Y2792 Qlo, (0 () O A7 00
J

k—1 k-1
2 2 2
<’y 195 ullzge 00 > 195 f1ll 72 oo
a=0 a=0 r
201,112 2
< ce HUHL%OH;:chlHHg

By (1.104),

D lIC1allTs 00 < e 311000 u(@) 28 AONIT, 1
J J

2

2 2
<
< Tl it 1

By (1.104),

2 2 k—a—1 -1 2
Z ||Cl,a,4HL%L%> < ce Z HQjaa?(at/aJ) “ Uag fl)HL%—,L%
J J

2

2 2
<
< o€ 04l oyt 7

Term D. The techniques used to address Term C apply here, although this term is

a bit easier in parts, due to the e-coefficient. O
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1.4.3 The compatible case (ng + uptg) = 0

3 1
Here, we suppose that k& > 4, (ug,ng,n1) € HkE2n HY((z)2dx)) x )z Lan 2 Hk+7,
3 v € WHFFL guch that dpr = ny1, and ng + ugug = 0. We then have the uniform

bound on ||u|| <x>_1Di/28§+2uHL2LQ furnished by Prop. 4. We shall es-
=T

tablish convergence at the optimal rate €2 of the solution u, of 1D ZSe to the solution

v of 1D NLS in H” as ¢ — 0.
We begin as in §1.4.1, where now f; = 0 and (1.95) takes the form (recall y =
0% (u—v))

|By(T)||?5 = —Re 2((z) "2BD.y, By) + Re (Ey, By) + 1+ 11 + 1V

2
L3
and

I=—Re i(B@I;(u|u|2 — U|U|2), By)

I1 = —Re ie(BOF[uPd;(u)], By)
IV = —Re ie(BO¥(fau), By)

Term III of (1.95) is 0, since ng + ugug = 0, making this case a bit easier than §1.4.1.
Term [ is treated exactly as in §1.4.1. We now address Term II, where we need to

generate an extra factor of e. Since O¢(utr) = 10z (Opu t — udzt),
P 0y(uu) + P_0y(uu) = +i(0gut — udpu)(z £ %, 0) F ie P10y (Ozu & — udy )
and therefore (taking w(z,t) = £(0uu — udyu)(x £ %, 0))

Il = FeRe (BOF[uPdy(0pu i — udypi)], BOE (u — v))
+ Re e(B@I;j(uw), Bﬁlg(u —0))

=11, + 11,
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1/2

2 2 —111/20k+2 -1 k
L] < ce H<x>U||L%L%oH<x> Dy "0y UHL%LQT!H@ Dy 3x(u—v)l|L%LzT

k
2 112
el | Y 10l e | el epgvnh = ol
j:

k+1 k—1
< —
11| < €| (uw)HL%L%Hax (u U)HL%L%O

k+1 k+1
k—1
Se ZH%UHL%LOO ZH%U}HLOOLl 105 (U_U>HL2LOO
. T ; x =T =T
J=0 J=0
k+1
2 2 k—1
< Clhallgia | 3 1kl | 1087 = ol
j:

Turning to Term IV,

IV ~ FRe ie(BF vz + Lyu(z, 1)), BOF " (u — v))

k+1 k+1
] t ] k—1
<ce Y [Ow(@ £ oo D 0%l 2700 ll05w—v)]| 200
x =T =T =T
j=0 Jj=0
k+1
2 -1
< cé[|vllyp1041 10%ull 12 00 | 11057 (w =)l 12100
—0 =T =T
j:

To obtain the estimate at the L2 level, we mimick the computation in §1.4.1, and in
place of (1.98), obtain
l(w = o)(T) 3y =T+ TT+1V
xT

(IIT of (1.98) is 0 since fi = 0), where
I = Re i(ulu® — v|v]?,u —v)

II= —%Re ie(uP10r(uu), u — v)
IV = —Re i€e( fou,u — v)



64

For 11, we use O¢(uu) = i0x(0ruu — udzi), as above, and obtain

11 = Te?Re (wP+0(dputi — udypii), u — v) 4+ Re eluw, u — v)
= 1I, +1I;

with w(z,t) = £(0put — udzu)(x £ %, 0). Thus

2

1
2 |
al < e | 3 108l 00 | el psopgall = vl oop2
Jj=0

| < ellull gy poollwll oot v = vilzgerse

2 2
< eeugllZy Ie)ull 3 e u = vl oo

V| < C€Hf2HL%oL1THUHL}UL§9HU — vl Lgerge

2
< _
< el @l g el = vll oy
By the methods of §1.4.2, we can show

1 1
Claim 3. Let (ug,ng,n1) € (H*1 0 HY((2)2 dx)) x H* 2 x H*"2. Assuming the
uniform bounds on [0, T] provided by Prop. 4, then

1/2

400 1/
2
E HQ]DQC a]JgUHLQLOO <c
—0 =T
ji

3 1
Claim 4. Let (ug,ng,n1) € H*2n H((2)2 dx) x H* 2 x H* 2 and suppose v €
LY such that dy,v = n;. Assuming the uniform bounds on [0, T] provided by Prop. 4,

then
1/2

—+00
S 1Q Dy %0k (w— )2 < cé + cTju—

= L2159 “HL%OHJ@
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1.5 Uniform estimates via energy identities

Just as in §1.3, we start with the solution given by [GTV97], cited in Prop. 1, and
prove uniform bounds for it.
Given a solution (u,n) to 1D FZS, corresponding to initial data (ug, ng, n1), split

n1 into low and high frequency parts as n; = nyy, + nqg, and put

Note that [[v||;2 < ¢[[n1]| z—1. Define
x

ny = —%8xp+(uﬂ) + %no(x - %) — %eu(z - %)
1

n— = 30y P_(utt) + ing(z + 1) + Jev(z + 1)

These definitions lead to

and n satisfies

Reexpress

—50: Py (utt) = —gut + 5 (ugti)(x — L) + e Py (0 [u))

30, P_(utt) = —Jui + $(ugip)(z + L) + LeP—(9y[u))
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to obtain, with g+ = n4 + %uﬂ,

(g4 = $ePr(O[u]) + (no + uotig)(w — 1) — Jev(z — 1)
= LiePy (ad2u — udZa) + L(ng + uptp)(x — L) — dev(z — 1)

q_ = %eP_(ﬁt[ua]) + %(no + ugtio)(z + %) + %eu(:z: + %)
| = 3ieP_(ad2u — ud3u) + §(ng + ugtip)(z + L) + ev(z + 1)

Then ZS¢ becomes

Ou = i02u — iqru — iq_u+ i|ul’u — ifu
€dqt = FOrqs + €0y (ui)

= FOpqs + Sie(@02u — ud2a)

Proposition 9 (H! bound). Assume (ug,ng,n1) € H' x L? x H™, and split ny

into low and high frequencies as n1 = nyy, +nyg. Then we have the identity

(%/ Opul® + 3 + ¢ — Flul* + fuu = %/[ML(IE + 5 (e = Hlua

from which it follows that
1/2
il ooy < ()

Il 501 < elT)

with ¢ depending only on the norms HUOHH%: HnOHL%, and |[nq| ;1.
x

Proof.

Oy / Bpul? =i / g+ (ud?u — udPu) + 2Re i / O (utin) Oy — 2Re i / O fudyi
X X X X

and

8,5/(]3[ = i/qi(ﬂﬁgu )
T
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Also,
8t/|u|4 = Qi/ax(uau) c%;ﬂ—%/ﬁﬂﬂuﬂ) Ozt
Combining,
O¢ / |3xu|2 + qi + q% — %|u|4 = —2Re i/axfuaxﬂ
But

—2Re i / O fudpi = i / Fuda — ad?u) = — / FOr(u) = —0 / fui + / Oy f i
= —&f/fuﬂ +3 /[n1L(33 +8) + (e — Hua

So

) / 002 + @2 + ¢ — L + fuz =} / (@4 ) + nyp (e — D

By Gagliardo-Nirenberg,
4 3
< 0
/:C‘u‘ = HUOHL%H quL%
Also,

_ 2 1/2,1/2 2
/x fuit < |[fllggolluolZy < €262 ny 1] o luoll?

and

t
1 t t - 2 2
! /O / (e + &)+ mp(e = Hlun < Tl gerelule pp < Tlmgl pzluol?y

Thus,

HUHL%OH% + qu:HL%OL%

3 - 1/2 1/2
< ellluoll g + luoll3> + Ino + woioll 2 + ma |l -1 + (T2 1}/2, lluoll 2)
X
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Using that n + uu = ¢+ + q— + f, we obtain
I+ wall 2 < ||Qi||L%OL% +clmll g1
3 _
c(lluoll g3 + lluollyz + llno + wouoll 2 + (T)lnall 1)
]

Proposition 10 (Energy estimates). Suppose k > 3, (ug, ng,n1) € HE x HF-1 %

HE=2 Then ¥ T > 0, there exists eg = eo(T), lwoll ks Inoll e—1, Il e—2) such
x Hy H

that ¥ e, 0 < € < eq there ezists (u,n) solving 1D FZS¢ on [0,T] such that

)l g + I (Ol -1 < ch(t)

where ¢ depends on the norms |[ug|| g, [[n0ll r—1, and ||n1|| gr—2 and is independent

of €, and h(t) has exponential growth in t.
We need a preliminary estimate in order to prove this.

Claim 5 (H? control). For0 <e<1,

1
2 2 ]
[l + sl 2y < D)+ ceT Z 03l 350 | 01

where ¢ depends on the norms |[ugl| g2, |noll g1, and ||nq| ;2.

Proof of claim.
y / 2ul> = —i / O2qx (ud2u — ud%u) — 4Re i / O 0pud>t
T x x
+ 2Re z/ 92 (utiu) 021 — 2Re z/ D2 (uf) 02u
T xT

(%/ 0pqs|? = —i/(@guﬂ — ud2u) D2 s
x x
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and thus

Oy / 02u|? + |02q+)?> = — 4Re i / Orqr-0pud?t + 2Re i / 02 (utin) 0%
X X X

—2Re¢/a§(uf) o2a
x

Integrating in time, and adding the L? conservation for u and the H! estimate Prop.

9,

2 2
t + t

t
< c(T)1/2—4Rei/O /@;qiaxu@%ﬂ
x

4 4
+2Rez’/ /8%(uﬂu)8%ﬂ—2Rei/ /8%(uf) d2a
0 Jzx 0 Jz
= (T2 4 1411+ 111 (1.113)

Let ¢§ = %iePi((?%uﬂ —uda), fQ = %(no + ugtg)(z F E) F %ey(x F é), so that
g+ = qg[ + fi Term I:

t
, 0 2 _ ml/215 0 2
- <
4Re Z/O /xaxqiaxuaxu <T Haxq:tHL%OL%HaquL%L%OHaquL%OL%
Since ¢ = %iePi(agua — ud21), we have

0 1/2 3 1/2 2
10208 1 o2 < €T lull oo |00l oo g + T2 1Orull g poc 1070l o 2

and thus

2
t 1 .
—4Rei/ /c%;qi@mua%ageT S ul oo | Nul2sys  (1L114)
0 Jx =0 =T T
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Also,

t
. 0 2. 0 2
_4Re 2/0 /xaxfiaruaxu < THaxfiHL%oL%HaxUHL%OL%OHaxUHL%OL%

_ 1/2 3/2

<

< T(10x (0 + oo) | 3 -+ el )l 2 Il 22

(1.115)

by Gagliardo-Nirenberg. Combining (1.114) and (1.115),
1 | 2
2
< er ;)r|a£u||L%L%o ol e 3 (1.116)
j:
_ 1/2 3/2
+T(10x (0 + ool 3 + ellmrll )l gy el 2

Term II:

4 t t
IT = 2Re 2/ / wud?ud%u + SRe 2/ / Opudyiud>i + 8Re 2/ / O T Oyt D21
0 Jr 0 Jzx 0 Jz

On the other hand, by integration by parts
OtRe /uu@xﬂﬁxa = 2Re i/uu@%ﬂ@%ﬂ—i— 2Re i/@xnuuﬂﬁxﬂ
X X X

and
O¢ / w0, u0,u = 4Re z/ u@xu(?xﬂagﬂ — 2Re 2/ OrnuuttOy
xr xr

T

Thus:

— Re / wuO, U0, u — 4 / U0, UOL U
xr X

t
= —Re /uouoaxﬂ()axﬂ()—4/uOﬂ0@xuO3xﬂ0—2Rei/ /uu@%ﬂ@%ﬂ
T T 0 Jzo

t t
— 16Re 2/ /u@xuﬁxﬂagﬂ + 8Re z/ / OpnuutiOy
0 Jx 0 Jz



71

Hence,
4 4
10 el + Tl e gl e (1.117)
Term III:
! 2 2 2 2
— ) 7 <
e [ [ 0 pudki <TI0 e lulgpnze 1020l e
2
< Tellmp gyl e 193] 2
and
t 9 )
_ ) 7 <
iRei [ [ 00f0ru02 <TI0 pgere 00l e 31030l e 2
2
< Tellnr g ol e 1020l 2
giving

1< Tellny gl gl ol (1.118)

Note that since n = ¢+ + q— + f — uu,

2 2 2 4
I ey < N2y + (D25 + el

Combining the above bounds for I, II, and III, and applying them to (1.113), we

obtain

2 2

4 — 4 2 4
< ) + (g + wool g + Il 3l gy + el
2 8 2 2 2
1 ) 2
2
Fere [ S 1ohulze | Il

J=0
2

1
6 E ' 2
< C<T> + cTe H&Q]TUHL%L%? HUHL%OH%
J=0
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O
Now we can carry out the proof of Prop. 10. A Leibniz expansion:
O (qru) = OFqe u+ kO gx dpu + Z cj Mgt OPu
J1tie=k
J1<k=2
which gives, by integration by parts,
2Re i/@lg(qiu) Fu= — i/@ﬁ_lqi (uwdhtta — ok t1u) (1.119)

+2(k—1)Re 2/ g 0pu ol

+ Z chei/ailqia?ua’;a

Jtio=k
J1<k=2

By another Leibniz expansion:

i / O Lgw oF L (wda — u o)
= i/@lx‘;_lqi (w1 — @05 ) + 2(k — 1)Re i/(‘)];_lqi dpudiu

+ Z c;Re i/@fj_lqi o u&%ﬂ?ﬂ
Jitje=k-1
Jo<k—3

= i/@g_lqi (uwdF g — @ 9% ) + 2(k — 1)Re i/@ﬁ_lqi dpudra
+ Z c;Re i/@lx‘:_qu 5‘3;1 u&?ﬂ

J1tjo=k+1
J1<k, jo<k
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When substituted into (1.119), (1.119) becomes
2Re i/a’;(qiu) O = —i/@fj_lqi O (wd2a — 1 d2u) (1.120)
+4(k — 1)Re z/ g Opu ol

—i—chRei/@%lqi Gg;zu&%?’ﬂ

where now ¢; may be positive, negative, or zero, and the constraint is that either
J1=Fk—2and jo+j3=k+1,jo <k js<klor[j1+jo=4k j1 <k—2 and

Jj3 = k]. Now, from the equation, we have

8t/ |8§u|2 = —2Rei/alg(qiu)aﬁﬂ—QRei/aﬁ(uﬂu)aﬁﬂ—QRei/alg(fu)algﬂ
’ ’ ’ O (1a21)
) / 0F1ge|? = / 2w — ud2u)dh g (1.122)

X X

Substituting (1.120) into (1.121) and adding (1.122),

813/ |8§u|2+|8§_1qi|2 = —4(k—1)Rei/ 8];_1(& c%;uc()];a
X X
—i—chRei/&%lqi 8%2148%312
x

— 2Re Z/ 0% (wi) 9% — 2Re z/a’;(fu)a’;a
x T

Integrating in time, and adding the L? conservation for u and the H! bound (Propo-
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sition 9),

2 k-1 2
T g + 192 4D

t
< (T) —4A(k — 1)Rei/ / g 0pu ol
0 Jx
t . . .
+chRei/ /%Iqi@?uaﬁﬂ
0 Jz

t t
—2Re i / / O (wi) % — 2Re i / / O (fu)dka
0 Jx 0 Jx
= ¢(T) + T4 1 4 T + 1TV (1.123)

We bound Term I, in the case k£ = 3 by Claim 5, as:

T
1< [ 1Ba 0l 313 g (o)

T
<o) [ e Ol (o) (L121)

1 2

2 ' 2
el el oo pra vl oo 3 Z()!\%U\!L%L%o il o0 13
J:

In the case k > 4, just bound as

T
~1
1< ellgogg | 10 s gl obu(ol g (1.125)
Term II can be bounded by

, 1 2 3
HJ < TH@% (]j:HL%?LgOH% UHL%DL%H% UHL%OL%
i1, /2 1+l 1/2 2 3
< T8 el 1 108 0 g o 10l 0 10 w2
In the case when j; =k —2, jo+j3 =k + 1, jo <k, j3 < k, then we have

o If jo =k, then j3=1

o If js=Fk, then jo =1



I0)

e Otherwise, both jo, j3 are < k — 1.

Hence, in this case,

1 5 Tllal 2 -l sl ot [l e

A 11 M

1.126
Lgomk~ L rk ( )

S
In the case j1 + jo =k, j1 < k — 2, j3 = k, then we have
o If jo =F, then II; =0
e Otherwise jo <k —1

Hence, we have the same bound (1.126) above. In the case k = 3, we apply Claim 5,

6
4 18 37 2/3 4/3
< oTHTYS 4 T ZuaﬂuuLsz Il e+ ool e ol
7=0
(1.127)

Term III is treated as:

T
111 = —2Rez'/ /u2(a’;a)2
0 T
T i e ok
+ Z chei/O /m%lu H2 0 O3 u Oy

tiat+is=k

T
k 2
ey [ 0B

2
i+l 172 i 1l/2
+el ) (1:[1 107 uHL%OL%HagguHL%OL%> HUHL%OHQ,CC,IHuHL%OH%

IN

where, we have assumed w.l.o.g. that j3 is the largest of j1, jo, and j3, forcing

11,72 < k — 2. We then have

T
k 2 6
Il < ¢(7) /0 JOFu(OlFg de+ Tl + el (1129)
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If k= 3, use Claim 5 to bound ||u||, k-1, glving
LR HE
T 3 2 2 18 1 2
I < c(T>/0 Hﬁmu(t)HL% dt + cT=(T)"° + mHuHL%OH% (1.129)
6

—|—063T3 ZH%UHL%L%} HuHLooHB
Term IV: When all k& derivatives land on u, IV; = 0.
] ] k
v< Y CTWajclfHL%OLgO!\%QUHL%OL%H@:U“HL%OL%

J1tjo=k

2 2 2
< (TPl 3l s+ mnunmm (1.130)
€T

In the case k = 3, we apply Claim 5,
2
3 2 ' 2 1 2
1V < o) iy + el m Gy | 32 10kulgpze | e g + ol

(1.131)
In the case k = 3, we apply the bounds (1.124) for I, (1.127) for II, (1.129) for III,
(1.131) for IV and substitute into (1.123) to obtain a bound of the following type.
Let

_ 2 2

Using Lemma 3 for k = 3,
1
1/2 1/2
Z |93ull e < AT Plluoll gz + T 20l o gl oc

Then
t
F(t) < ety + e(t)” /0 £(5) ds + ety f ()"

By Gronwall’s inequality, for e sufficiently small, we obtain the desired bound. In



7

the case k > 4, we assume inductively that we have a bound on ||ul| oo k-1 Then,
T 1z

applying the bounds (1.125) for I, (1.126) for II, (1.128) for III, (1.130) for IV, with

_ 2 2

we get
t
F(t) < ety + eft)" /O £(s) ds

By Gronwall’s inequality, we have the desired bound.



CHAPTER 2
THE INITIAL-BOUNDARY VALUE PROBLEM FOR
KDV ON THE HALF-LINE AND LINE SEGMENT

2.1 Introduction

Consider the initial-boundary value problem for the (bilinear) KdV equation on the
+1
right half-line: For f(t) € HS (R}, ¢(z) € H¥(RT), find u solving

A+ O3u + udpu = 0 for (z,t) € (0,400) x (0,7")
u(0,t) = f(t) forte (0,7) (2.1)
u(z,0) = ¢(x) for x € (0,+00)
[CKO02] introduce a new powerful method for treating problems of this type. In one

section of their paper, they treat (2.1) in the case s = 0. They introduce a Duhamel

forcing operator

t

LO(h)(z,t) = / S(t — ¢')do()T_ysh(t))at
0

, (2.2)

L) i/:];it/g "

where A(x) = % f§ i€ i€ d¢ denotes the Airy function, S(¢) denotes the linear

solution group for (9 +93)u = 0, and T, is the Riemann-Liouville fractional integral.
(2.2) defines a continuous function in = and £0(h)(0,t) = A(O)F(%)h(t) = %h(t). 1
Moreover, (9 + 02)L0(R)(z,t) = d0(x)Z_y/3h(t). Thus, by setting u = 3£0(f), we

1
(%)

1. [Tay96], p. 462 gives A(0) =

78
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then have a solution to
O+ 03u =0 forz #0

u(0,1) = f(t) (2:3)
u(z,0) =0

In order to carry out the standard contraction scheme to obtain a solution to the

nonlinear problem (2.1), [CK02] introduce a Bourgain space

1/2

il o, = ([ lite P - €4 agar

1/2
~ 2 2a
T ( //|§|<1 (e, 7)) déd7>

The estimate

10 LO(h) (2, 1)l x, yDa < clhll s —5<s<l (2.4)
’ Hy3 (RY)

[\

introduces the requirement that b < % They carry out the bilinear estimate (for

b < %, a > %)

192 (u0)1x, , < ellullx, yopal0]x, 100
in the case s = 0 using the techniques of [KPV93al]. A straightforward modification
of their argument enables one to treat the problem (2.1) for —% <s< % In order to
treat the case —% <s < —%, or extend to s > %, some difficulties arise, particularly,
those estimates that involve an exchange of t-derivatives for x-derivatives in the ratio

1: 3, or vice versa, have a limited range of applicability. For example,

sup [|L°(h) (@, )| s (my) < cllbll si1 —g<s<3 (2.5)
teR H 3 (Ry)
t
sup 9(15)/ St —thw(z, t)dt'|| 4 <cwlx, , —1<s< % (2.6)
z€R 0 H 3 (Ry) 57
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and finally, (2.4). The case of (2.6) can be remedied by introducing a time-adapted

Bourgain space
1/2
lull,, =  [[1ate. 2036 &2 dcar

We have

t / NG,
sup 9(t)/ St —tw(x, ) d'|| oy <c(lwlx, _,+llwly, )  alls (2.7)
z€R 0 H 3 (Ry) : )

and also the bilinear estimate, obtained by the techniques of [KPV96], (see §2.10)

19 (wo)l1x, , + 10e()lly, , < cllullx, ,opallolx, opa —3<s<3 (28)

and (2.7) and (2.8) together suffice. By integration by parts in the definition (2.2) of

LY(h)(x,t), we obtain

LOh)(w,t) = =0LY(TyD) (w, 1) + do(2)Ty 3h(1) (2.9)
Thus, if we replace £0(h)(z,t) by
L) (w, 1) = =LO(h)(w, 1) + do ()T j3h(t) = LY (T1h)(w, 1) (2.10)

we have an operator with similar solution properties to £°(h)(z,t) and the analogue

of (2.4) is
167 (h)(2, 1) x, Do < clibl sl —f<s< -2
Hy® (RT)
and the analogue of (2.5) is
sup ()L 3(h x,t < cl|lh 1 g < -1
1O L™ (h) (@, )| s () < el HH%(R” y 2

teR
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But this leaves a gap in s values (=2 < s < —%) and we need to “interpolate” between
the operators £73 and £°. From the second representation for £73 given by (2.10),
it is clear how to define £71, £72. The operator

£V ho) (1) /St—t S0()T_y j3(ho)(t') d¥
B r I_y3ha(t)
_/0 A ((t— )1/3) (t—t’)2/3 di

is continuous in z and £7(hy)(0,t) = A/(O)F(%)hg(t) = —%hz(t). 2 Moreover,
(0 + 0L~ (x,t) = oo(x)T _1/3h(t). Thus, putting u = —3L7Lf solves

(2.11)

8tu+8§u:0 for x # 0
u(0,1) = (¢) (2.12)
u(z,0) =0

The estimate parallel to (2.4) is
16 L (W) (@, D)l x, nDa < bl si1 —5<s<0 (2.13)
’ Hy3 (RT)
The estimate parallel to (2.5) is valid for —% <5< %
This approach of introducing modified forcing operators has the additional advan-

tage that it can also be adapted to treat the left-hand problem

(Opu+ Bu+udpu=0  for (2,1) € (—00,0) x (0,7)
u(0,t) = f(t) forte (0,7T)

Ozu(0,t) =g(t) forte (0,7)
u(z,0) = ¢(z) for z € (—o0,0)

(2.14)

\

1
30(3)

2. [Tay96] p. 462 gives the value A’(0) = —
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We first consider the linear problem

'atu+a§u:0 for x # 0
lim w(z,t) = f(t)
z—0~

lim Oyu(z,t) = g(t)

z—0~

| u(z,0) =0

As a first attempt to solve this problem, let us consider

u=Lh1)+ L (hy) (2.15)

which satisfies (0 + 03)u(x, t) = §60(2)T_g3h1(t) — 550 (2)T_1 3ha(t), and

u(0,1) = by (t) — Shat) (2.16)

Now we examine dyu(z,t) = 0z L0(h1)(z,t) + 0z L (he)(x,t) at z = 0. The function

9 LO(h1)(x,t) is continuous in z at x = 0 with
0pLY(1h1)(0,1) = —5T_q 3h (t) (2.17)

By integration by parts

07L~  (ho)(w, 1) = o(2)T_y j3ha(t) — LAT_q 3h2)(x, 1)
and therefore 0, L~ (ho)(z,t) has a step discontinuity at 2 = 0. One can compute

lim 0L (ho)(x,t) = §T_1 3ha(t)

x—0

lim 9,L7" (ho)(x,t) = =3y j3ho(t)

z—0~

(2.18)
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Using (2.17) and (2.18), we find

Ty )3 Lf{; Apu(, t)} —Ihy(t) + Sha(t) (2.19)
Ty 3 Llirg axu(:l:,t)] = —2h1(t) — 3ha(t) (2.20)

The system consisting of (2.16) and (2.20) can be uniquely solved for hq(t) and ha(t)
given u(0,t) and lim, - dyu(z,t). On the other hand, the system consisting of
(2.16) and (2.19) is redundant, and only has a solution when lim,_ + dyu(z,t) =
—Z_43u(0,t). This why one must specify both the value of u(0,?) and 9,u(0,t) for
the left half-line problem but cannot do so for the right half-line problem.

To solve the nonlinear problem, we need a series of estimates in order to carry out
the contraction argument, among them (2.4), valid for —% < s <1 and (2.13), valid
for —% < 5 <0, and so together they only hold for —% < 5 < 0. Were we instead to
use the two operators £1 and £72, the valid range would be —§ < s < —1. This

leaves the gap —1 < s < — 2, and for this purpose, we introduce an analytic far)r\ulif

x
of operators £/\, extending £ £71 and £72, as follows. The distribution F—ZA)
is defined as a locally integrable function for Re A > 0 and by analytic continuation

forall A € C [Fri98], pp. 20-22.) For A € C, let J ;L\ be convolution with the

(
)\
distribution 4 and for h € C®(RT , define
I'(A)’ 0

L2 (0)(x.t) = TRLNT_y) (= D))
We prove, using the Mellin transform of the left side of the Airy function, that

lim £2(h)(z,t) = 2sin(EA + T)A(t)

z—0—
and, actually, it is continuous at x = 0 for A > —2. Note that

A—1
(O + O3 LA (M) (2, t) = —+—T
3




84

s+1 s
Given f € Hy? (RY), g € Hi (R™), to solve the forced problem
((8t+3g)u:0 for x <0
lim u(z,t) = f(?)
=0 (2.21)
lim Opu(x,t) = g(t)
z—0~
| u(z,0) =0
we shall set
w=LN(hy) + L2 (hy) (2.22)
Then
F(t) = Zsin(FA1 + B)hi(t) + 3sin(FAe + §)ho(t) 2.2
Ty s39(t) = §sin(5A1 — F)ha(t) + 5 sin(5Ag — F)ho(t)

Using standard trigonometric identities, we compute the determinant

sin aq sin a9 ) )
= sin(ag — ) sin «

sin(a; — a)  sin(ag — «)
Therefore, the determinant of the coefficient matrix to the system (2.23) is

2—\9/5 sin [%()\2 — )\1)}

which is # 0 provided A9 — A1 # 3n, n € Z. Thus, given —% <s< %, we shall select
A1 and A9 so that the relevant estimates in §2.5 are valid, invert the system (2.23) to

obtain h and hg, and then define u by (2.22) to obtain a solution to (2.21). Applying

the estimates in §2.5, we can solve by iteration (2.14) for —% <s< %, s # %, with a

compatibility condition for % <s< %

Ii_l (—ZL‘)/\_l

Let ey =7 ( /\”L) . For A € C, let J A be convolution with the distribution
x/\—l
FE)\) and define

L1 (1), 1) = TATALNT_y) (= 1) (x)
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We prove, using the Mellin transform of the right side of the Airy function, that

lim L2 (h)(x,t) = 2™ h(t)

z—0+

SV

and, actually, it is continuous at x = 0 for A > —2. Note that

A1

- 7
(A —-4-3%

(0 + 02 LY (h) (x, 1) = €™ h(t)

This enables us to solve (2.1) for —% <s< %, s # %, with a compatibility condition

for % <5< % Our results are therefore

Theorem 1. Suppose —% < 5 < % Then we have local well-posedness of (2.1)

for (¢, f) € H¥(RY) x H%(RZF) and local well-posedness of (2.14) for (¢, f,g) €
H3 (R, ) x H%rl (RF) x HS/?’(R?'). Suppose % < s < % Then we have local well-
posedness of (2.1) for (¢, f) € H5(R}) x H%(Rj), provided ¢(0) = f(0) and local
well-posedness of (2.14) for (¢, f,g) € H5(R;) X H%Tl (R") x HS/?’(]R;F), provided

¢(0) = £(0).

The uniqueness component of “local well-posedness” is meant as uniqueness of
the corresponding integral equation formulation with the auxiliary condition that
u € Xgp N Dq. Since there are many ways to rewrite the problems (2.1) and (2.14)
as integral equations, this is a serious issue. [BSZ04] introduce the notion of a mild
solution, one that can be approximated by smoother solutions, a prove uniqueness
of mild solutions for the problems (2.1) and (2.14) themselves. The solutions we
construct are mild solutions.

Finally, we consider the finite-length interval problem:

(Oju+ Bu+udu=0  in(0,1)x (0,7)
u(0,t)

(t) on

u(1,t)
Opu(l,t)
u(zx,0)

T
(t) on (0,7) (2.24)
T

g3
g1
g92(t) on
¢
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with 6(z) € H((0.1)), g1(t) € H'F (®RY), ga(t) € HI(RF), ga(t) € HF (RF).
This is accomplished by making use of both operators LA and Ei‘L. The equation
relating the desired boundary functions to the needed “input” functions for the forcing
operators is a Fredholm equation. We obtain local well-posedness for this system for
—% <s< %, s # %, with the compatibility conditions g3(0) = ¢(0) and g1(0) = ¢(1)

1 3
f0r7<s<7.

Theorem 2. (2.24) is locally wellposeded for —% <s< %, s # %, for (¢,93,91,92) €
H3((0,1)) x H%(RJF) X H%(Rﬂ X Hg(RJr), with the compatibility conditions
93(0) = ¢(0) and 1(0) = 6(1) for 3 <5 < 3.

Surveys of the literature are given in [BSZ02] [BSZ03] and [CKO02]. We briefly
mention some of the more recent contributions, besides [CK02]: The nonlinear prob-
lem on the line segment for s > 0 is treated in [BSZ03| and on the right half-line for
5 > % in [BSZ02], via a Laplace transform technique. Inverse scattering techniques
have been applied to the nonlinear problem on the right half-line [AKS97] [Fok02]
[Hab02], and the linear problem on the line segment [FP01b]. Global results for the
right half-line are obtained by [FamOla] [Fam01b] [Fam03], in the latter paper for
s > 0. The left half-line problem was considered by [MS02].

2.2 Needed lemmas from other sources
Lemma 6 ([CKO02] Prop. 2.4). [f% <a< %, then
Hi(RT) = {f € H*(R") | Tr(f) = 0}
Lemma 7 ([JK95] Lemma 3.5). For0 < a < %,
1X(0,400)9 Ho®) < Cllgll o)

Corollary 1. For —% <a <0,

1X(0,100) 9 Ho®) < cllgll ma(r)
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Proof. This follows from Lemma 7 by duality. O

Lemma 8 ([JK95] Lemma 3.7). [f% <a< %, then

2
a dr < cl|gllgo(m)

/*OO lg(z) — g(0)?
0

Lemma 9 ([JK95] Lemma 3.8). ]f% <a< %, then

400 2 1/2
lolgeqey + ([ 25 o) ]

Lemma 10. For 0 < a < %, 0 € C3°(R),

1X(0,4+00) 9l Ho(R) < €

10A]] e < el o
where ¢ = ¢(#). For —% <a <0,

10h]] o < cllrll e
where ¢ = ¢(0).

2.3 The Riemann-Liouville fractional integral

For Re A > 0 define, for h € C§°(R),

Tyh(t) = LA / " (= ) h(s) ds (2.25)

By integration by parts, for Re A > 0,

T\h(t) = _ / t (t — )" FIn(s) ds (2.26)
TA+k) J_oo

Since (2.26) makes sense for Re A > —Fk, we can extend Jy to all A € C by selecting
k > —Re A, taking (2.26) as the definition, and checking that it is independent of the
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choice of k (see [Fri9g]). When h € C§°(R™), we denote (2.25) by Zh(t). Thus, for
h € C§°(RT) and Re A > 0, we write

1 t
(0 = 753 /0 (t— )" 1h(s) ds
Remark 1. If h € C§°(RT), then T)h(t) € C§°(RY).

Proof. By definition,

t
Toh(t) = ﬁ /0 (£ — )RR (5) ds (2.27)

for all k£ such that Re A + k > 0. Pick n € N such that Re A +n > 0. Then, for
k > n, (2.27) shows that the first k —n — 1 derivatives of Zyh(t) at ¢t = 0 are 0. Since
k can be taken arbitarily large, Zyh € C§° (RT). O

Lemma 11. Let o € C. If uy € C°(R) and ps € C°(R) such that pus =1 on a
neighborhood of (—oo, b, where b = sup{ t|t € supp p1 }, then

1 Jap2h = p1Jah (2.28)

If po € C°(R) and py € C°(R) such that p1 = 1 on a neighborhood of |a,+o0),
where a = inf{t |t € supp uo }, then

1 Japzh = Japh (2.29)

Proof. (2.28) is clear from the integral definition if Re a > 0. If Re v < 0, let k € N
be such that —k < Re v < —k + 1 so that J, = (9fja+k. Let U be an open set such
that

supp p1 C (—o00,b] CU C {t|pa(t) =1}
Then V t € U, Jpi1h = Tagrpioh, which implies that ¥ ¢ € (—o0,b], OF Jpyrh =

OF T rtioh, which implies that ¥ ¢ € R, pu10F Toqph = p10F Tppppioh. (2.29) is
clear by the integral definition if Re o > 0. If Re aw < 0, let £ € N be such that —k <
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Re a < —k+1 so that Jo = J,,,0F . Since supp 8gu2 C la,4+00) C {t|ui(t) =1},

we have

: i ‘ i
11T k(0] 12) (0 ) = To1, (0] 12) (07 )
and thus ,uljaJrkafugh = ja+kafu2h.
Lemma 12. For vy € R, s € R,
| Tivhll zrs(ry < cosh(zm) |7l s w)

Proof. We have the formula (see [Fri98], p. 110, exercise 8.7),

A—1\ "
7y R PV S W Sy VS
(F(/\)> (€) = e 2" e 2N

for A ¢ N. Putting A = i, we obtain

~

IIJT_l 1o Y P
() = g + 72N

L(iv)

This gives the pointwise bound
y—1\ 7
x
| ©
['(i)

from which (2.30) is immediate.

<2 cosh(%wv)

Lemma 13. If0 < Re a < 400 and s € R, then

1
11
IZ-ahll gy < ce2™ Il govo gy

1
1T=ahtll sy < ce?™ IRl grs+ag)

(2.30)

(2.31)

(2.32)

(2.33)

Proof. (2.33) is immediate from (2.31). (2.32) then follows from (2.33) by Remark 1

and a density argument.

O
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Lemma 14. If0 < Re a < +o0, s € R, p, o € C5°(R)

1
HMIahHHg (RT) < cez™ aHhHHS*a(RJr) c=c(p) (2.34)

I Taphl s gy < ce?™ 1l ga-o gy ¢ = clp. ) (2.35)

where ¢ = ¢, pu3).

Proof. We first explain how (2.34) follows from (2.35). Given p, let b = sup{t|t €
supp p }. Take pg € C§°(R), po = L on [0,b]. Then, when restricting to h € CSO(RJF),
we have uZoh = uJapuoh. By Remark 1 and a density argument, we obtain (2.34).
Now we prove (2.35). We first need the special case s = 0.

Claim. 1f k € Z>(, then H,ujk,uthLg(R) < cHhHH,k(R), where ¢ = ¢(p, p12).

Proof of claim. If k € N, then (g € C5°(R), ||g[/;2 < 1)

t
Tl = s sow [u) [ (0= 9" a(s)n) dsg(o)

=—00

+00
F(lk) SUP/h(S> “2(5>/t pu(t)(t — 5)F L g(t) dt ds

=S

) [ w0 -9yt |

t=s

1

1Pl g
D(k) ™

< bl gkl 12

The case k = 0 is trivial. End proof of claim.
To prove (2.35), we first take o = k € Z>(, s = m € Z, h € C°(R).
Case 1. m > 0.

m
|nTohll grm < NuTpohll 2 + > N1D Ty jrohl 2
§=0

m
< c(llhll g—r + D bl gm—r—;) < el grm—s
=0

by appealing to the claim or Lemma 13.
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Case 2. m < 0. Let ug =1 on supp u, ug € CSO(RJF).

d\ ™ d\~™
pTgh2h = p (@) Tk—mh2h = p (%) 13T —mm2h

and therefore
|uTgpohl gm < |p3Tk—mi2h| 2

and we conclude by applying the claim.

Next, we extend to a« = k + iy for k,v € R, as follows. Let ug3 = 1 on a
neighborhood of (—o0,b|, where b = sup{t|t € supp p}, and let pg = 1 on a
neighborhood of [a, +-00), where a = inf{t|t € supp u9 }, so that ugus € CF°(R).
By Lemma 11,

1T yiypoh = pTiyps3pa Ty poh

By Lemma 12,

16T i pioh]| rm < c cosh(37y) || uspa T b grm

which is bounded as above. We can now apply interpolation to complete the proof. [

2.4 The Duhamel forcing operator class

In this section, we rigorously define the classes of operators £A and Ej\r for —2 <

Re A <1 and deduce their properties. For h € 080(R+), let

Uh(z,t) = / t S(t — t")éo(x)h(t') dt’ (2.36)
0
_ [ r h(t') ,
a /o 4 ((t — t’)1/3> (t — t/)l/?) dt (2.37)

Fact 1. Let h € C§°(RT). Then for fized t > 0, Uh(x,t) and O.UN(x,t) are contin-
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uous in x for all x € R. Also, Uh(x,t) and OUI(z,t) satisfy the decay bounds

Un(x,0)] < ety IR gr ()5 VR0

(2.38)
|0xtth(z, )] < e O FH|h rfa)™F VR >0

For fized t, Q%L{h(x,t) is continuous in x for x # 0 and has a step discontinuity of
size h(t) at x = 0. Also, O2Uh(x,t) satisfies the decay bounds

O3Uh(z, )| < cp (0 T2 grrale) ™ VE>0 (2.39)

Proof. To establish (2.38), it suffices to show that <§>\8§I//{7L(f,t)\ € LL,VEk>0. Let

H(E, 1) = / : S =En ¢y a’

0

We have

t o
o o(E ) =i / (t — ) Fe =ty at! (2.40)
0

By integration by parts,

(=)Lt o i(=DFRR
OFp(E,t) = “527“ /O 9, n(t!) di +‘(§k7+)1h(t) (2.41)

S 1Yk+1 et
p T ,21 / 0, ST ey 505t — YO R(E) dt
§ 0 a+GB=k

a<k—1

By (2.40) and (2.41), [0F (€, 1)| < cp ()52 ||h] i (6)~FL. Since UR(S, 1) = ¢(&3,4),
we have [OFUR(E, )| < e ()| 51 (€) ~F73. By integration by parts in (2.36),

3
BUN(x,t) = So(x)h(t) — U(B:h)(z, t) (2.42)

To see that 92Uh(z,t) — 0 as z — o0, we first note that for z < —1,

-1
2z, ) = O2UR(—1,1) — / UMy, 1) dy
X
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By (2.42) and (2.38), we can send # — —oo and obtain that d2Uh(x,t) — ¢, for some

constant ¢, as © — —oo. Since

0
AUR(0,1) = / O2UN(y, t) dy

—00

we must have ¢ = 0. We can similarly show that d2Uh(x,t) — 0 as  — +oo. For

x < 0, use .
O2Un(x,t) :/ 85‘L[h(y,t) dy
—0o0

and for x > 0, use

400
Uz, t) = —/ 8§’L{h(y,t) dy

X

together with (2.38) and (2.42) to obtain the bound (2.39). O
Define, for Re A > 0,

A 2
h(xz,t) = h(—,t 2.43
U 1 [rm*“( ,>] (2) (2.43)

$)_\_1 (_xﬁ\'_—l
oy T

and, with , define

A1

Uih(x,t) = /™ [?(/\)

x L{h(—,t)] () (2.44)

By integration by parts in (2.43), the decay bounds provided by Fact 1, and (2.42),

x(/\+3)—1
UAD(z,t) = m*agbﬂl(_’t) (z)
LO+3)-1 v (n (31
:mh(t)_/_oo( r(yA)Jr 3) U(O¢h)(y. 1) dy (2.45)

For Re A > —3, we may thus take (2.45) as the definition for 2* (h). By integration
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by parts in (2.44), the decay bounds provided by Fact 1, and (2.42),

T ) T (o (A 3)—1
:—e”)‘mh(t)jLe”)‘ /_ OO( ;&JL 35 U(B:h)(y,t) dy (2.46)

For Re A > —3, we may thus take (2.46) as the definition for 22 (h).

Fact 2. Let h € C§°(RT), and fix t > 0. We have
UPh=02Uh,  U'h=0.Uh,  ULh=Uh
+ 0= Yatlh + 0T YAlh £ =

Also, L{;Q(h) (x,t) has a step discontinuity of size h(t) at x = 0, otherwise for x # 0,
L{£2(h)(x,t) is continuous in x. For X > —2, UNh(z,t) is continuous in = for all
z€R. For =2 < X <1, UNh)(z,t) satisfies the decay bounds

LA () (@, )] < epppafr) ™ Vo<0, Vk>0
LA () (2, )] < expp(a) ! V>0

For -2 <\ <1, L{J);(h)(x,t) satisfies the decay bounds

U () (. t)] < gy pple) " Vo0, Vkz0

UR (R) (2, 8)] < e (o) V<0

Proof. We only prove the bounds for A/_(h), since the corresponding results for Uy (h)
are obtained similarly. Assume x > 2. Let ¥(y) = 1 for y < % and ¥(y) = 0 for
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y> 3 Then
UNh(z,t) = % ))*63Uh( t)
- [ 55 @i
s % 1= (L] et .ty dy

=I1+1I

Inl, y < %x, integrate by parts,

- [ o [%w (2) | uhly.t)dy

—00

T (p— A—1
_ /_OO %@z) (L) uny 1) dy
N |
"Dy
> /—oo LA +7)

—ol) (2) Uh(y,t) dy

J=1
In the first of these terms, since y < %x, (z —y)*1 < (%I)A_le_l. In the second

term, %x <y< %I, and thus we can use the decay of Uh(y). In II, y > %x, apply
(2.42),

= 7 E T T (2)] Golne) - @) 0)

- [ b @)oo

Since y > g, we have by Fact 1, [U/(;h)(y, 1) < cx(t)* TRl yopr (2) 7 (y)7F,
which establishes the bound. O
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Fact 3. For fized t, the function f_(t, ) : C — C given by

lim U n(z,t) —3 <Red < —2
f— (t, )\) — z—0~
UMh(0,1) — 2 <Re A

1s analytic in X for Re X\ > —3, and moreover,
f=(t,\) = %sin(EZA+ g)1%+%h(t) (2.47)
For fized t, the function fi(t,-): C — C given by

lim UMh(z,t) —3<Re < —2
+
fH(t,A) = *0
UL (0, 1) —2<Re\

s analytic in X for Re A\ > —3, and moreover,

Fr(tX) = 36T, h() (2.48)
313
In order to prove this, we need to compute the Mellin transform of each side of

the Airy function.

Lemma 15 (Mellin transform of left side of Airy function). If0 < Re A\ < %,
then
+00
/ AV A(—r) de = ETT(— A+ D cos(ZEA — 1) (2.49)
0

Proof. Owing to the decay of the Airy function A(—z) < c(z)~ 4 for z > 0, the
given expression is defined as an absolutely convergent integral. In the calculation,

we assume that A is real and 0 < A < zli, and by analyticity, this suffices to establish
(2.49). Let

400 | .3
Al e(x) = %/f e e g Ve 0

The van der Corput lemma (as stated, for example, on p. 334 of [Ste93]) yields the
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bound Ay ((—z)| < c(z)~1/* uniformly in € > 0. By dominated convergence,

+o00 oo
/ A o(=2)dz = lim  lim AT A (—) da (2.50)
0 ’ §—0T =0+ Jo ’
We shall compute
+00
/ x)‘_le_éxALe(—x) dx (2.51)
0
We have, by Fubini,
+oo | g +00 .
(2.51) = %/ e’ e_eg/ 2N Le 0TI gy g (2.52)
£=0 =0

By changing variable  — z£~1 and shifting contour to
yire”, 0=-%, 0<r<+o0

we obtain
400 . N [TOO 9 N
/ x)\—le—éxe—zxg dr — f—)\e—z)\j / TA_lefzre_r dr — §_>‘6_Z>\7F(/\,5§_1)
z=0 r=0

where we have defined

+00 ]
L'\ 2) = / A leZe T gy
r=0

This is an absolutely convergent integral for ¢ € C provided Im z > —1 (when z # R

we will just require |z| < 1).

S\ T
(2.52) = oLe 2 /
2 £=0

o FE ==, 66 1) de (2.53)
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Shift contour to:

Tew, r =263, 0<0< 3

Tew, 0=73, 20% < r < +00

: 863 " 2ix
05— P [ 0,
0
N\ 2T - +o0o 3 1/3 1. 1/3 ‘ -
_Z)\_%ez%(iiw/ 3 6_7"6—%67" /8 g=ier!/ F()\,(Sr_l/?’e_%)r__? dr
r=80

s

i\ N o 2 Cos3 o P :qs3 9 s p

+6L7rw iAgol Asl )\/ e 86 sinp,, 26500536286 cosp, 2iedsin g
p=0

x D(\, %e—ip/?ﬁ)ei(l_%)P dp

Send € — 0T, by dominated convergence

843

—iM\E ; _ _A$2
1ir51+ (2.51) = e Mz%/ (N, 60~ Y3, 3 dy
€— 0

T .\ 27 +00 T 24+
+ 6%6166_”\75_ e "T(A, 57“_1/36_Z3)7’_T dr
863
T /2 3 . .03
_'_Z-%e—zAle—)\(sl—)\/ 6—85 511196286 cosf
0=0

2T -
lim  lim (2.51) = Le AT 6 (MWL — 2
5HO+HO+( ) = &= (ML(5— %)

and hence, by (2.50),
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Similarly, if we define
0 .3
Ag ((z) = %/ e EIE” eE ¢
§=—00

we have, by Fubini,

+00 +00
/ A 1Ay o(—2)de = lim  lim A e Ay (—x) dx
0 ’ d—0t e—01Jo ’
By a similar computation,
T N1 —ba 1 2T T 1\
lim lim e Ay (—x)dr = =" 3 e 6 (N (5 — 5
Jim i o) = & (G -3
and hence
+00 '/\27r - A
/ l')\_lAQ,O(—l') dx = 6%61 Te_ZGF(A)F(% - 3) (2.55)
0
Adding (2.54) and (2.55), we obtain (2.49). O

Lemma 16 (Mellin transform of right side of Airy function). If Re A\ > 0,
then
+o0
/ AT A(r) do = ETL(A0(E — 20 cos(EA+ T) (2.56)
0

Note that although F(% — %)\) has poles at X = 1,4,7,---, cos(5\ + §) vanishes at

these positions.

Proof. In order to make the calculation that follows rigorous, we need to insert ap-
propriate decay factors as we did in the proof of Lemma 15. Since (2.56) is analytic

in A\, it suffices to establish (2.56) for A real, 0 < A < 1. Let
+o0 | .
Aq(z) = % (i i€ d¢ (2.57)
£=0
0 .3
As(z) = % e e (2.58)

E=—00

By integration by parts in (2.57) and (2.58), |A1(2)| < ¢(x)~F, V k, and |Ag(x)| <



¢.(x) ™%,V k. By Fubini,

=0 =0

Changing contour from
y1: re’, =0, 0<r<+o0

to

Y9 : Tew, 0=7%5, 0<r<+o0

in the integral

we obtain, for £ > 0, that

+00 , -
/ 1€ gy BN AP ()
=0

Also, by Fubini,

/ A Ay (2) do = %/ € {/ g Leiré dx} d¢
=0 E=—00 =0

Changing contour from
y1: re’, 0#=0, 0<r<+o0

to

in the integral

“+0o0 +0o0o | +0oo .
/ A A (2) do = %/ € {/ A Leiré dx} d¢
x 13 x

100

(2.59)

(2.60)

(2.61)



we obtain, for £ < 0, that

+00 . .
/ 1 dy = 712 (=) TAT(N)
=0

By (2.59) and (2.60),

+0o . +oo
/ A A (2) do = %F(/\)ezf/\/ 6Z§3§_)‘ d¢
=0 13

Change contour from

to
in the integral

we get

/ A Ay (2) d = G%e_zg/\_gF(A)F(% - %/\)
=0

Adding (2.65) and (2.66) gives (2.56).

101

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)
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Proof of Fact 3. From (2.45),

0 (_,\A+2
e = [ Um0 dy (267
and from (2.46),
. 400 A+2
Fattn) = o™ [ om0 dy (269

The right-hand side is convergent for Re A > —3 by Fact 1. By complex differentiation
under the integral sign, (2.67) demonstrates that f_(¢,\) is analytic in A for Re A >
—3. We shall only compute (2.47) for 0 < A < %, A real. By analyticity, the result
will extend to the full range Re A > —3. For the computation in the range 0 < \ < %,
we use the representation (2.43) in place of (2.67) to give

0 A1
UMNK(0,t) = /y . %L{h(y,t) dy

By definition,

- t Y h(t/) /
Uh(y,t)—/o A((t—t’)1/3) TETE dt

By the decay for A(—y), y > 0, we can apply Fubini and (2.49) to obtain

fi(h) = T <—%/\ n %) cos (%U - g) / (t — ) EFD !y ar’
t

'=0
1 1 1 1 2 2
=T (~5A+ )T (§r+3) cos (FA-F) Ty, 2 ()0 (2.69)
Using the identities I'(2)['(1—z) = sinﬂ ~C08T = sin(5 —x), and sin 22 = 2 cos z sin z,
T
2m T
cos <?)\ — €>
A) = T h)(t) = 2sin (ZA+Z) T h)(t 2.70

By complex differentiation under the integral sign, (2.68) demonstrates that fy(¢,\)
is analytic in A for Re A > —3. We shall only compute (2.48) for 0 < A\, A real. By
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analyticity, the result will extend to the full range Re A > —3. For the computation
in the range 0 < A, we use the representation (2.44) in place of (2.68) to give

\ o\ +00 y)\—l
Urh(0,t) = €' / ———Uh(y,t)dy
y=0 FO‘)

By the decay for A(y), y > 0, we can apply Fubini
: t 14,2
Fr(t,A) = 2=T(F — 1N cos(ZA + g)eZ“/O (t — )M niy ar’

Using the same identities as above,

Fe(t,0) = 3™ T, ()
33
O
Fact 4. In the sense of distributions
317 /) )
O + 0 h(xz,t) = ——h(t
and
37/ A
1T —
Proof. This is straightforward from the definition and differentiation under the inte-
gral sign. O
Let

LA h(x,t) = ui(z_%_%h)

L+ h inherits versions of all of the above properties for U4, which we summarize in

the following lemma.

Lemma 17 (Properties of Ei for -2 <Re A < 1).

LT%h=L7%h=0Uh, L7V = L7 h = 0UT_y;5h, L9 =LLh =UT o3k
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E;zh(x, t) has a step discontinuity in x of size h(t) at x = 0, and for z # 0, E;Qh(aj, t)
s continuous i x. For =2 < Re A <1, ﬁﬁh(x,t) and LZ\Fh(x,t) are continuous in
x forallz € R. For =2 < Re A\ <1,

L2 (R) (2, 6)] < cpppi{z) 7" Vo<0, Vk>0
LA (h) (2, 8)] < ey pafa) V>0

and
122 (h) (2, 6)] < cppilz) " Va>0, Vk>0
L2 (h) (2, t)] < expgfa) ! Va<0

For —2 <Re A <1,

lim L2h(z,t) = 2sin(EA + T)h(t) (2.71)
z—0~

: A 1 _imA
x1_1)r61+ Ly h(x,t) = 5™ h(t) (2.72)

(for =2 < Re A < 1, lim,_ - LAh(x,t) can be replaced by LAh(0,t), and
lim,,_, 5+ Eih(m,t) can be replaced by E;\Lh(O,t) ). Moreover, in the sense of dis-

tributions,
xA—l
(0 + 03 LA h(x,t) = =51\ 5h(1)
I'(A) —3-3
and
3\ A !
Oy + 0Ly h(x,t) =™ ——T1 h(t

Of course, E/lh(x, 0) =0 and E;\Lh(x, 0) =0.
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2.5 Outline of the needed estimates

We introduce the following Bourgain spaces, for b < % and o > %,

Julk,, = [ /{E (1 €)1 + Ir — €)Pa(e, )| de dr
i, = [ 002 e ) de

I, = [, 0+ P ice 7P acar .73

The Dy norm is a low frequency correction for the X, norm that is needed in order
for the bilinear estimates to hold.
We need the following estimates, and require b < %

Space Traces.

sup [|S(4) (@) || s (ry) < clldll s (ry)

teR
sup £ (h) (2, )| s () < cllbll sp1 s—5<A<s+3
teR HOB (Rf)
t
sup | [ 5t~ )t t)a < clullx, ,
ter [1J0 H5(Ry) 8’

Time Traces.

sup [|6(2)S(t) ()] =29 )SC!lﬁbHHS(Rx)

zeR H Rt
A
sup [|0() L3 (h)(z, )] sp1 < ellhll sp1 -2<A<1
reR H 3 (Ry) H(;T (Rzr)
t
sup 9(15)/ St —thw(x, ') dt'|| .44
zeR 0 H 3 (Ry)
clwlx, , if —1§5§%

e(lully, ,+lullx, ,) for any s



Derivative Time Traces.

sup [8(0)0:S(00(0)] 3., < cloliroge,
re
su Ht(?EAhx,t s < cllh| s —1<A<?2
g 1L g < st
t
sup H(t)(?x/ St —tw(z,t)dt'||
reR 0 H3(Ry)
CHU’HX&,b if 0 <s< %

e(lwlly, ,+lwlx, ,) forany s

X, p Bourgain Space Estimates.

10)S ()¢ (@)l x, ynDa < clldll s (ry)

x, )| x c
+ vamDO‘ H;JFSI (R;r) A< %, a < 78_3‘ -

< clull, a<1-b

b

He(t) /Ot St —tw(z,t') dt’

XS,meOC

Bilinear Estimates. For s > —%, Jb=10(s) < % such that V o > %,

102 (wo) | x, _y, < ellullx, ynDa vl x, ynDa
For —%<s<3,§|b:b(s)<%suchthatv a>1

9

10 (uo)lly, _, < ellullx, yopallvllx, ynDa

106



107

2.6 X;;, estimates

Lemma 18 ([CKO02] Lemma 5.1). Ifs € R, 0 <b < 1, and §(t) € Cg°(R), then

ot Ollx, , < cllulx,, (2.74)
10)u(z, Dl Dy < cllull Dy (2.75)

where ¢ = c(0).

Proof. See [CK02]. O

Lemma 19 (X, estimate for the group). Ifs € R, b < %, a > %, and 0(t) €
C§°(R), then

R 1/2
16(5)S(1)6lLx, ;D < ¢ ( [+ dr) 6oy

where ¢ is independent of O(t).

Proof. Since [0(t)S(t)¢]™(&,7) = 0(1 — £3)p(€), we have
lo@®)S®el, , < /5 { / (1+ 7= &)?)o(r —£3>|2d7} (1+[€)**[(€)[ de
< [ @+|7h2e) 2 dr [ 2515()2 d
< [+ i) /g( €N 10(e)2 de
Also,
10(t)S(t)¢ll5, < /|§|<1 {/7(1 )2 0(r — €3))2 dT} 16(6)| de
3020000 — e3V2 dr | 14(6)12
Sc/|£|<1 UT(”'T &3))20(r — £ d ] 16(6) 2 de
<ec [ (14 17D20(1)? dr A2 d
<c [+ i) /mq\qs(m ¢
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Lemma 20 (stb estimate for the Duhamel forcing operator class). Let s € R,

3—1§A<s+%,/\<%,a§‘s_§‘+2,and0§b<%. Then

106 L2 (h) (2, 1)l x, 1D < cllbll s (2.76)
’ H03 (Rj)

Remark 2. Note that by the assumption A < s+ %, we have 5_§‘+2 > %, and thus we

may take % <a< #, which 1s needed in order to validate the bilinear estimates.

Proof. By [Fri98] p. 110,

A—1\ "
NGES (?@) (&) = e_%iﬂ)‘ﬂ)‘ e e N A £12,

Since A < %, we may interpret the right-hand side as a sum of locally square-integrable

functions. By Lemma 13, it suffices to prove

He(t)ﬂ [ /O t S(t —t")o(=)h(t) dt’} (z)

< bl s—n-1 (2.77)
Xob Hy, (RT)

By a density argument, it suffices to prove (2.77) for h € C§°(R™). Taking ~ to mean

the Fourier transform in the z-variable only,
t - t .
(6007 [ s = nanni) o) (© =otmace) [ O a2
0 0

Let (1) € C*°(R) that is 1 for |7| < % and supp ¢ C [—1,1]. Using that 2x g4 ) =



sgn t' +sgn (t —t'), we obtain the decomposition

~

(o602 [ ste -t merat) ©

We now address each of the three terms separately.

Term uy. We shall prove that for all s € R, and all A < %, we have
lutllx, yjnpa < CHhHHHfl

. . . it (r—€3
Using the power series expansion for it(7—¢ ),

o0 ihh | )
6.0 =3 @ [ (-t - iy dr

k=1

Set o (€) = ra(&) [ (T — P Ly(r — €3) h(r) dr and 0;(t) = *t¥6(t). Then

+00
wi(e0) = 3 O 0SOk()
k=1

By Lemma 19,
+00
lu1llx, yDa < > w10kl ol onll s
k=1

109

(2.79)

(2.80)



Now

Ioxlly < [ 167 [ J o, N

—2x 2 2s -9
< [ Fwtacm® [ ji)Raran
U [T=nl<1

T

2

(1+ |¢])? de

. 9 22 2 2s
() /| B ¥ ) ar
7=

Combining (2.80) and (2.81) gives (2.79).
Term ug 9. We prove that for all s € R and all A < %, we have

By definition,

SO

where

luz,2llx, jnDa < CHhHHS_§_1

| b — €3
ina(6,1) = 0(1) " [rm [t =

T — &3

ug,2(z,t) = 0(t)S(t)p(x)

By Lemma 19, it suffices to show

We claim that

/

~ —

h

(7)

16l s <

(1 — &)

T — &3

cllhll s
3

dT:/iL(T)ﬂ(T—fg)dT

110

(2.81)

(2.82)

(2.83)

(2.84)
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where § € S(R), and to prove this we will use the fact that supp h C [0, +00). Let

_1-y(=7)

T

g(7)
Then
¢

i R
5581 t— yym /Ssgn(t — s)i(s)ds

Let a € C*°(R) be such that a(t) =1 for ¢t > 0 and «a(t) = —1 for t < —1, and set

g(t) =

Z' = st - 9)its) ds

_ES

To show that f € S(R), note that by the definition and since Y € S, we have
f e C>®R). If t > 0, then since % fq@(T) dr = (0) = 1, we have

. ﬁ /Ssgn(t — s)ib(s) ds

v

2

/ d(s)d
= — s)ds

27 Jot

If t < —1, then likewise we have
O / (t—s)i(s)d
= —-——— — n p—
> I ), sg s)(s)ds

i .
=57 PO

which provide the decay at oo estimates for f and all of its derivatives, establishing
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that f € S(R). Since f(t) = g(t) for ¢ > 0 and h € C§°(R") we have

/ il(T)—l il Gl £3) dr

T —¢3
= —(h*9)(&%)
= —2mhg (&%)
= —2rhf(£3)

A~

= [hratr s

where 3(1) = —f(—7), and § € S(R) since f € S(R), thus establishing (2.84). Now
we return to the proof of the estimate (2.83).

2
16125 < /E o2 [ / |h<f>||ﬁ<7—s3>|df] (€)% de
—QA}ALTQ 7__37__32 28d7_d
S/T/g’ﬁ’ () PIB(r — ) (7 — E)2(6)% dr de
< ]AzT 2 2s _2) _2 _— 27__ 2d dr
< [ i) [/n<77>3|77| 2 03180 — ) P(r — )2 dn

and since A < %,

2(s=A=1)

< [0 T o ar
-
Term ug 1. We shall prove that for s € R, s =1 <A < s+ %, A< %, we have
luz1llx,, <cllbll a1 (2.85)
5 H 3
If, in addition, o < #, then

lug1llpg < ellhll s—x—1 (2.86)
H 3
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By Lemma 18 (2.74),

= [ |W(")]?G(7) dr (2.87)

T

where
2s

G(r) = /n o~ B R — 22 ¥ ay

We now show that
2(s—A—1)
G(r) <c(r)” 3 (2.88)

Case 1. For |7] <1, we have G(7) < 1. To prove this,

2 2 2
/|n| =243 g

Since A < %, we have —% —% > —1, and since s — A —1 < 0and b < %, we have

M + 2b — 2 < —1, so the integral is finite.

Case 2. It || > 1 and |n| ~ || or |n| >> |7|, then |n| > % and

G(r) < /n T — P2y

2(s—A—1) 2(s—A—1)

Since s —A—1 < 0, we have (n)~ 3 < (7)” 3 . Apply this bound, and carry
2(s=\-1)

out the 7 integral (using that b < Q), to get |G(T)] < (1) 3

Case 3. Suppose |n| << |7|. Since A < % (so that —%(/\ + 1) > —1), and since
-1< %(5 —A—1) <0, and since b < %, we have

G(r) < ()2 ( /|n|<1| | N anlt ks dn)
2 T

2(s )\ 1)+1 < C< >2(s—3)\—1)

< c(7’>2b_2<7')
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This concludes the proof of (2.88), and thus by (2.87), we have (2.85).
Now we proceed to (2.86). By Lemma 18 (2.75),

oath, < [ [ @@ e ards 289)

For €] < 1, we have (1 — &3) ~ (7), and since \ < %, we can carry out the £ integral
n (2.89) to obtain

(2.89) < ¢ / (T)22|h(7)|? dr (2.90)
T
Since a — 1 < $=3=L e obtain (2.86) from (2.89). O

Lemma 21 (X, estimate for the Duhamel inhomogeneous term). If s € R,

0§b<%, and o <1 —0b, then

< cfwllx

~b
X, pNDa >

He(t) /Ot St —tw(z,t')at’

Proof. Let ¢ € C§°(R) that is 1 for |7| < % and supp ¢ C [—1,1]. Using that
2x(0,1)(t") = sgn t' +sgn (t — '), (" denotes the Fourier transform in the z-variable

[ /St—t xt)dt] ()

—e<>/0 = e, oy dt

. it(r—€3) _
= 9(15)62%3/6(7__#7#(7_53)@(577') dr

only)

53
3
+9(t)/e"”—1 _f(jf_f Linie,7) dr
) _ _ 3
_e(t)eltfg/—l f(jggg )w(g,r) dr

= 01(&, 1) + G2.1(&, 1) — t2.9(&, 1)

We now treat each of these three terms separately.
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Term ug 9. Let

Then ug g = 0(t)S(t)¢(x). By Lemma 19, |lug2|[x, ,nD, < cl|®|| s, and therefore it
suffices to show ||¢|| gs < c||h]] s-x_1-
H 3

2
ol < [ (e [ [ =) e nlar| ae
/ (€)% (r — ) Plai(e, 7) 2 de dr

Term up. Let (&) = [ (7 — &) 1y(r — €3¢, 7) dr, and 04(t) = i*t*0(t). Then

“+00
wi(a,1) = 3 L0 0SD)k(0)
k=1""

By Lemma 19, it suffices to prove [|¢g[ s < |[w][x, ,. This follows from

Je [/|T_£3|<1| @ |dT] e < [ @ - ate 7

Term u9 1. By Lemma 18 (2.74), and since b < %,

Il < [ [ (€7 Pt e imae < i,

Also, by Lemma 18 (2.75), provided o < 1 — b,

1, < /|£|<1 [ -y narde < i,
<lJ7 ’
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2.7 Space traces estimates
Lemma 22 (Space traces estimate for the group). If s € R, then

S(t)g(x) € C(t € (—o0,+00); H*(Ry))

sup [|S (1) (@) grs(ry) < llFll s (ry)
teR

Proof. This is immediate from the definition of S(¢)¢(x). O

Lemma 23 (Space traces estimate for the Duhamel forcing operator class).

LetsER,s—%<)\<s+%,)\<1. If supp h C [0,1],

LA (h)(z,t) € C(t € (—o0, +00); H*(Ry))

sup ([ L2 (h) (@, )| prs(ry) < cllbll s (2.91)
t H.3 (RZF)

Proof. We shall begin by proving

2 (- ) e | 0

o =dlbll soa (2.92)
H5(Re) Hy 3 (R})

sup

By a density argument, it suffices to assume that h € C3° (RT), with supp h C [0, 1].
Let ¢ € H% such that [l —s < 1.

/j)‘ {/ St — "o (—)h(t) t'} (z) o(z) da

= | S —t)[TA} ) X(=oout)()N() dt’
t' =0
HS TN | H 1ostA HX(_oo,t)(t/)h(t/) sl (2.93)
2=0 i, i, 0
Since —% < S_/g\_l < %, by Lemma 10, we have
HX(_oovt)(t/)h(t/) a1 <X (Cooy ERE)|] sma (2.94)
H, 3 H, 3

t/ t
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Applying Lemma 7/ Corollary 1 to the right-hand side of (2.94),

HX(—oo,t)(t/)h(t/) soa1 Sclhll saa (2.95)
H,® H, 3
By Lemma 25,
|se—O17 0] || 1ee < ellT ol en
=01l ;=3 x

Ht’

Since <[\7>‘]*¢)A(§) — A (©)(€), we have, for A < 1
TVl fpsn < elloll s (2.96)

Combining (2.93), (2.95), and (2.96) establishes (2.92). As a consequence, we have,
for h € C§°(RT),

ey (e D) e | @

< cllbll ot (2.97)
as H 3

Indeed, if s < 0, it is immediate that (2.92) implies (2.97). If s > 0, then appeal to
(2.92) for s and also for s = 0. (2.91) now follows from (2.97) by Lemma 13. O

Lemma 24 (Space traces estimate for the Duhamel inhomogeneous term).

LetsERand0<b< Mfue Xy,

o(t) /OtS(t —thu(—,t)dt' € C(t € (—o0,+00); H*(Ry))

sup
t

< cflullx

HS(Rm) s,—b

'e(t) /Ot St —tu(—,t")dt'

Proof. By writing 2 t') =sgn t’ +sgn (t —t'), we have the identity
y writing 2x g,

H(t)/OtS(t—t’)u( tyat' = o(t /“Ef/ —. Ztgg ,7)dr dé
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Thus,
t 2
He(t)/ St —tu(—,t")dt’
0 HS (Rz)
Ny Gt _ gite® 2
- s [ S
) oitT _ ez’tg?’ 2
+ [asienoe [ it i e
3 IT=&=z1 T
=I1+1I
. it(r—€%) _
Since 6”539(15)6 3 ! < 20t6(t)| < ¢ for |7 — €3] < 1, we have
T

2
1<e [l [ J o, 16 dT] & < culk,

by Cauchy-Schwarz. For |7 — &3 > 1, we have |6(t)

and therefore, by Cauchy-Schwarz, we have that

2
<l

2.8 Time traces estimates

Lemma 25 (Time traces estimate for the group). Let s € R. If 0(t) € C5°(R),
then

0(1)S(t)6(x) € C( € (—00, +00); HF (Ry))

sup [|0()S@)o(@)l| st1 < clldl s (ry) (2.98)
zeR H 3 (Rt
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where ¢ = ¢(0).

Proof. The identity

5@l 1 - 161l 7 (2.99)

(R
is standard (see references in [CK02]). From this we shall deduce (2.98).
Case 1. s > 0. In this case, i?)l > %

10@)SH)o(@)] 1 < N0E)SOe(@)] 1 +[0@)SE)d(@)] . s41  (2.100)
H 3 (Ry) H3(Ry) H 3 (Ry)
By Lemma 10,
||9(t)5(t)¢(I)HH§(Rt) < C||9(t)5(t)¢(I)HH§(Rt) (2.101)

and thus we may apply (2.99) to obtain

10(8)S (#)¢()] < clloll 2 (2.102)

1
H3(Ry)

The second piece of (2.100) is bounded by (2.99) giving, for s > 0,

||9(t)5(t)¢(96)HH%;(Rt) <cllollpe +clléll s < cllll s
Case 2. s < 0. Divide ¢ into low and high frequency pieces as ¢ = ¢1, + ¢p.
O(t)S(t s < l0(t)S(¢ <

16(£)S( )ch(fv)llH%_l(R 16(2)S(8)r, ()] L cllérlpe

t H3 (R

by (2.102).

10 SO @) s41 < [0O)SE)dm (@)l . 541 (2.103)

H 3 (Ry) H 3 (Ry)
by Lemma 10 if —1 < s < 0 (so that 0 < i?)l < %) and directly from the definitions
of the norms if s < —1 (so that % < 0). We may then apply (2.99) to bound the
right-hand side of (2.103). O
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Lemma 26 (Time traces for the Duhamel forcing operator class). Let s € R

and =2 < A < 1. If supp h C [0, 1], then

0(t) L2 (h)(w,t) € C(x € (=00, 400); H 5 (Ry))
sup [0 LL () (x| s1 < cl|b]| sm (2.104)
T ’ . HH—g—(Rt) HO__FT(R;f)
Proof. By Lemma 13, it suffices to prove
t
sup |00 | [0 - (@)t | @) sy <elll apn (209
v 0 H 3 (Ry) Hy 3 (Ry)

To prove (2.105), we begin by proving that for h € C§°(R) (not necessarily supported

in [0, 1]), we have

sl S]] soaa (2.106)
H 3 (Ry) H 3 (Ry)

2/ sl O]

—0o0

sup
x
Proving (2.106) is equivalent to proving

< cl|lh 2.107
sup 2_C|| ||Lg (2.107)

'D?Tl T l /_t N S(t—t’)éo(—)Dt,ﬁ%h(t’) dt’} (z) .
t

By the change of variable t/ =t —t/, we have

s+1 t , —s+A+1 , ,
D, 3 S(t—t")oo(=)D, *  h(t')dt

—00

s+1 +0o0 , —s+A+1 , ,
:DtT/O S()o(=)D, B h(t—¢)dt

+00 Af2
:/ S(')do(=)D,* h(t—t")dt’
0
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and therefore

DF [ /_t =ty (—)Dtjs?\ﬂh(t’) dt] (z)
SWA [ /_ t S(t— t’)éo(—)D:,%Qh(t’) dt’]

Using that QX(Q,t)(t/) = X(—o00,400) ) — 2X (—00,0) () + sgn (t — t'), we obtain the
identity

27 U_too S(t— t’)éo(—)D;%zh(t’) dt']
A

-7 /+OO S(t —t")o(-)D,* h(t') dt']

—0o0

_ o) l/_ooo S(t — t’)ao(—)Dji)ﬁ h(t') dt’]

At2
+/€it7 lim / eixgih| ’ T)é(f) de | h(r)dr
T e—07F |T—§3|>e T—§

=1—-2[T+1III

We shall begin by treating Term III.

A—1\ "
ra(é) = (“;B) ) (&) = e—%mgﬁ e A 212,

We keep A < 1, so r)(€) is locally integrable function. We want to show that

’ ‘/\+2

, 773

612% el emgiT_f?)?")\(f) d§ (2.108)
T— €

is bounded (independent of 7). Changing variable to 71/ 3¢, and using that

(%) = 7 Ve + e + 7 e + )
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we get

Y Y -A -2
/351617 + 028" i71/35g C162" + €28

The treatment of both integrals is similar, so we will only consider the first of the

two. Let ¢(§) = 1 near £ = 1, and 0 outside [ , ] Then this term breaks into

B —A —A
. /geml/sgw@g s /feiml/?f(l PN Tt

1-¢&3 1-—¢&3

Term I is an L1 function (provided A > —2), so this term is okay. Term I is

dg

inrl/3e V(OSY 1
cl/fe B e

This becomes convolution of a Schwartz class function with a phase shifted sgn x
function, which is bounded. This completes the treatment of Term III. Now we turn

to Term I.
\ )\+1 “+0o0 , 1/3 , ,
1= 7D, / S(t — ¢')do(x) DY () at
t'=00
Let g € LLL?. Then
A\ A+1 —+00 1/3 ,—
// T Dt_f/ S(t —1")oo(x) D,/ “h(t') dt’ g(x,t) da dt
tJx t

_ / / S(=t)do() DY h(t') at / S(—)D, T (72 g (. 1) dt da
xJt t

[, C-050(0)D/*uit) a
t

(2.109)

S‘
L2

Al
/t S(—0)D, ¥ [T gl 1) dt

L2
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To address the second term in (2.109), let ¢ € L2.

//s I (1) dt 3@ dx—// o) TAD.T S(t)o(x) dedt

il
TaD, * S(t)e(x)

<
S HgHL}CL% 112

(2.110)

For ¢ € L?B, by the change of variable n = &3,

A1

TAD, ¥ S(1)é(x) = / eneion'’® | 25 (nU3)d03)
n

Since |ry(n'/3)] < e|n|”3,

A+l

A 1/2
1520, 500 ggerp < e ([ 800 P dn) = eloly 211

(2.110) and (2.111) together give

TN gz, 1) dt’

< 2.112
g = CHQHLQICL% ( )

T

To address the first term in (2.109), let ¢(x) € L2.

| | senn@ny neyad swas = [ a0 0/ ()0l _ya

t/
< /
< clil g sup 1D,/ sie >¢<x>HL3,

and hence by Lemma 25, we have

(2.113) and (2.112) inserted in (2.109) give the bound for term I. Term II is treated
similarly. This completes the proof of (2.106). Now we deduce (2.105) from (2.106).

/s< )éo() DY (e dt
t/ L2

T

< cllhll (2.113)
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Suppose supp h C [—1,2]. Let o be such that A — % <a< % (note that A < 1

implies A — % < %) Then O‘TH < % an a_§‘_1 > —%, and hence by Lemma 10 and
(2.106),

le(twA [ /_ too S(t —t")d(=)h(t) dt’] (z)

sup
x

atr1 Scllhll ara (2.114)
H 3 H 3

Case 1. s < . Take «a satisfying the above conditions and a > s. Write h as a sum
of low frequency and high frequency pieces h = hy, + hyy. Let 05(t) = 1 on [0, 1] with
supp 09 C [—1,2]. Then by Lemma 10 and (2.106),

s+1

oo | / (= (o) | 0 e

<dlhgll soaa ~ellbgll soa (2.115)
H 3 H 3

sup
x

Also, since s < «

o [ [ sttt e ar | @

Sup s+1
z H 3
t
<esw o0 | [ st Ot @) o
t —00 H 3
<cllhpll ar-1 ~cllhpll soa-1 (2.116)
H 3 H 3
by (2.114).

Case 2. s > % Since A < 1 and s > %, we have S_g‘_l > —%, and therefore by

Lemma 10,

HhH a=)=1 <cl[h]| s-r-1 (2.117)
H 3

Combining (2.106) and (2.117), we obtain

‘ U St — )60 )h()dt}()

Pick an o < 5 satlsfymg the conditions cited above, and then combine (2.118) with

sup

skl Sclh]l sona (2.118)
a3 H 3
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(2.114) to obtain (2.105) in this case. O

Lemma 27 (Time Traces for the Duhamel inhomogeneous term). Let b < %
Then

s+1
3

t
e(t)/o St —tw(z,t)dt' € C(x € (—o0, +00); H 3 (Ry))

s+1
H 3 (Ry)

sup He(t) /Ot St —tw(x,t')dt’

—oo<r<+400

clwlly, _, +llwllx, ) #seR

clwlx, _, if —1<s<y

Proof. Let ¢ € C§°(R) that is 1 for |7| < % and supp ¢ C [—1,1]. Using that
2X(0,1) (t') =sgnt’ +sgn (t —t'), (T denotes the Fourier transform in the z-variable

l /St—t xt)dt} ()

—e<>/0 =1 e, ') a

— ()i’ /T %w(r—é”)w(m) dr
+mgzyml:ﬂ¥:5ﬁw@mwh
—0()eite’ /T Mw(&m) dr

=u(§,t) + ﬂz,l(ﬁ,t) — ﬂ2,2(£7t)

only)

The treatment of the terms u; and ug 9 is similar to that in Lemma 21, and each is

bounded by ||w||x_ ,. We now address the term u9 1.
s,—b )

.3
ug 1(x,t) = 6t / /“351 &) w(E,T)dEdr

T — &3



and therefore,

5 2(s+1) N 2
fusl? a1 < / @7 | [ ol de| ar
H 3 T £
S 2
&Jrrl) l/ 1|w 1/37T)|7]_2/3d7]:| dr
n

Apply Cauchy-Schwarz to (2.119) to obtain

2(s+1) _ - )
luoall st < / (TG / (r— n)~ 23 (g3, 7)|2 dy dr
HT T 7

t

where

G(r) = / (r— )22 =23
n

We need to show that

G(r) < c<7'>_2/3

Case 1. If |7] <1, then
G(r) < [ tmy 22y < oo
n

Case 2. If |n| << |7], then

Gy < (72 [y < ()
Inl<zl7]
Case 3. |n| ~|7| > 1, or |n| >> |7| > 1.
G(r) <2 [ (r =y 2+ ay
n
Substituting (2.121) into (2.120), we obtain
a0 st < cllwlly,

3
Ht

126

(2.119)

(2.120)

(2.121)
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for all s € R. To bound in terms of the X _j norm for —1 < s < %, apply Cauchy-
Schwarz to (2.119) to otabin

2(s+1) s
mmmmﬁ%gx/m aGm/v—w%w”@m%mw@ﬁ%mT
T n

Hy
(2.122)
where
G(ﬁ>=L/kT-—n>_2+%%_2ﬂVn>_””3dn
n
and we now show that for —1 < s < %, we have
2(s+1)
G(r)<(r)~ "3 (2.123)

Case 1. If |7| < 1, then |G(7)| < ¢. To show this,
_2 2b_28 _2
Gr) < [ () 22 Fpul Ry < o0
n
since s > —1 and b < %, we have —2 + 2b — % < —%.

Case 2. |n| << |7|. Then

mﬂsmr%%/ = F 3 dy

In|<d|7]
2s | 1
33 ifs<
< C<T>_2+2b < > 2
1+In(r) ifs= %
—2(s+1) 1
<c(ry 3 if s <5

Case 3. |n| ~|7| > 1or |n| >> || > 1.

vag/v—nr”ﬂwrﬂﬂm*?m
n

2 2
svy@“f/v—m*”%m
n
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since s > —1.

This completes the proof of (2.123). Substituting (2.123) into (2.122), we obtain

3
H,

luz (2, ) sp1 <cllwllx, _,

for —1 < s <

D=
U

2.9 Derivative time traces estimates

The following lemmas are corollaries of the lemmas in the previous section.

Lemma 28 (Derivative time traces estimate for the group). Let s € R. If
0(t) € Cg°(R), then

0(t)0:S(t)(x) € C(x € (00, +00); H3(Ry))

0(t)0:S s
sup 102800 5

< |0l s (ry)
where ¢ = c(0).

Lemma 29 (Derivative time traces for the Duhamel forcing operator class).
Let s e R and —1 < A < 2. If supp h C [0,1], then
0(t)0. L2 (h)(z,t) € C(x € (00, +00); HI(Ry))

A
sup lowosct @ "y S cHhHHO%l .

Lemma 30 (Derivative time traces for the Duhamel inhomogeneous term).
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Let b < % Then
t S
H(t)ﬁx/ S(t —thw(z,t") dt' € C(z € (00, +00); H3(Ry))
0

sup He(t)ax /01f S(t —thw(x, ') dt’

—oo<xr<+00

S
H3(Ry)
Alully, , +lullx, ,) i#seR

clwlx, _, ifo<s<3

2.10 Bilinear estimates

We shall deduce the needed bilinear estimates, appearing below as Prop. 11 and Prop.
12, by the calculus techniques of [KPV96]. We begin with some elementary integral

estimates.

Lemma 31. [f% <b< %, then

oo dx c
/ - 5 < — 2.121)
o (L4 |z —a)?(1+]z—F]) (1+ | = B)*~
Proof. By translation, it suffices to prove the inequality for § = 0, i.e.
+00 d
/ e R 2.125)
—co (L4 [z —a)®A+[z)) — (14 [af)*~

Case 1. |o| < 1.

+2 dr +2
/ < / dr =4
—o (14 ]z —a])2b(1 + |z])2b _9

/ dr < c/ dix <c
w>2 (L4 o — a1+ [z))2 =~ ) (14 ]z~




Case 2. |a| > 1.

/+OO dx </ x - la|dy
—oo (14 ]r— Oél)zb(l + \96| D7) Jo—aPal® T ) Jay - afPay|?
¢ c
B |a\4b Yoy - 1|21’|y|2[’ T a1+ Jaf)tt

Lemma 32. Ifb < %, then

/ dx < c(1+ )24
jaf<p (L+ )P a =22 7 (1 4 a2
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(2.126)

Proof. This is [KPV96] Lemma 2.3 (2.11) with 2b — % = 1 — 1. The expression that

we wish to bound is

/ dx
<8 (14 |z])4—1]a — 2|1/

Case 1. |a] <1, |u] < 2.

du 1/2 2
(2.127) < /| W [|u —qf }O <c

ul<2 |u —a
Case 2. |a| <1, |u| > 2. Here, %]u! <l|lu—a < %]u!, and therefore

1 3 4 18]
(2'127)§/|u|<g—(1+,u,)4b—2 ¢ [+ Ju)? K

_aHIB)EY _ajp>
S+ ) T (14 a1

Case 3. |a] > 1, |u] << |af.

1 du (14 |B|)2—4
2.127 <
(2121) < o1/ /IUI<5 (14 [u))2=1 = (1 + |a])1/2

(2.127)
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Case 4. |a| > 1, %]04\ < |u| € 2]a|. We may then assume that |3| > %]04\.

1 du 1 1/2 2|0‘|
212V < — — —
(2127) < - 1/|u|<ﬁ|u—a|1/2 ey el

R SN ¢ 0ol )
~ (14| 4b—1 — 4p—3 — 1/2
al) 1+ Ja)¥—2  (1+]af)

Case 5. |a] > 1, 2|a| < |u|. We may then assume that |3 > 2|a].

du du
(2.127) g/ < c+/ S
ful <8 (1+ [u]20=L[ul1/2 Wl <P (14 Ju])10=2

<ot [0+l <o e apEo

- 1+ |3))24
B S o
(L + o))t/
U
2.10.1 Xy bilinear estimate
Lemma 33. ]f—% <s< —%, then 3b=b(s) > % such that ¥V a > %, we have
J0u()lx, _, < ellullx, yomallolx, ;D0 (2128)

Proof. The proof is modelled on the proof for b > 5 glven by [KPV96]. Essentially,
we only need to replace one of the calculus estimates ([KPV96] Lemma 2.3 (2.8)) in
that paper with a suitable version for b < 5 (Lemma 31). Let p = —s. It suffices to

prove

// |€]d( é} (51)”@1(5,71) (£2)P2(E2,72)
(1 — €3)¥( B(&1,m) B(&, 72)

< CHdHL2HngL2H92HL2 (2.129)

for d > 0, g1 > 0, g9 > 0, where * indicates integration over &, &1, &2, subject to
the constraint & = &1 + &9, and over 7, 71, 79, subject to the constraint 7 = 71 + 79,

and where 3;(&;,7;) = (1 — §§>b + X|§j|S1<Tj>a' By symmetry, it suffices to consider
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the case |19 — 53\ <|m - é“i)’] We address (2.129) in pieces by the Cauchy-Schwarz
method of [KPV96]. We shall assume that |{1] > 1 and |{2]| > 1, since otherwise, the
bound (2.129) reduces to the case p = 0, which has already been established in [CK02].

Case 1. If |1o — {%\ <|m - fi)’| < |7 — €3], then we shall show

1/2
£ £9)2P
(r — §|~3| <//T1 e ( 2 z>_ §§)>2b d&y d71> <c (2.130)

To prove this, we note that

T— €+ 36618 = (1 — €3) + (11 — &) (2.131)

By lemma 31 with a = {% and [ = fi)’ + 7 — &3 4+ 366169, we get

€ (2)20 (€)% e
2130) = ey (fgl (=6 4 3t )] 5) (2132)

By (2.131), |£€1&9| < |7 — €3], Substituting |&1&9| < |7 — €3]]€] 7! into (2.132) gives

_ _ /2

gt (r — &) 3! 1
2.132 2.133
(2152 5 (&) /51 (r— €3+ 3¢616) 107! .

Let u = 7—&343£€1&9, so that, by (2.131), we have |u| < 2|7—&3|. The corresponding

differential is
cdu

T 1

Substituting into (2.133), we obtain

3_ _ 1/2
€117 {r — €8P du
(2.133) < 6L </|u|§2lf—£3| = %53”1/2) (2.134)
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By Lemma 32,
(7 — g3yp+1-3D

(€% 3(r = Jeys

(2.134) <
This expression is bounded, provided b > % p+ 1—52

Case 2. |1y — &3] < |1 — &), |7 — €3] < |m — &} In this case, we shall prove the

bound
- 1/2
1 226160 >
m <//7T (€)20 (1 — £3)2b( 1y — €§>2b dg dr <c (2.135)

(11— &)+ (12 — &) — (1 — &) = 3¢61& (2.136)

Since

we have, by Lemma 31 with o = &3, B =& + (1 — &) — 36616,

3 1/2
1 (> M6
2150 = o gy </g g ace e (2157)

We address (2.137) in cases. Cases 2A and 2B differ only in the bound used for
(5)2_4p, while Case 2C is treated somewhat differently.

Case 2A. |€1] ~ |€] or |&1] << |€|. Here, we use (£)2740 < (£1)274.

Case 2B. || << |&1] and [|71] >> zlﬂflfg or 11| << zlﬂé‘l\?)]. Here, we use (£)2740 < 1.
Cases 2A and 2B. In the setting of Case 2A, let g(£1) = (£1)1 72, and in the setting
of Case 2B, let g(£1) = 1. Since by (2.136), [££1&2| < |1 — é“i)’],

1/2
d
(2.137) < g(&1)(m — )P0 (/g - 35551@)41;—1) (2.138)
i

Set u =71 — & — 3¢&&. Then

du = 361 (&1 — 26)dE = cl&y |V ?|u — (1 — Jed) |/ 2de
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which, upon substituting in (2.138), gives

_ 1/2
g(&1)(m — €3yPb ( du )
2.138) < 2.139
(2:138) < HES /|u|s2|n—§%| (uy4=1jy — (1) — L¢3)1/2 (2:139)

By Lemma 32,
(2.130) < g(&1)(ry — &)pr1=3

T g |V - feh1/4

In Case 2A, g(&1) = (£1)172P, and (2.140) becomes

(2.140)

(r] — £3)pr1=3

(€2 - feh4

which is bounded provided b > %p + 1—52 In Case 2B, ¢g(£1) = 1, and (2.140) becomes

(r1 — &})pt1-3
()4 — 114

which is bounded (under the restrictions of Case 2B) provided b > % p+ %
Case 2C. & << [&1]| and |7q| ~ 21{\51\3. Here, we return to (2.137) and use that

11| ~ 11&1]3 and 3[¢616] < L& implies (1] — & — 36€1&2) ~ (€1)3. Substituting
into (2.137),

1/2
(2137) < (€)% 71043 < /|£|<|§ o df) < (g)r1o0+S
=61

which is bounded provided b > 1—15 p+ % O

We shall now extend this result by interpolation. From Lemma 33, we have (2.128)
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for s = —% and some b < % As a consequence,

10z (uv) || x 5
3

< N0e(u)llix_5 , +10@ew)elllx 5+ 10[ul@e)]lx_;

5 i i
< (HUHX% ,NDa T HaquX% meQ)(HvHX% ,Da T H@vaX% ,NDa)
< llullxs ,npallvllix s, noa
3 3
thus establishing (2.128) for s = § Now we can interpolate between the cases s = —%

and s = 3 to obtain (2.128) for —4 3 <5 < . Similarly, we can extend (2.128) to all
5 > —Z[. We thus obtain:

Proposition 11. If s > —%, then 3 b =b(s) < % such that for any a > %,
19z (wo)llx, _,, < llullx, yopa IVl X, ynDa (2.141)

2.10.2 Yy bilinear estimate

Lemma 34. [f—% <s< —%, then 3b=10b(s) < % such that ¥V o > %,
J0(w)ly, _, < ellulx, yapallvlx, yom (2142)

Proof. Let p = —s. Note that by the X, ; bilinear estimate Prop. 11, it suffices to
prove the lemma under the assumption |7| < %]f 3. Constant multiples are routinely

omitted from the calculation.

Step 1. If |&] > 1, [&] > 1, | — &3] < | — &), |11 — &}| < 1000]7 — €3], and
7| < %\5\3, then the expression

1/2
‘5‘ €120 €92
</§1 /71 (11 — &)2(ry — £3)20 p dn d§1> (2.143)
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is bounded. Proof: Applying Lemma 31, using 79 — 55’ = (1—-8%)—(n —5%) +38£1&9,

(2 143) < ‘§| / |£1|2p|£2|2p d¢ 1 (2 144)
. T ()5 & yao—1 ! '

(1)3(€)3 T — £3 4 366169
3
Using that 61z < 7,
B 1/2
|f|1 p‘T—£3‘P 1
2.144) < ; -
= (€)3(r)P/3 </E1 (1 — €3 43661 &)101 51) (2.145)
Set
u=7-6+366(E - &) (2.146)

so that 3¢(&; — %5)2 =u— (71— %53), and thus
Bsleli2er — &l = ¢ ?u — (r — 167/

Also, du = 3£(€ —2&1) d&y. 1t follows from the hypotheses of this step that the range
of integration is a subset of |u| < |7 — £3|. With this substitution,

_ 1/2
St du
RN TTE (4&wuﬁmwMAMW%u—v—iéwﬂ> e

By Lemma 32,
3
g0l — 31 — 412

(2.147) < (€93 ()03 — %§3>1/4

(2.148)

If |7] < %\5\3, then (2.148) reduces to

1470 (6) ()02
(€)30e)3/

and the exponent 2p — 9b + 3 < 0 provided b > %p + %
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Step 2. Tf & > 1, €] > 1, |m — €3] < |1 — &}, |7 — €] < 1l — €3, and
7| < §1€[3, then

1/2
TY2073(€)5b(ry — €3)2 T ‘
1
is bounded. Proof: Si < |€]3, we h < , and th
is bounde roof: Since || < [£]°, we have BT, <T>2b—23g and thus
) 2 1/2
(2.149) g |§1‘ (// o < |§i2| —a d&h) (2.150)

Carrying out the 7 integral and applying Lemma 31,

1/2
[S1k NER
2150 = g </g % — € — 86616y 1 BT df) (2151)

Case 1. 3|¢61&| < 5lm — &),
Since |7 — &3] << |1 — &f] and |7] < £[¢]3, we have ¢} << |7 — &}|, giving

(1] — € — 366169 + €3) ~ (1 — £})

and thus 1/2
&l €&l
250 = (1 _5§>3b—% ( ¢ (O dg) (2152)
Using that [££1&| < |71 — &),
_ 2-2 1/2
(2.152) < m gfgl)p_ ( |§| T ) (2.153)

Carrying out the £ integral over the region [£| < |m — {%\1/3 gives

2—-2p
/5 |£<|§>2p d§ < (1 — Ef’>1_%”
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and thus
1
(2.153) < (r — &3)1 3030 (2.154)

which is bounded provided b > %

Case 2. 3|¢61&| > $|m — &),

In this case, [¢| < {5/€1]. Indeed, if |&] < 10[¢], then 3|¢&16| < 3301¢[3 < Lm — &),
Let u =71 — & — 361 (€ — £1)€ + €3, du = 3¢1(—2¢ + 1) + 3¢%. Now 3¢ < 13glé1/?
and 3|¢1(—2¢ + €1)| > #61]%, and thus 3|¢[? << 3]¢1(2¢ — 1))

1/2
€117 €716l 1361 (61 — 2€) + 3€7]
2.151) < d
B0 = g </g % — & — 366 + ) Tig (6 26)]
(2.155)
Using [&o| ~ [¢1], and (&1 — 26)| ~ €12,
/2
! €[>~
(2.155) < (m — 5%>b </|u|§|n—€i)’| (u)4b—1 du (2.156)
_ 3
Using that |¢]| < %7’5”,
_ _ 1/2
&Pt - &) du
. —_— 2.157
(21905 61 [20=P) 7y — )0 /|u|§|71—§i”| (u)4b—1 (2157)
Carrying out the u integral,
(2.157) < &l (2.158)
PO - g |
which is bounded provided b > % — % p.
O

Lemma 35. ]f% < s <3, then 3b=>b(s) < % such that V o > %,

10 (uw0)ly, _, < ellullx, npallellx, D0 (2.150)
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Proof. Tt suffices to show

< CHdHL2HngL2Hg2HL2

/!5! r3de ) al&.mn) g2(62,m)
(T=8H (1 = &) (m0 — E5)P(&9)*

for d > 0, g1 > 0, go > 0, where x indicates integration over &, &1, &2, subject to the
constraint £ = &1 + &9, and over T, 71, T9, subject to the constraint 7 = 71 + 7, under
the assumption |7| >> |€|3, since, for s > 0 in the region |7| < 2|¢|3, 102 (uo)lly, _, <
CHaa:(UU)HX&_b- We shall show 7

1/2
J€l(r)®/3 d&y dry < 2.160
(r —53 (/51 /Tl (1 — €3)%(€1)%%(my —§§>2b<§2>28> =" (2100

Since 7 — &3 + 366169 = (19 — ES’) + (1 — {i)’), by Lemma 31, we have

1/2
- 1 1
(21600} < [l </el 6% [ — € + 3eerty) ] dfl) (2101

Case 1. |&1| << |&)| or |&]| << |&1]. In this case, 3|€€1&| << |€]3, which combined
with |£]3 << |7|, implies (7 — &3 4 36£1&) ~ (7). Thus

/2
L\ §—3b+3 €2 d&y ! y5—3b+3 &
= </§1 <§1>28<52>28> = </51 <51>28—2<52>28—2>

(2.162)
Provided s > 5 3 and b > 95 + 6’ (2.162) is bounded.
Case 2. [&1] ~ |§2|-
Case 2A. 3|€€1&| ~ |7] or 3|€€1&| >> |7|. Then we ignore (1 — &3 + 35515‘2)46_1 in
(2.161) and bound as:

1/2

|

2/ % —2b 12
(2.161)<( %d@) (2.163)
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Using that () < c¢(§)(§1)(82), (§) < (€1) + (§2), and (&1) ~ (&2),

1/2
(2.163) < ( / W dgl) (2.164)

Thus, we need 2s + 6b — 2 > 1, which is automatically satisfied if s > % and b > 0.
Case 2B. 3|££1&9| << |7|. Here, we just follow the method of Case 1. O

Interpolating between the results of Lemma 34 and Lemma 35, we obtain

Proposition 12. If —% < §< 3, then 3b=b(s) < % such that ¥ o > %,
J0s(w)ly, _, < ellulx, yapallvlx, ym (2165)

2.11 Well-posedness theorems for the left half-line

We shall consider two regions.

Ll sl 1
Region I. —%<5<% - 0 5 2
Ll s 1
2 3 6
No compatibility conditions are needed. (The nonlinear result will only hold for
3
S > —1- )
1 s+1 5
Region II.%<S<% - 2 0 0
1 s 1
6<~3<2

We need f(0) = ¢(0), but nothing connecting g and 9, ¢.

If we were to enter the next admissible region, % < s < %, we would need the

additional compatibility condition g(0) = 0,¢(0).
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Let

+1
Zs={w| weC(zx e (—o0,+o0); HF (Ry)), sup |[w(z, )| s41 < +oo,

zeR H 3 (Ry)
dpw € C(x € (—o00, +00); HY3(Ry)), sup 192102, =) gsys g,y < +00
xe
w e C(t € (—oo,+00); H*(Ry) ), sup ||w(x,t)]|Hs(Rx) < 400
teR

weXs’mea}

with norm
lwllz, = sup [lw(z, =) st1  +sup [|Ozw(z, =) /3
' zeR H™3 (Ry) zeR u;y/!
+ sup lw (@, )l sw,) + vl x, ynDa
Let

_ s+1 s
Vs ={ (0, f,9) | o(x) € H*(R), f(t) € H 3 (R)), g(t) € H3(R})
and ¢, f, g satisfy the compatibility conditions for the

region in which s lies}

with norm
||(¢7 /5 g)HVg = ||¢||H8(R;) + HfHH«%_l(Rj) + HgHHs/S(R;r)

Theorem 3 (Homogeneous solution operator for left half-line). Let s be in
either region I or II as described above, and let b < % Fiz T > 0. Then there exists

a=as) > % and a bounded linear operator

HS7 : Vs — Zs,b,a



142

such that, with (¢, f,q9) € Vs and uw = HSp(¢, f,g), we have

(Ou+33u=0  in(—00,0)x (0,T) (2.166)
u(z,0) = ¢(z) on (—o0,0) (2.167)
u(0,t) = f(t) on (0,7) (2.168)

Opu(0,t) = g(t) on (0,7T) (2.169)

where (2.166) holds in the sense of distributions, (2.167) holds in the sense of C(t €
1

(—o0, +00); H*(Rz) ), (2.168) holds in the sense of C(x € (—00,400); H%(Rt) ),

and (2.169) holds in the sense of C(x € (—00, +00); Jig (Ry))

Proof. Collectively, the estimates require that

—1<A<%
s—1<A<s+3 (2.170)

1 5=A+2
73 <OS 3

Obtain extensions f € HF (Ry) of f € HF (RY), § € HI(Ry) of g € HI(R}),
and ¢ € H%(R,) of ¢ € H5(R;) of comparable size. Let Wy(t) € C*(R) be such
that W1(t) = 1 on [T, 7], and supp W(t) C [-27T,27], and let Wo(t) = W (t/2),
Us(t) = Wy(t/4). By Lemma 25,

H%(t)s(t)cz;!x:ollﬂ%rl(&) < clloll s ()

and by Lemma 28,

102D, l13. ) < N

Let
1) = X(0, 400y (O01(0) [ F(0) — S5, |

, and therefore by Lemma 7,

D=

< &l <

=l

If 5 is in Region I (=3 < s < 1), then —
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Corollary 1,

1 f1l 541 + (16l s (ry) (2.171)

< s
Ho (Ry) H 3

(Re)

If s is in Region 11 (% <s< %), then % < %1 < % and by the compatibility condition

f(0) = ¢(0), Lemmas 9 and 8, we have the same bound (2.171). Let

91(6) = X(o,100) O T1(8) [3(0) ~ 2514,y

If s is in either Region I or II, then —% <3< %, and therefore by Lemma 7, Corollary
1

’

s <gll s 4+ &llgs 2.172
||g1||H§;(Rt) IIQIIHg(Rt) 161l 775 (Ry) ( )

s+l
Pick A1 # A9 such that the conditions (2.170) are satisfied. Let hq, ho € H, 3

solve the system

(Ry)

fit) = Zsin(ZA; + B)hi(t) + Fsin(Ehg + F)ha(t)
U3(1)T /391(t) = 5 sin(FA1 — F)ha(t) + 5 sin(FAg — F)ha()

(Note that the determinant of the 2 x 2 coefficient matrix is nonzero.) Then

1Pl sp1 +llhell sya <cllfill spr Hcllgnll
3 (RF 3 (RF T (RF

Hy® (R Hy® (R H, HE (R})

(Rt ) 0\t
Also, supp hy C [0,477], supp hg C [0,47]. Now set
u(a, 1) = Wa(D)S(B)d(x, 1) + Wa(t) L2 (h) (. ) + Wa (1) £22 (ho) ()

Then, by (2.71) and Lemma 26,

m [[f(t) —w(z,t)] s1 =0
2—0 H™3 (Ry)
m |[lg(t) —ui(z,t)]| s =0

a—0~ H3 (Ry)
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Thus, w is a solution to the problem (2.166)-(2.169), and satisfies all the needed
estimates by Lemmas 19, 20, 22, 23, 25, 26, 28, 29. 0

Theorem 4 (Inhomogeneous solution operator for left half-line). Let s be
in Region I or II, as described above, and let b < % Fiz T > 0. There exists

a=a(s) > % and a bounded linear operator

X pNYsp— Zspo foranys
[HSy : ’ ’ Y .
Xs—b = Zspa 0<s<3y

such that, with w € Xy _p for 0 < s < % orw € Xy _p N Yy _y for any s, and

u = IHSp(w), we have

(Ou+ Pu=w in(—00,0)x (0,T) (2.173)
w(z,0) =0 on (—00,0) (2.174)
w(0,8) =0 on (0,T) (2.175)

9;u(0,t) =0 on (0,T) (2.176)

where (2.173) holds in the sense of distributions, (2.174) holds in the sense of C(t €
1

(—o00, +00); H*(Rz) ), (2.175) holds in the sense of C(x € (—00,400); HS_JFT(Rt) ),

and (2.176) holds in the sense of C(x € (—00, +00); H3 (Ry)).

Proof. We shall require a < 1 — b in addition to the requirements stated at the
beginning of the proof of Theorem 3. Let

t
up(z,t) = \I/l(t)/o S(t —thw(x, ') dt’

Then wuy satisfies the needed estimates by Lemmas 21, 24, 27, 30. Let f(t) = u1(0,1)
and ¢(t) = 0yu1(0,t). By Lemma 27 and 30,

|
lwllx, _, 0<s<jy

1 + s <c
HfHH%F—(Rﬂ ||9HH3(R?)

¢ HwHX&_b + H@UHY&_b for any s
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Set ug = HS7(f,g,0), and then set u = uy — ua. O

Theorem 5 (KdV on the left half-line). Let s lie in either Region I or II, and sup-
+1

pose we are given initial data ¢(x) € H3(R™), boundary data f(t) € HS_T(RJF), and

derivative boundary data g(t) € H3 (RT), satisfying compatibility conditions needed

for the region in which s lies. Then

3T = (e 1] e ol 5) > 0
and u(x,t) such that
541

u € (XgpN Do) NC(t € (—00,+00); H*(Ry) ) NC(z € (=00, +00); H 3 (Ry))

Orpu € C(z € (—00,+0); H%(Rt))

satisfying
+ N s +sup ||Gpu(z, =)l s+ — )l s
lullx, yrpg + sup flu( )HH%(R” sup [|Opu(x )!\H3(Rt) Sup [[u(= Ol s (v
< S(o— s s
< cllolrgy + W1 o ol 5 )
and )
dpu+ Bu+udyu=0 in(—00,0) x (0,7) (2.177)
u(z,0) =¢ on (—00,0) (2.178)
u(0,t) = f on (0,7T) (2.179)
\ Ozu(0,t) =g on (0,7) (2.180)

where (2.177) holds in the sense of distributions, (2.178) holds in the sense of C(t €
1

(—o00, +00); H*(Rz) ), (2.179) holds in the sense of C(x € (—00,400); H%(Rt) ),

and (2.180) holds in the sense of C(x € (—00, +00); Jig (Ry))

Proof. By a scaling argument, it suffices to prove the result for 7' = 1 provided the
initial-boundary data triple is sufficiently small in norm. This follows from Theorems

3 and 4 by a standard contraction argument, with w = 8x(u2). For 0 < s < %, we
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appeal to the bilinear estimate Prop. 11, while for —% < s < 0and % < s < %, we

appeal to the bilinear estimates Prop. 11 and Prop. 12. O

2.12 Well-posedness theorems for the right half-line

The results for the right half-line are proved in an analogous fashion, so we shall only

state the results.

Ll sl 1
Region I. —%<5<% - 0 0 .
_1 < S < 1
2 3 6
No compatibility conditions are needed. (The nonlinear result will only hold for
3
S > —1- )
1 s+1 5
Region II.%<S<% - 2 5 0
1 S 1
6<~3<2

We need f(0) = ¢(0).
Let

s+1
3

Zs={w|weClC(xe(—o00,+0); H3 (Ry)), sup [|[w(z,—)| s+1 < 400,

z€R H3 (Ry)

w e CO(t € (—oo,+); H(Ry) ), sup Hw(x,t)HHs(Rm) < 400
teR
w e Xs,b N Dq }

with norm

Jwllz, = sup (e, <) wsr o+ sup (e, Ollsqe) + lwllx, 4,

z€R H (Ry)  teR
Let
Ve=1{(6.f) | 6(x) € BSRY), f(t) € HF (RF), and ¢, f satisfy the
compatibility conditions for the region in which s lies}
with norm

1, Allvy = 0l s mety + Hf”gs—?l(mj)
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Theorem 6 (Homogeneous solution operator for right half-line). Let s be in
either region I or II as described above, and let b < % Fix T > 0. Then there exists

a=as) > % and a bounded linear operator

HS7: Vs — Zspa
such that, with (¢, f) € Vs and u = HSp(o, f), we have

du+d3u=0  in (0,400) x (0,T) (2.181)
u(z,0) = ¢(z) on (0,+00) (2.182)
u(0,t) = f(t) on (0,7) (2.183)

where (2.181) holds in the sense of distributions, (2.182) holds in the sense of
C(t € (—o0,+00); H*(Ry) ), and (2.183) holds in the sense of

+1
C(z € (—00,+00); H3 (Ry)).

Theorem 7 (Inhomogeneous solution operator for right half-line). Let s be

i Region I or II, as described above, and let b < % Fiz T > 0. There exists

a=as) > % and a bounded linear operator

X _pNYy _p— 72 for any s
THS - s,—b ,—b s,b, 1
Xs—b = Zspa —1<s<35

such that, with w € X 3 for =1 < s < % orw € Xg _p NY, _y for any s, and
u = IHSp(w), we have

Apu—+ O3u=w in (0,400) x (0,T) (2.184)
u(z,0) =0 on (0,+00) (2.185)
u(0,t) =0 on (0,7) (2.186)

where (2.184) holds in the sense of distributions, (2.185) holds in the sense of

C(t € (—o0,+00); H*(Ry) ), and (2.186) holds in the sense of
541
O € (—o0, +00); HF (Ry)).
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Theorem 8 (KdV on the right half-line). Let s lie in either Region I or Il

and suppose we are giwen initial data ¢(z) € H*(RY) and boundary data f(t) €
+1

HST(R+), satisfying compatibility conditions needed for the region in which s lies.

Then
3T =Tl gs, Ifl] st1) >0
H 3

and u(z,t) such that

u € Xy 11 Do) N C(1 € (~00, +00); H*(Ry)) N C((x € (~00, +00); H'F (Ry))

satisfying
U + sup ||u(x, — 1 4+ sup ||u(—,?
el o+ 0P e s s s Dl
<c + 1
6l + 191 s )
and

A+ Bu+udpu =0 in (0,400) x (0,7) (2.187)
u(z,0)=¢ on (0,+00) (2.188)
u(0,t) = f on (0,7T) (2.189)

where (2.187) holds in the sense of distributions, (2.188) holds in the sense of

C(t € (—o0,+0); H*(Ry) ), and (2.189) holds in the sense of
541
C(w € (—o0, +00); HF (Ry)).
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2.13 Initial-boundary value problem on the line segment

In this section, we will solve the initial-boundary value problem on the line segment

0<z<1:

(O + 03u+udu=0  in(0,1)x(0,7)
w(0,t) = g3(t) on (0,T)
w(l,t) = g1(t) on (0,T)
Opu(1,t) = go(t) on (0,T)
\ wz,0)=¢  on(0,1)

+1 +1
with ¢(z) € H(0,1)), 1() € HS (RY), ga(t) € HI(RY), g(t) € HS (RT). We
will consider two regions:
Region 1. —% <s < % Here, we do not need any compatibility conditions.

Region II. % <s < % Here, we need g3(0) = ¢(0) and g1(0) = ¢(1).

Theorem 9 (KdV on the line segment [0,1]). Let s lie in either Region I or
+1
II. Given initial data ¢(z) € H*((0,1)), and boundary data g1(t) € H%(R+),
+1
ga(t) € H3 (RT), g3(t) € HS (R™T) satisfying compatibility conditions needed for

the region in which s lies. Then
3T =T(0llgs: 1l sgrsllgall 5. llg3ll sg1) >0
H 3 H3 H3
and u(z,t) such that
+1
u € (XN Do) NC(t € (=00, +00); H¥(Ry)) N C(a € (=00, +00); H 3 (Ry))

Opu € C(z € (—00,+0); H%(Rt))



150

satisfying

u + sup [|u(x, — 1
lullx, ynDa xp|| (@, =) st &)
+ 0 — + — )y

c(llellms(o,1) + HngHi?,l(R loall 5 oy T HQSHH% )

(RT) (RT)
and
(Ou+ 03u+udpu=0  in(0,1) % (0,7) (2.190)
u(0,1) = gs(t) on (0,7) (2.191)
u(L,t) = gi(t) on (0,7) (2.192)
Opu(1l,t) = go(t) on (0,7) (2.193)
\ u(z,0) = ¢(z) on (0,1) (2.194)

where (2.190) holds in the sense of distributions, (2.194) holds in the sense of
C(t e (—o0,+00); H*(Ry))

(2.191), (2.192) hold in the sense of

C(x € (—o0, +00); HSJ?:—l(Rt))

and (2.193) holds in the sense of
O € (~o0, +oo); H3(Ry))

Let C be the space of smooth functions defined on [0, 1] that vanish, together with
all derivatives, at 0, but with no restriction for 1. For o > 0, let H? be the closure
of CNH?((0,1)) in H?((0,1)). Thus, H? will be the Sobolev space on (0,1) with a

vanishing condition at 0.

Claim 6. Let § € C*°(R), (t) =1 for —1 <y <1, supp 0 C [-2,2], and A > —2.

s+l
Then for k arbitrarily large, the operator H(t)ﬁih(l,t) : Hy® (R;L) — H(])"(R;F) is
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bounded.

Proof. 1t suffices to prove the result for Q(t)UJ);h(l, t). By (2.46),

+o0 (_1 + y)>‘+2

O(ULA(1,t) = O(t)e™ / U(B:h)(y,t) dy

-1 TO\+3)
_ T oo (_1 + y)/\+2
= 0(t)e /y_l T\ +3)

t / —t M /
{/0 A (m) 6(2(t t))(t—t’)l/?’ dt'| dy

= 0(t) y H(t —t)h(t')dt

where

Z'M@/+°° (y — 1)M2 ( y ) |
H(t) = TYE =1 F()\+3)A /3 dy ift>0

0 itt <0

Using the rapid decay of the Airy function and all of its derivatives on the right, we
obtain H(t) € C§°(R). O

We need a special case of the Rellich theorem.

1
Theorem 10 (Rellich). For k > igl, the inclusion i : H*((0,1)) — H%_((O, 1))

18 compact.

See, for example, [Tay96], p. 286, Prop. 4.4. Let iy : HE — Hk((O,l)) be the
inclusion. Then, by the Rellich theorem, i 0 iy : H¥ — H S%_1((0, 1)) is compact. But
since the image i o iy (H*) C Hi?’l and H% is a closed subset of H%((O, 1)), we
have that io7 : HE — H% is compact. By precomposing with extension and post-
composing with a projection, the map from Claim 6, Q(t)ﬁih(l,t) ; H(j%l (R?‘) —
H(])f(R;L) becomes O(t)ﬁﬁ‘rh(l,t) : He%rl — H*, and thus by the above, the map
Q(t)ﬁi‘rh(l,t) : H% — H% is compact.
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Proof of Theorem 9. By the contraction method of §2.11, it suffices to solve

(Ou+0%u=0  in(0,1)x (0,7)
u(0,t) = f3(t) on (0,7T)

u(1,t) (
Opu(l,t) = fo(t) on (0,T)
u(zx,0) (

with

+s -
lullx, ynDq ngU(x, )HH%_I( i (Ry)

+sup [|Opu(z, —)|| s+ sup [u(=, 1) gs(r,)
Ry) @ t

<c(lf1ll sq el s ISl s )
Hy3 (RY) Hg (RT) Hy3 (RY)

for given fi, f9, and f3.
We shall position two forcing operators £1 and Lo at the right endpoint z = 1

and one forcing operator L3 at the left endpoint = = 0.

Let L(h1,ha, h3) = L1h1 + Lohg + L3hsg, so that, in the sense of distributions,

(at + 8§)£(h1, h27 h3)(£7 t)

@12 )/ S
Ton) Loty O+ =Ty ()0
1 eimh3 o I_%a_% (h3)(t)

The key feature is, of course, that (0 + 8%)£(h1,h2,h3) =0for0 <z <1 We
+1 +1 +1
need to appropriately select hi(t) € H%_, ho(t) € H%_, hs(t) € H73 so that
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L(h1,hg, h3)(z,t) meets the specified boundary conditions:

L(h, b, hy)(1,1) = fi(t) € HF
0L (1, ha, h3)(L,t) = fo(t) € H3 (2.195)
s+1

L(h1,h2,h3)(0,t) = f3(t) € H 3

The set of conditions (2.195) translates into the matrix equality

fi(®) gsin(FAr+§) Fsin(FAz+ §) L3, hi(t)
Ty3fa(t)| = |gsin(5a —§) Fsin(5r2 —§) Ty/3(00Ls)|,y | |ha(t)
f3(t) Ly, Lo, Lel™A3 h3(t)
(2.196)
+1
or f = (E+K)h, with f = (f1711/3f27f3)T7 h = (h1,ho,h3)T, and E, K : [H%_]?’ —
[H%P
%sin(%)\l + %) %Sin(%)\z + %) 0
E=|gsin(Ba—F) gsin(Fa-F) 0
1
‘Cl ’sz /“12 ’sz §€Z7T)\3
0 0 L3], 4
_ t
K=10 0 Il/Sax’C?’}a::l
0 0 0
Note that FE is invertible; in fact
_ \/gsin(%)\z—%) —\/gsin(%)\2+%) . .
Sin(%)\g — %)\1) Sin(%)\g — %)\1)
E—l — | = 3Sin(%/\1 — %) \/gsin(%)\l + %) 0
Sin(%/\g — %/\1) Sin(%)\z — %/\1)
| A1 A2 3€—i7r)\3_
where
y 3\/§€—i7r)\3 Sin(%/\l - %)[, ’ 3\/§€ 1S Sln(%)\z _ %)E }
TG ) 0T T (e - 5y e
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and

_ —3VBe ™3 sin(TA + &

—imAa
Ay — 3v/3e71TA3 sm(%)\g + %
Sin(%)\g — %)\1)

Sin(%)\g — %)\1)

)£2’x:0+ )ﬁl}x:O

Also, note that K is compact. We have f = (E + K)h <= E~1f = (I + E"'K)h,
which is a Fredholm equation, since E~1K is compact. By the Fredholm alternative,

ran(] + E71K) is closed, and dim ker(I + E~1K) = dim ker(I + E~1K)* < 0.
Claim 7. ker (I + E71K) = {0}.

Proof. Suppose (I + E~1K)h = 0. Since E~1K has the form

0 0 *
E'K=10 0 =
0 0 *

we have hy = 0 and hy = 0. The equivalent equation (E + K)h = 0 gives h3(t) =
—3e7 ™3 L1171 (0,1) — 3eTT™A3 Lohg(0, 1) (see (2.196)) and therefore h3 = 0. O

Thus, (I + E~LK) is invertible, and therefore, given f, we may set h = (E + K)™1f,
and L(h1, ho, hg)(x,t) will meet the boundary conditions (2.195). O



CHAPTER 3
THE INITIAL-BOUNDARY VALUE PROBLEM FOR 1D
NLS ON THE HALF-LINE

3.1 Introduction

[CKO02] introduce a new versatile method for treating nonlinear initial-boundary value

problems. Their method involves the introduction of a Duhamel forcing operator

/1f S(t —t)oo(z)h(t') dt’ (3.1)
0

where S(t) denotes the linear solution group, to take care of setting the boundary
values at © = 0. [CKO02] treat the generalized KdV equation on the right half-line. In
the present chapter, I adapt their method to treat NLS on the half-line. The initial-
boundary value problem for NLS on the right half-line is: Given f € H %(Rj ),
¢ € H*(R™), with the necessary compatibility conditions relating f and ¢ at 0, find

u solving

iOu+ 02u + Aufu[*1 =0 for (z,t) € (0,+00) x (0,7
u(0,t) = f(t) forte (0,7) (3.2)
u(z,0) = ¢(x) for z € (0,+00)

The left half-line problem is actually the same problem since u(x,t) solves the left-

hand problem for ¢(x) and f(t) iff u(—=x,t) solves the right-hand problem for ¢(—z)

and f(t).
The present chapter is a synthesis of the techniques in [CK02] with the standard

proof of local well-posedness for NLS on the line R, using the Strichartz estimates

155
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152
(see [Caz03]). We take the space traces and mized norm estimates for the group /%%

and the Duhamel inhomogeneous solution operator
L n52
/ (=02 b o) af!
0

used in this standard proof and add to them local smoothing or time traces estimates.
We also need to introduce a Duhamel forcing operator (3.1), examine its continuity
and decay properties for h € C'SO(R), and prove space traces estimates, time traces
estimates, and mized norm estimates for it. We then present a solution to the problem
(3.2) by the contraction method for s =0, 1 <a<b5and s =1, 1 < a < 400 with
the compatibility condition ¢(0) = £(0). The L?-critical case s = 0 and o = 5 is also
treated using the method of [CW89].

Theorem 11. There is local well-posedness of (3.2) for (¢, f) € L*(RF) x H1/4(]Rf)
and 1 < a <5 (for a =5, the time of existence depends on the initial and boundary
data itself, not just on the corresponding norms). There is local well-posedness of
(3.2) for (¢, f) € H' (RF) x H3/4(Rj) and 1 < a < +oo, with the compatibility
condition ¢(0) = f(0).

The uniqueness component of “local well-posedness” is in reference to the integral
equation formulation of (3.2). Since there are many ways to rewrite (3.2) as an integral
equation, this is a serious limitation. [BSZ04] resolve this issue by introducing the
notion of a mild solution, i.e. one that can be approximated by smoother solutions,
and prove uniqueness of mild solutions. The solutions we construct are mild solutions.

The primary new feature of the results obtained here, in comparison with earlier
work on the problem and related problems, is the limited regularity required on the
boundary data f(t).

[Fok02] in the cubic (integrable) o = 3 case with Schwartz initial data ¢(x) and
sufficiently smooth boundary data f(t), obtain a solution by reformulating as a 2 x
2 matrix Riemann-Hilbert problem. In this setting, [BAMFS03] obtain an explicit
representation for d;u(0,t). Inverse scattering techniques are also applied to the

problem in [Vu01].
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[SBO1] consider a bounded or unbounded domain Q in R™, with H! initial data,
smooth compactly supported boundary data, and nonlinearity giving a positive con-
tribution to the energy, and obtain the existence of a global solution (uniqueness is
only addressed in limited circumstances). This solution is obtained as a limit of solu-
tions to approximate problems with the help of a priori identities. Earlier, [CB91] and
[Bu00] had obtained solutions to the 1D problem for o > 3, A > 0 on the right half
line for initial data in H2 (RT) and boundary data in C?, using semigroup techniques
and a priori estimates. The multi-dimensional problem in a domain 2 C R, with
smooth boundary and boundary condition u} a0 = 0, had been considered previously:
[BG8O] treated €2 bounded, n = 2; [Tsu83| treated 2 unbounded, n > 3; [Tsu91]
treated € an exterior domain for n > 2; [Tsu89] treated © bounded, n = 2; [Wan00]
generalized [BG80] to initial data in H®, 1 < s < 2. Some global considerations via
semigroups and Brezis-Gallouet and Brezis-Wainger-type inequalities are discussed in
[Den00a] [Den00d] [Den00c| [Den00b], while in [LC96], there are some global results
on the exterior of the unit ball for radial solutions. Sufficient conditions for blow-up
of solutions with u| aq = 0 are given in [BM96].

Variants of the problem have also been addressed, and we now list some recent
contributions. [Wed03b] [Wed03a] has considered the Schrodinger operator with po-
tential —8% + V in 1D on the half-line with C2 boundary data by considering it as
a Sturm-Liouville problem and proving estimates on the Jost solution. Questions
concerning the spectrum of —A2 + V on the half-space or half-line are considered in
[Pea02], [Bel98], [Eas98]. A quantization of the cubic nonlinear Schriodinger equa-
tion is addressed in [GLM98] [GLM99] by means of a “boundary exchange algebra”.
The nonlocal problem with A replaced by a pseudodifferential operator is considered
in [KNS99]. Time dependent boundaries are considered via the inverse scattering
Riemann-Hilbert method in [Pel00] and [FP0la]. Nonsmooth boundaries are consid-
ered in [Khu98]. Nonlinearities containing derivatives (“derivative NLS”) are consid-
ered in [Mes98]. The line segment problem 0 < x < L for the linear equation has been
considered by a Green’s function approach [Bre97] and by inverse scattering [FP01b],
while [GS03] treat the line segment problem for nonlinear problem by rewriting it as

a nonlinear dynamical system for suitable sets of algebro-geometric spectral data.
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3.2 Needed lemmas from other sources

Lemma 36 (in the proof of [CK02] Lemma 2.8). Let § € C5°(R), and 0 < a <
%. Then

10 e < cllhll o (3-3)
10A o < cllll g—a (3-4)

where ¢ = ¢(0, ).

Proof. We shall prove (3.3). 6h = 0Z,D%h, where I, is the standard fractional

integral operator. Taking ¢ > 2 such that é = % — « and p such that Il? + é = %, we

obtain by Holder and the theorem on fractional integration,
10Al2 < [10llpl|IZaDRllg < e[| DRl

By the a version of the Leibniz rule for fractional derivatives, (see the appendix to
[KPV93b]),
IDY(6R)[|2 < c[|0lloc|| D*Rll2 + |(DYO)A]|2

Also, with the same p and ¢ as above,
[(D°6)hlls < | DOl Za DRlly < cl6] ;1 DRIz

by Hélder, Sobolev imbedding, and the theorem on fractional integration. (3.4) fol-
lows from (3.3) by duality. O

Lemma 37 ([CKO02] Prop. 2.4). ]f% <a< %, then
H§(RT) = {f € H*(R) | Tr(f) =0}
Lemma 38 ([JK95] Lemma 3.7). [f% <a< %, then

/*OO lg(z) — g(0)[?
0

2
4 dr < cl|gllgo(m)
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Lemma 39 ([JK95] Lemma 3.8). [f% <a< %, then

+00 2 1/2
HX(O,—I—oo)gHHoc(R)SC[HQHHQ(R)+( /0 o) dx) ]

Lemma 40 (in the proof of [JK95] Lemma 3.5). If0 < a < %, then

1X(0,400)f 1O < el 1 e
where ¢ = c(a).
Lemma 41 (Lemma 13). If0 < o < +00 and s € R, then
HI—OéhHHg(RJr) < CHhHHS*%Rﬂ

Lemma 42 (Lemma 14). If0 < a < +o00, s € R, p € C5°(R)

HMIahHHS(Rﬂ < CHhHHg—@(R+)

where ¢ = ¢(p).

3.3 Estimates for the linear solution operator

. 9 R .
Let B(z) = ce'” /4 5o that B(¢§) = ¢~ Define

9) = /_m et ME G ¢) d (35)
+00o o 1 / /
_ /_Oo B (%) o) do (3.6)

A2
Then the solution to the homogeneous initial value problem on R is w(z, t) = ¢®% ¢ (z),
le.

10w + 8%10 =0 in Ry x (—o00, +00)¢

w’t:o:¢ on R,
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Lemma 43 (Decay estimate). If 1 < p < 2, then for a given t,
c
lw(=DI < ——7llel e
Cpr
where ¢ is independent of t.
Proof. The case p = 2 follows from Plancherel and the representation (3.5), while

the case p = 1 follows from the representation (3.6). The result for 1 < p < 2 then
follows by interpolation. O

Lemma 44 (Continuity). If ¢ € C3°(R), then for fivedt andV k € N, Ow(x,t) is
continuous; and for fired x andV k € N, 8fw(3:, t) is continuous. Also, ]8’;0%@0(95, t)] <
c(1+[a) "N A+ )Y, = (N, k.1, 9).

192 152 152 152
Proof. We use that 9Fe'0% = ¢9% gk and 87{‘“' etz — jkeit03 92k and apply dominated
convergence to the representation (3.5), since for ¢ € C§°(R), we have ¢ € S(R). The

second assertion follows by integration by parts. O

Lemma 45 (Space traces estimate for the group).

sup (=) s (e,) < elldlarges oo <8< oo
w(—,t) € C(t e (—o0,+0); H*(Ry) ) —00 < § < 400

Proof. The bounds follow straight from the Fourier multiplier representation (3.5)

)
of ¢ The continuity follows from dominated convergence together with Lemma

44. U

Lemma 46 (Time traces estimate for the group). Let ¥(t) € C5°(R) be 1 on
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—T,T], T > 0. Then

y S S TS - < s < 3.7
s el zess <Al o<s<too  (37)
sup [[U(—)w(z, )| 2501 < cl|dllgs(ry,) —00 < 5 < 400 (3.8)
z H 1 (Ry)
25+1
w(—,t) € C(x € (—o0,+00); H T (Ry)) —00 < § < 400

Proof. First we prove the result for the homogeneous Sobolev norms, i.e. (3.7).

w(a, t) = /,5 ¢ HE 3 6 de
400

0
= [ e e | e e de

0 ) ) R . R
= [ 2y o )| ) 2y
n

=—00
Hence
2 0 —Li 1/2y)2
lwo(e, )P gy < / P2 1((—m) )2 di
H 4 (Rt) N=—00

0 A
s A Py
n

=—00

- /g €2516(6)[2 de

establishing (3.7). Now we turn to the result for the inhomogeneous Sobolev norms,

namely (3.8).

Case 1. 0 < s < 400. In this case, % < 2511 and

e@)w(z, )l p2g,) < O Ol rjag,y < o@Dl g, < 1912w,

where the second inequality is Lemma 36 and the third inequality is (3.7). Combining
this with (3.7), we get (3.8) for this s-range.
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Case 2. —% < s < 0. In this case, 0 < Z—Zﬂ < zli, and we separate ¢ into low and

high frequencies as ¢ = ¢, + ¢g. Observe

09 09
10 Zp g (@) 2501 < c|ezpp(a)] 251
H 4 (Ry) H 1 (Ry)

< cllonl g, < clollmsry)

where the first inequality is Lemma 36, the second is (3.7), and the third holds because

¢ contains only high frequencies. Also

()60 . < | p ()60 < .|| pit0F
W (t)e ¢L($)HH2_4ﬂ(Rt)_H (t)e ¢L($)Hgi(Rt)—CH€ ¢L(x)||H21£(Rt)

< CH¢LHL2(R9€) < CH¢HH$(R@~)

where the second inequality is Lemma 36, the third is (3.7), and the fourth holds

because ¢ contains only low frequencies.

Case 3. —oo < s < —%. Then 2—S4+—1 < 0. Again, we separate ¢ into low and high

frequencies as ¢ = ¢, + ¢ Then

itd2 itd? itd? .
IO oL@ 2 < IO EOL@ g0,y < 1 0L@ /0,

Ry

< ||¢LHL2(R$) < ||¢HHS(R15)

where the second inequality follows from Lemma 36 and the third is (3.7). Also,

itd2 itd2 :
[ ()e d)H(x)HH%(Rt < "0 ()], 2si1 ®) = lorl grsr,y < N0lmrs(my)

The continuity follows from the bound (3.8), Lemma 44, and dominated conver-

gence. 0

Lemma 47 (Mixed-norm estimate for the group). Suppose % = % — }%, 2 <
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p < 400, 4 <q < +00. Then

<
Oyw| 1 < c||o|| g1 (3.10)

Proof. In the steps below, the supremum is taken over g € Lg LY such that ||g|| rap <
tx
1.

162 -
lwll /:sup//e” p(x)g(x,t) dx dt
Lily g JiJa

= sup/ ¢(x)/e_ita%g(x,t) dt dz
g Jx t

/e_ita%g(x, t) dt

t

< sup [|¢]| ;2
g Lz L2
= CHQSHL%
where the last step uses Lemma 58. This proves (3.9). Because 0, commutes with
eita%, (3.10) follows from (3.9). O

3.4 Estimates for the Duhamel forcing operator

For h € C§° (RT), define the Duhamel forcing operator

t
w(x,t):/ eilt—t )agéo(x)h(t/)dt/
0

o t x h(t/) /
_/0 B ((t—t’)l/Q) (t—t’)1/2 dt (3.11)

Lemma 48 (Continuity). For h € C{°(R"), define w(x,t) as above. For fived t,

w(z,t) and Opw(x,t) are continuous in x. For fived x, w(x,t) is continuous in t, and
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for fized x # 0, Opw(x,t) is continuous in t. We have the pointwise bound

0 w(z, t)| < c(1 + |z))~N (3.12)
0(t)Opw(z, 1) < c(1+ |af)~V (3.13)
0(8)0pw(x,t)| < c(1 4 |z))~N (3.14)

where ¢ = ¢(0, h).

Proof. 1t is clear from the definition (3.11) and dominated convergence that, for fixed
t, w(x,t) is continuous in z, and for fixed x, w(x,t) is continuous in ¢. The bound

(3.12) is deduced as follows. Let

o(&,t) =0(t) /t e—i(t—t’)fh(t/) dar’

0

By integration by parts and the fundamental theorem of calculus,

F0(t)o(€, )] < (1 + | TH
where ¢ = ¢(6, h), and thus

00D 6(€%, )] < c(1+ [¢]) 2
We have

0(t)w(z,t) = /g e H(E2 1) de (3.15)

and by integration by parts, we obtain (3.12). By integration by parts
b it—tho2 N, b it—tha2 N,
at/ )05 5 (2)h(¢') dt :/ )% 60 ()0, h(t') dt

0 0

from which we obtain that djw(z,t) is continuous in x for fixed ¢, and the bound

(3.13). Now we establish (3.14). Integration by parts gives

2 [ [ 250 ey ae] — iboanie) — [ eiti-1e2 )
p o(x)h(t") dt"| =idp(x)h(t) —i [ e do(x)0ph(t") dt
0 0
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and thus
t . /82
O / =02 5 () h(¥) dt
0
T t . A2
— Li(sgn x)h(t) —i / / / 1092 50 ()0, h(t) dt! da’ + (1)
2'=0J0

Since the left-hand side is odd, ¢(t) = 0. This gives that d,w(z,t) is continuous in ¢
for fixed x # 0 and the bound

t . P
By / =05 50 (r)h(¢) dt'| < c (3.16)
0
From (3.15) and integration by parts, we obtain that
boit—t)a2 N g4 N
ax/ 25 (D () dt| < cla|” (3.17)
0
for each N, ¢ = ¢(N). Combining (3.16) and (3.17), we obtain (3.14) O

Lemma 49. id;w(z,t) + 02w(z,t) = dg(z)h(t) in S'(R?), w(z,0) = 0 and w(0,t) =
BO)L(3)1a(h).

Proof. This is clear from the definition of w(z, ). O

Below are two identities that follow from writing 2x g ) t)=1- 2X (—00,0) (") +

sgn(t —t') and applying dominated convergence.

Lemma 50. For
N
heDg =14 h| hlzt)=> hi(x)hi(t), hi(x), hi(t) € CF°(R)
=1

we have

t + . 0 ;
2/ ez(t—t’)ag%h(x’t/) dtl — / OOBZ(t—t’)ﬁg%h(x’t/) dt’—2/ el(t—t/)aa%h(x,t/) dt’
0

—0o0 —0o0

—ﬁ/ei” lim / em‘f&’? d¢| dr
™ Jr =01 J|T+£2|>€ T+¢E
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Lemma 51. For h € C§°(R),

t. /
; / (i (t=1)02 50 ()t dt
0

too . / U /
_ / e =2 5 (D () dt! — 2 / e =2 50 () h() dt

—0Q —00

: . Ty
L / 6 | lim / ¢ h(72') dr| d¢
™ J¢ =0T J|r4£2|>e T+ §

i TR eiré
— / e"Th(r) | lim / 5 dé| dr
™ Jr =0T J|74+£2|>e T + 3

and

t
283;/ el(t_t/)agéo(x)h(t/) dt’
0

+00 0o
s / =25 (D h() dt! — 20, / =02 50 () h(#!) dt

—0o0 —0o0

1 o (213
+ - / eTh(r) | lim / fe e | dr
T Jr =0t J|r4€2|>e T+ §

Lemma 52.

/ei”%g?d% = me 1l (3.18)
3

lim 78 d
e—0T J|€2-1|>¢ -1

= —msin |z| (3.19)

As a consequence,

~lellr/!/2
lim 5 dE = 7| (3.20)
=0 J|r+€2|>e T+ E —7rsin(|.r||7’|1/2) ,
if <0

7|72

ezx§
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and
1/2

o~ lell7]

i im(sgn x if >0
lim fe—2 ds = (sgn 7) ! (3.21)
0 Jjr4e2>e T+ in(sgn z) cos(|z||r|Y?) ifr <0

Proof. (3.18) is deduced by observing that both sides satisfy (1 — 92)(---) = dy(x),
and therefore, differ by an affine function. But as  — o0, both sides go to 0. (3.19)

is proved using a partial fraction decomposition. O

Lemma 53.
+00 .
' / Ei€2 —af dg' <c a>0 (3.22)
£=0
+00 o2
'/ etit” giad d{' <c a€eR (3.23)
=0
where ¢ is independent of . As a consequence,
+o0o |
‘/ ez)\§26—0¢§ dﬁ' < C|)\|_1/2 a>0 AeR (3.24)
£=0
+00 | 9 .
’/ PIAE” ik d{' < c|)\|_1/2 aceR, NeER (3.25)
£=0

Proof. (3.22) and (3.23) are change of contour calculations. To obtain (3.24) from
(3.22) and (3.25) from (3.23), use the substitution |A|}/2¢" = ¢. O

Lemma 54 (Space traces estimate for the Duhamel forcing operator). If

supp h C [0, +00), then

_ . < - _ 1 3 ]
sup (=)l s g,y < C||h||H2_84_1 N leas<3 (3.26)
If, in adddition, supp h C [0, 1], then
w(—,t) € C(t € (—o0,+00); H*(Ry) ) 0<s<1 (3.27)
1 3
wwlwl- ey <Al 2t h<s<d @

H, (R;")
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Proof. First we establish (3.26). By Lemma 51, for h € C3°(R™),

to
w(z, ) = / =25 () h(#) dt!

0
+oo . .

:/ ez(t_t/)agfs()(l’)h(t/) dt/+/€zx§ hm / eZt’T h(T>2 d7_ dg
—o0 I3 e—0F J|74£2|>€ T+¢

=I+1I

We estimate term II by applying a weighted inequality for the Hilbert transform.

~ 2
S itT h
A / €12 / et igz dr

dg

oo 2 it il(T) ’
:2/ \g\S/e” 5 dr| dg
0 T+
Let = —¢2. Then
— [ | @) 4| ay
nN=—00 n—t

—1 . .
Since —% <s < %, we have —1 < s —% < 1,50 |n|°" 2 is an Ay weight, and therefore

1 .
< [P HiioPar

= [|hl? 951
1 (Ry)

We estimate the term I by duality. Taking the supremum over ¢ € L2*(Ry),
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H¢HL2(R3€) < 1, we have,

+o0 |
M,y =sup [ |92 [ "By ane av| 5
too ., -
:sup/ / ellt—t )8327(50(3:)h(t') dt'} D3¢(z)dx
¢ Jx

= sup // / ei(t_t/)agéo(x)ngx) dx h(t') dt’
¢ Jt'Jx

= sip /t’ e_i(t_t/)aﬂ%Df:gb(x)}x:O h(t') dt’

2
<sup =D | a2t
t t

IN

su h —
d)PHd)HLz(Rx)H I 21 -
by Lemma 46. Now we turn to the estimate (3.28), adding the assumption that
supp h C [0, 1].

Case 1. —% < s < 0. Then —% < 254_1 < -

i

— < — . < _ <
lo(=Dlls@y) < 1o (=Dl sy < ellbll 2sm e clirll 2

where, in the last inequality, we have applied Lemma 36.

Case 2. 0 <s< % Then —711 < 2—‘52—1 < 0. We need the following two bounds:
=Dl < bl o1ysqa,y < Bbllgrorjagy S il ot (320
where, in the second to last inequality, we have applied Lemma 36; and

el gy <l 2 < ellll 2 (3.30)

where, in the last inequality, we have applied Lemma 36.
Case 3. 1 <s < . Then 0 < 2—84—1 < . (3.29) and (3.30) hold true in this context as
well, except that in the last 1nequahty in (3.30), we do not apply Lemma 36 (instead
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the bound is obvious from the definitions of the norms).
Remark: The next range we can treat is % <s < % (one gets s = % by interpolation).

To achieve the bound in this range, we apply 8% to the operator:

t ] t )
/ 21— 50\ R(t) ! — / 0y R 5 () ()
0 0

£
.y / 10,9 50 ()t dt
0

t
= —i /O e t=t2 50 () Buh(t') dt’ + ido(x)h(t)

Let ¢(x) € C§° be a cutoff with ¢(x) =1 on [—1,1]. Set

—x ifx<0
n(x) = ¢(x)
0 ifxz>0

Then define an operator
L it—ho2
Uh(t) = / e =10z 50 (2)h(') dt’ — in(z)h(t)
0

so that

t
Q2UR(t) = —i / 0 5 (2) (e i’
0

By the above result and the fact that ||h|| o0 < ¢||h]| 2s—1 in this range of s, we
H 14

have

Uh <cl||h _
[0H(ey) < el 2eca

and therefore

to
/O =2 5 () h(#) dt

<cllhf| 251
HS(R+) H 14

Note that, however, in this range (% <s< %) and in higher ranges, we are forced to

use the H¥(R™) norm instead of the H*(R) norm, so that we hide the Dirac masses
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at the origin that one gets upon differentiating in x. End of Remark.

2s—1
To obtain continuity in the range —% < s < 1, approximate h € H, 1 (RT)
by hy € CSO(R+) using the bound (3.28), and for hy € CSO(R+), use dominated

convergence and Lemma 48. O
Lemma 55 (Time traces estimate for the Duhamel forcing operator). If

supp h C [0, +00), then

sup ||w(z, =) . 2s+1 < c[h] . 251 —00<§ <400 (3.31)
z H 4 Rt) H 14 Ry

If supp h C [0,1] and ¥(t) € C§°((—2,2)), then

2541

U(—)w(z,—) € C(x € (—o0,+00); Hy ¥ (R))) 0<s<1 (3.32)
sup ||V (—)w(z, =)|| 2541 <cl|lh]| 2s-1 —00 < § < 400 (3.33)
! Hy * (Ry) Hy * (R

L 2s—1
Proof. To prove (3.31), it suffices to show that for any h € H, T (not neccessarily

supported in [0, +00)),

t . /
H / /(=102 5 (2) h() dt"

2541 < c||h]| 2s-1 (3.34)
T4 i

H, H,

This is equivalent to the inequality, for h € L%(Ry),

2s+1 t . 1—2s
HDt_‘i_ / ez(t—t’)8%50(x)Dt/_4_ h(t') dt’

—0o0

< cllh
(Rt)_ || HLQ(Rt)



The change of variable ¢/ =t —t' gives that

2541 ot ) 1-2s
Dt / =250y, T R(t') d

—00

2s+1 “+00 '/5‘2 1-2s
_p, T / R sy (2)D, T At — )t
0
+00
it! 52 1/2
- /0 "0 () DY Ph(t — ) df

-
_ / =115 5 () DY *h(#') d
—00

By Lemma 51 and (3.20),

t NRAY-Y 1/2
) /_ e 02 50(x) DY 2h(¥') dt

+oo | 2 0 . N
= / ez(t_t/>89€50(x)Dtl,/2h(t/) dt’ + i / e sin (|| \T|1/2)h(7) dr
—00 T=—00
+ . A
— 2/ OOeZtTe_|x||T|1/2h(T) dr
7=0
=14+ 114 III

It is clear that
11Tl 2 + 11T g2 < el 2
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We next address term I. In the steps below, the supremum is taken over ¢ € L? (Ry)

/ e_ZtathlMg(—, t) dt
t=—o00 L%
02 -
= sup/ /te_Ztaﬂthl/ZLg(I, t)dt ¢(x) dx
T

:Sup//g(x,t)Dtl/A‘eita%gb(x) dx dt
tJx

1/4 492
< cligll 2 11D "% 61| o

< CHQHLQICL%
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by Lemma 46, and hence

t=+00
/ —Ztaar:Dl/4 g(—,1) dt’ <cllgll 1,2 (3.35)
t=—00 2 Tt
Also, by (the proof of) Lemma 54,
+00 )
‘ / e_Ztaméo(x)Dtl/A‘h(t) dt , <cl||hl[;2 (3.36)
t=—00 t

T

Now

+oo Too
/t =02 50 () DY () d = D}/ /t / /=)0 50 (2) D) h(t') dt
=—00

For g € LLL? such that lgll ;12 <1,
aby

L)

/ i(t—t)o2 %50 (2) ;//Qh( )dt} (x t) dx dt

t/

/ // —it 8355 1/4h(t/) dt’/e—ita%Dtl/4g(x, t)dtdx
¢ t

/ et % 50(2) DY (e d / ~it0E pg (. 1) dt
t

< cllbl 2

<

L2 L2

by (3.35) and (3.36), and therefore

+OO . / 2
/ =% 50 DY h(t') < cllhll,»
t=— LPL? t
concluding the treatment of Term I.
Case 1. ——<s< . In this case, 0<2“’ZH <2, %<284_1 < 0.

w0 2 < clwe ] 2 < bl s <clh]

H, H, H, H,
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Case 2. s > % In this case, 2511 > %, 254_1 >0,

[W(@)w(z, ) 2501 <cllbll 2s-1 <cllh]l 251
1 T T

H, H, H;

H\If(t)w(x,t)HHtl/4 < CHhHHt—l/zl

Case 3. s < —%. In this case, % < 0 and 284_1 < —%. Split A into high frequences

and low fequencies as h = h, + hg. We have

t /
/O =) 50 (1) h(t') dt!

t . t .
_ /_ =R 50 () () dt! + / =0 5 (g () !

—0o0

Let wy,(x,t) be the first term and wg(z,t) be the second term.

Wt t < c||V(t t < 1)l .
[ (t)w (z, )HHsz < d[¥(H)wr(z, )HHtl/4 < dlwg(z, )HHtl/4

< CHhLHHt—l/zl < CHhLHHt—l/4

W (wr (@, Ol 2501 < cllwp (e, )l 2501 <cllhpll 251
“1 =1 “1r

H, H, H;

O

Lemma 56 (Mixed-norm estimate for the Duhamel forcing operator). Sup-

pose supp h C [0, 1]. [f%z%—]%,2<p’§+oo,4§q'<+oo, then

Jw(z, t)HLg/L;g/ < C||h||H*1/4(Rt) < C||h||H*1/4(Rt) (3.37)

0wz, 0ll g S clbl g,y < Wl o, (339)

Proof. Step 1. [for (3.37)]. In the calculation below, the supremum is taken over
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g € LILE with HgHLng <1.

+00 . ’
/t =V 50 () h(t') dt’

I— o

/ /
Ly Ik
= sgp/t/ g(x,t) {/t’ ei(t_t/)aﬂ%éo(x)h(t/) dt/] dxdt
x
= sup/ /e‘ita%g(x,t) dt/ _it/aﬂzféo(x)h(t/) dt'dx
rJt

e
t/
a2 102
/B_Ztaxg(x,t) dt / e_Zt/axéo(x)h(t/) dt’
t t/
< hl| .
< sng!lglngLgH lr—1/4(m)

< sup
g

L2 L2

< CHhHHfl/AL(R)

where, in the second to last step, we used Lemmas 58 and 54.

Step 2. [for (3.38)]. In the calculation below, the supremum is taken over g € L{ L
1 <
with HgHLng <1.

+00 )
By /t =02 50 () h(t') dt’

=—00

L?/Lg,/

= sup// Org(z,t) {/ ei(t_t/)8%50(x)h(t/) dt/] dxdt
g JtJzx t/

:sup/aaj /e‘ita%g(x,t) dt/ _it/aﬂ%éo(x)h(t/) dt' dx
9 Jx t

e
t/
152
/e_”aﬂﬂg(x,t) dt”
t ;!

< sup
g

!

/ / e 0 () h(t') dt!
t

<supc h| -
> gp HgH[glé’,H HH1/4(R)

< CHhHHl/Zl(R)

where, in the second to last step, we used Lemmas 58 and 54.
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Step 3. For (3.37), by Lemma 51 and (3.20), it remains to show that

0 g 1/2y too  —lzllr|V?
/ eztrsm(‘xHT‘ )h(T) dr +/ eztre h(T) dr
T T

<c|lh|;2
— ]7\1/4 —0 ‘711/4 , H HLt

L} ¥

(3.39)
(3.39) has been proved in the case p’ = 2 and ¢’ = oo in Lemma 54. We will now

prove (3.39) in the case p’ = oo and ¢ = 4, and the inequality (3.39) for general p/,

¢’ subject to the relation % = % — }% will follow by interpolation.

Case 7 > 0. By duality, it suffices to prove

H / / e—it7 =1/ 4glalT2 £ dxdt” <Nl ags s (3.40)
L2 Lt L

7>0 T

Writing out the L$>0 norm squared, we obtain

2
H// eit77_1/4e_|$|71/2f(x,t) dx dt
L7

— / K2t 5,9)f (2, ) F (. 8) dedtdyds
x7t’s7y

where
o

K. tys) = / (ilt=)7 = 1/2—(al+ D)2 g

7=0
Setting 7 = ¢2 and applying (3.24) gives

|K (z,t,y,5)] < 7“_(; (3.41)

’1/2

Then (3.40) follows by the theorem on fractional integration.

Case 7 < 0. We need to prove

< [l 2

0
v/“ ét“*_Tﬂ/Qe”Thﬂ‘l/4h(7)dr
T LI

=—00




By duality, it suffices to prove

z,t

2
LT<O

Writing out the L72_ <0 Dorm squared, we obtain

2

H/ / F LT 0 ) dudt
z,t

2
LT<0

— [ Koty ) Tl sldydsdads
x7tﬂy78
where the kernel K is defined by

+00 ] '
K(x,t,y,s) =/ ei’(y_x)(_T)l/Qel(s—t)r(_T)—l/z dr
0

400 ) .

:/ oHily—2)¢ i(s—1)E2 de
£=0

and hence by (3.25),

c
Kz, t,y,s)| < ————=
| ( )| ‘t—S’l/z

Then (3.42) follows by the theorem on fractional integration.

Step 4. For (3.38), we need to show, by Lemma 51, that

1/2

0 _ 1/2y oo o=l E
/ eltT COS(’JZ'HTL >h(7') dr +/ eltTe . h(T) dr
T=—00 ’T‘l/ =0 ‘7-’1/

<
_'CHfHL?/SL%
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(3.42)

< cllhl
L Lf

(3.43)

(3.43) has been proved in the case p’ = 2 and ¢’ = oo in Lemma 54. We will now

prove (3.43) in the case p’ = oo and ¢’ = 4, and the inequality (3.39) for general p/,

¢’ subject to the relation % = % — }% will follow by interpolation.

The proof follows the method of Step 3.

O
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3.5 Estimates for the Duhamel inhomogeneous solution

operator

Let

L.
w(z,t) :/ el(t_t/)aﬂ%h(x,t/) dt’
0

t ) /4l
:/B( r—x ) h(z' 1) gt
0 (t—t’)1/2 (t—t’)1/2
Lemma 57 (Continuity). Let h € C'SO(R2). Then ¥ k,l = 0,1,2,... and fized t,

algﬁéw(x, t) is a continuous function of x; and for fized x, algﬁéw(x, t) is a continuous

function of t. Also,
5 0fw(, )] < (1 + |a) ™ (L + e

where ¢ = c(k,l, N, h).

Lemma 58 (Space traces estimate for the Duhamel inhomogeneous opera-

tor). Letﬁz%—ﬁ,2<p’§+oo,4§q’<+oo. Then
w(z,—) € C(x € (—o0,+0); H*(Ry) ) s=0,1 (3.44)
Sup lw(e, )l 2 < cllbllpage (3.45)
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Proof.

t a2 2 t 152 t 11592
/ e—zt amh(l', t/) dt/ — / / e—lt amh(x’ t/) dt// e—Zt axh(x’ t//) dt// dz
t'=0 12 JaJU=0 t

"—0

t t

- / / / =V 4 ) T, 7Y dae di” !
t'=0Jt"=0 Jz
t t

- / / { / e =)0z, ¢ dt’] h(w, 07) d dt”
t'=0Jx LJt'=0

t
/ = o) !
/=0

S ‘

Al a ;p
oy ke

2

where in the last step, a variant of Lemma 60 was applied. The result then follows

The result for 0w follows immediately since 0, passes through the integral and

since

¢ 1/ 52
/ e 0%z 1) dt!
t'=0 L2

t
/ ei(t—t’)@%h(x’ ) ¢’
t'=0

L2

, 2
commutes with ¢/—t)0% The continuity statement (3.44) follows from Lemma 57,

dominated convergence, and the bounds (3.45) and (3.46). O

Lemma 59 (Time traces for the inhomogeneous Duhamel operator).

sup 9=, )l 173z, < Ml (3.47)
sup (e, gy < Il + el gy (3.48)
U(—)w(r,—) € C( (—o0,+o0); H-T (Ry) ) s=0,1 (3.49)

Proof. We first establish

—_ . < .
sup [0, <)l 14y < €l oz (3.50)
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By Lemma 50,
1/4 t i(t—t") 92 NS,
D, / e =% (5, 1) dt
0
+o00 | 9 0 ) 9
_ %D1/4/ z(t—t’)@xh(x ) dt’—Dtl/“/ ez(t—t’)f)‘xh(xo’t/) iy
—0oQ

// (zg€+tr) |T|152 h(§,7) dedr

=[—-II+1II

First, we treat term I and II. (Term II is treated by following the steps below with
h(zx,t) replaced by h(x, t)X(—oo,O) (t).) In the steps below, the supremum is taken over
g€ L7 with gl 3 < 1

HIHL%:/t 1/4/ i(t=t)9% b (o, t)dt} g(t) dt

::l Al/ itz 1y 0-xt)%()dxdt] DYy (t) dt

— / /t/ / ~it' 0 (1 — @, 1) 026y () dxdt’}mdt
/ /t/ e R p(y — x,t) di’ /t e=it03 5, () D}/ g (t) dt dax

:AHMme

1H (@) 2 < cllhlpazp

Now

by (the proof of) Lemma 58, and
IG@) gz < cllgll
by (the proof of) Lemma 54. Therefore

Il 2 < 1H @) 216l g < cllgll2llkllLazp



Next we show

) 1/4j,
| T ]z = H// ez(a:§+tr)‘7—|§2—+(f—’7—)d§d7_

We first prove (3.51) in the case p =2 and ¢ = 1.
e 2 1/2
12| [ gagMET)
(/TT /ge T+§2d§ dT)
1/2
(/ vl [ /m:ghx )
al dédt| dr
5\ 1/2
</(/ e / e G1) dT) »
t T

T+ €2
glﬂ@+&@ﬁ

< CHhHLng

2
Li

by Minkowskii’s integral inequality, where

0 x
_ 7_1/2 mgh (3
1 (/ /5__ i
Ryft) = ( [

5 1/2
dT)

5 1/2
dT)

and

T 4 €2

/—l—oo g &Y hx(§ t) d¢
£=0

181

(3.51)
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To estimate Fy(t), we set 7 = —£2 (so that & = (—n)1/2) and obtain

2 1/2
dr

/0 eir (=2 ()12 ) (=) =12 dn
N=—00 T—n

Ry = | [ 12

0 R 1/2
< ([ ek ar)

0 1/2
= ([ fetenrag) < -l

since \7]1/ 2 is an Ay weight, the substitution & = (—7)1/ 2 and finally Plancherel. To

estimate Fy(t), we set n = —€2 (so that & = —(—n)/2) and obtain
) 1/2
dT)

Pylt) = ( [

/0 =i ()12, 1) ()12 dn
n=—00 T—=n

0 X 1/2 0 X 1/2
<([_ e aora) = ([ reok)
T=—00 E=—00
< Ih(=0)ll 2
since |7|1/2 is an Ay weight, the substitution £ = —(—7)1/2, and finally Plancherel.

We next prove (3.51) for p =1 and ¢ = %
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Case 7 > 0. By (3.20),

/T 0 / i€ meéQ [ 4hET) e

:/+ 7| ~1/2
7=0
400 R
:/ /e_|x|§ht(x0—x,§2)dx
£=0 x
+00 2
/ // ~alg ,~ite? h(xg — x,t) dxdt//e_|y|§e_i552h(x0 —y,s)dyds dE
£=0 yJs

/ K(x,t,y,s)h(zg — z,t)h(xg — y, ) de dt dy ds
z,t,y,S

2
2
Li

2

1/2 .-

/ ~fafr!/ W (zg — x,7) da
X

dr

2

dg

e_|x|5e_itf2h(x0 —x,t)dzx dt

where

400
K(,ty,5) = / ~(el+luleils=0¢ g
£=0

By (3.24),
C
Kz, t,y,s)| < ——
| ( y )| ‘t—S’l/z

and the result follows from the theorem on fractional integration.
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Case T < 0. By (3.20)

‘/__oo/ i€ meéQ MR T) ey

<[ e
T=—00

+00 ) ) 2
:/ /ei”x'ght(xo — 2,82 da
£=0 x

+o0 . 9 2
:/ eﬂm'ge_“fg h(xg — x,t)dx dt| d

:/ // iz|m|€ —ite2 h(zg — @, 1) dl‘dt// eTilyl€e— isg? h(zg —y,s)dyds d§
£=0

/ K(x,t,y,s)h(zg — z,t) h(zg — vy, s) dx dt dy ds
z,t,y,8

2

2
Ly

2
[ g a7 s
xT

dr

dg

where
+oo

K(z,t,y,5) = / ilfal—lp)€ i(s—1)E? ge
£=0
By (3.25),

c
Kz, t,y,s)| < ———=
| K ( )| PRYE

and the result follows from the theorem on fractional integration. (3.50) now follows

3
by interpolation between the cases p =2, ¢ =1, and p =1, ¢ = % (3.47) follows
from (3.50) by Lemma 36. To prove (3.48), we first prove

sup 9 w(z, =) -1/1(g,) < el o (3.52)
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By Lemma 50,

8yD 1/4/ (t_tl)a'%h(l'o,t/) dt/
0

— 40,D ‘1/4/ 100 (g, ') dt’ — 9, D 1/4/0 =190 (g, ) it

i(zge+tr) € 7|~ H4h(g, 7)
+//e 0 25 - dédr

=1—-IT+1II

Terms I and II are established by the same method as in the proof of (3.50). To
address Term III, consider separately the cases p = 2, ¢ = 1, and p =1, ¢ = %
For the case p = 2, ¢ = 1, use that |7'|_1/2 is an A9 weight, and follow the previous

method. For the case p =1, ¢ = %, use the formula for

1/4
/emogm 25 it
3 T+¢

provided by (3.21), and follow the previous method. (3.52) follows by interpolation.
Note that

t . t
o / 2 (o ¢y dt! = h(,t) + i / =221 (1 1) dt
0 0

Apply the H~Y4 norm to this equality, and add to it (3.47), to obtain by (3.52) that

¢
H\I!(t)/ =% g 1) at!
0

< ||h
L

The continuity statement (3.49) follows from Lemma 57, dominated convergence, and
the bounds (3.47) and (3.48). O

Lemma 60 (Mixed-norm estimate for the inhomogeneous Duhamel opera-
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tor). [f%z%—é,2<p’§+oo, and 4 < ¢’ < +oo, then

w < c||h
I Hzg'Lg"‘ I HLng

t x

Proof.

/
voo (=g

L it / /
Jwl §/ ||@Z( —t") Th(— )|, dt gc/
ke Jo Lz —o0 | —¢/|p 2

where the second inequality follows from Lemma 43, since 1 < p < 2. Applying the
/
Lg norm, the result follows from the theorem on fractional integration (see [Ste70],

Chapter V, Theorem 1), provided the relation % = % — ]% holds and ¢’ # oo. O

3.6 Construction of the solution operators

Let s=0or s =1, and let p’, ¢’ be an admissible pair, i.e.

4<¢ < 40

2 <p <400

and p, g their respective dual exponents.
2s5+1 s q’ p/ s
Zs=C(x € (—00,400); H 1 (Ry))NC(t € (—00,+00); H*(Ry) )N Ly Wy
with norm

U = sup ||u(z,t 2541 + sup ||u(x, T + ||u
Iz, = suplfuta, ] 2 -+ suplfu(e. Ollmsce,) + el

/ /
»S
R¢ Liwg
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Let
Ve=1{(6.f) | 6 H'RY), fe H T (RF) and 6(0) = f(0) if s =1}

with norm

166, v, = ol gy + 191 2

Note that the compatibility condition for s = 1 is built into the definition of V.

Theorem 12 (Homogeneous solution operator). Let Ty > 0. Then there is a

bounded linear operator HSTO - Vs — Zs, such that, with w = HSTO (f,9), we have

iOyw + 92w = 0 in D'((0,Ty) x RY)

w(z,0) = ¢(x) in the sense of C(t € (—o0,+0); H*(Rz))

w(0,t) = f(t) in the sense of C(z € (—00,+00); HQ_Sﬁiﬂ(Rt))

_ - 2541 25+1 .
Proof. There is an extension f € H 42 (R) of f € H 4 (R™T). That is,

<cllfll s
) o1

HfHHQ—Sllﬂ(R &H)

f = f pointwise a.e. in (0, 400)

Let ¢(z) € HS be an extension of ¢(z) € H¥(R™) such that HéHHS(R) < CH¢HHS(R+)
Let Wq(t), Wo(t), and W3(t) be C5°(R) functions such that

(
1 if t € [-Ty, To]
MO0 e [Lam in)
ifte |—3Tp, 7
S 7340, 340
( - -
1 ifte —%To,%TO
Us(t) = u 5 5 T
0 ifte —3To, 310
\ L |



188

1 ifte [—%To, %To}

W3(t) =
0 ifte [—QT(),QT()]C
By Lemma 46,
itd2 7 7
01 ()™ ¢ !x:oHHz_sP &) = clloll s wy < clldll sty (3.53)
Furthermore,
11 (O FON 2501 <CHfH 2541 <CHfH 2541 (3.54)
H 4 (Ry R¢) (R)

Let: f1(t) = X(0,4o0c) | T2 (0 (1) = W1()e"%6 || Then,

2s+1

1 f1] 2541 = Hf1|| 2541 by definition of H, ¥ (R™)
Hy ¥ (RT) 1 (R)
< || wy(t)f(t) — \Ill(t)eitaxgz; ‘a:—OH 2541 see note below
T H 4 (R)
<ell(f.0)] by (353) and (354)  (3.55)

where the middle step follows by Lemma 40 if s = 0, and the compatibility condition
#(0) = f(0) and Lemmas 39 and 38 if s = 1.
Let Cg = B(0) # 0, and

1
hy(t) = T t
1(t) (L) —12(f1) ()
Then
A1l 251 < | Zq 01N 251
Hy T (RY) is Hy T (RY)
<c|fill 2ss1 by Lemma 41
Hy & (RY)

<[l (f, 9l by (3.55)
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Claim 1. \IlgIl/Q(hl) o F( )fl
B

Proof of Claim 1. Assume, for the moment, that f; € C§°(R™T) with supp(f1) C
2s+1
[— 4T0, 51p] (although it is actually in HT (RT)) and hq is defined as above in

terms of fi. Then,

1
UoZyjo(h1) = WoZy /o (CBF(l)I—m(fD)
2

o
= 1/2Z-12(/1)
CBF(l) / /
Vo
= fi
CpI(3)
S since suppfy C [—4Tp, 479
Cpl'(3)
2s+1
Now return to the general case of f1 € H,, 4 (RT). Let f1 be a sequence in
2541
C3°(RT) with supp(f{f) C[— TO, TO] such that fl — fiin Hy T (RY). Let hk be

the corresponding functions defined in terms of fl as above. Then,

1
VoTyjo(h1) — ——7-f1|| 2
SRS i S
1
= |[WaT, jo(hy — hY) + WoT, jo(h}) — (L= ) = ] o
Bty =M+ 08~ = 1D~ .
1
= || WaZy jo(hy — BY) — (=D o
1/2 1 CBF(%) 1 H2_4+_1(R+)
< |WoZy jo(hy = BY)|| 2s ;
< Wy jo(My 1)HH02_4ﬂ(R+) CBF% Hfl f1H 2541 Bl o)
< (h1—hlf)H 251 Hfl f1H 2541
}R

1
HO_4_(R+) CBF 3) +)
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where, in the last step, we applied Lemma 42

o1
Cpl'(3)
: OBI%(%) Hfl - ffHHOQ_S‘lﬂ(Rﬂ

HI—1/2(fl - f{")“ os 1 n 1

w2 e G 1 A

0t (R

Now let & — +o00. End proof of Claim 1.

2s+1 2s—1
Claim 2. WoTy jo(h1) = WaTy 5(¥3h) holds in Hy * (RF). (Recall hy in Hy * (RY)).

Proof of Claim 2. First, we’ll prove the identity assuming hy € C§° (RT).

t
BT, o)1) = T2 [0 )0 s
2
W) 1 i
_ F(%>/O(t )12k, (s) ds

since supp ¥y C [—%, %TO] and W3(s) =1 on this interval

= Wa(t)Zy j9(h1)

For the general case, let h]f be a sequence in C'SO(RJF) such that h]f — hy in
2s5—1
H, T (R1).

| WoTy /9(W3h1) — Vol jo(h1)]| 2st1

< |[WoTy o (W3(hy — hY)) — WoTy jo(hy — BY)

+ W9y o (Ushi) — WoTy jo(RY)I| 2511
Hy 1 (®4)

< WoTy o (U3(hy — BN 2501 + 12Ty j9(h1 — B 2601
/ HF_ (RT) / HO_4_ (RT)



By Lemma 42, the first piece is

|0y )5 (3 (1 = BY))|| 251

Hy T (R)
< || Ws(hy — BY)| 2571
Hy ¥ ®")
< lhy = MYl 251
Hy 4 (RT)
The second piece is
k k
1WoZy jo(h1 = R 2541 <[l = R7]] 261
Hy T (RT) Hy T (RT)

Now let k — oo. End proof of Claim 2.

Combining Claim 1 and Claim 2, we get

1
CpI'(%)

J1="99Ty j5(V3h1)

2s5—1
Set h = WUshy, and then h € HF_ (RT), and

all asa — <elliall s < cll(£,9)l
H, (RT) H, (RT)
b it=tho2 Nl itd2 7
w(z,t) = Uy(t) U e =)0 50 (VR ()t + €0z ()
0
We now check the boundedness properties.

2s+1

Step 1. Show w € C(x € (—oo0,+00); H 4 (Ry)) and sup, ||w(z, )| 2s+1
H 4

cl[(f; o)-

191

<

Ry)
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This follows from Lemma 55, which gives

sup
xz

L Y-V
wao) [ AR | sy <l a
0 H™ 1™ (Ry) Hy T (R])

and Lemma 46

ito2 7
sup [ 2 %6(0) | 2 < cldlmy

t

Step 2. Show w € C(t € (—o0, +00); H*(Ry)) and supy (-, t) | s,y < (£ 9)]

This follows from Lemma 45
192 ~ 192 ~ ~
up [ ¥ (t)e’ %20 sy < up e’ %20\ rsry) < lldllars(ry)
and Lemma 54

t o,
sup Hllfg(t) / =V 50 () h(t')dt!
t 0

<c|h]l 251
15 (Re) H T (R

/ /
Step 3. Show w € L WE " and |Jw|| o5 <cll(f, o)l

q/
LIwk
Lemma 56 gives

t
H%(t) / =V 50 () (t')dt!
0

p o <clhll 25
Liwk H 1
Lemma 47 gives

02 ~ ~
192 ™ b g s < cllPlirsm)
t x

This concludes the boundedness estimates. Finally, we must check that it is a solution.
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By substitution, w(z,0) = ¢(z). On [0, Tp],

L ) 92 -
w(0,t) = /0 %5 (m)(t))],_gdt + 02|,

= CpTl ()T oW + (f = f1) = F=f
]

Theorem 13 (Inhomogenous solution operator). For given Ty > 0, there is
a bounded linear operator IHSTO : LgL];; — Zo for s = 0, and IHSTO : Lng’l N
L%’Ht_l/4 — Z3 for s =1, such that, with w = IHSg,(h), we have

iOw + 92w = h in D'((0,Tp) x R})

w(z,0)=0 in the sense of C(t € (—o0,00); H*(Ry))

2s+1
w(0,t) =0 in the sense of C(z € (—00,00); H™ 1 (R]"))

Proof. Let ¥(t) € C3°(R) such that W(t) = 1 on [-Tp, Tp] and supp ¥ C [-2Tp, 2Tp).
Let ,
- 2
wi(z,t) = \I/(t)/ ez(t_t/)axh(x,t/)dt/

0
By Lemma 59,
HhHLgLQ’: if s =0
sup flwn (e, =) 2 <o .
x H (Ry) HhHLgW%)’S + HhHLgOHt_l/4 ifs=1
By Lemma 58,
sup [y (= ll s ry) < ellhll grpps
By Lemma 60,

o] el ayyps

s S
LI wh
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Let f(t) = wq(0,t). Then

Il 2541 SN 2501 = [lwi(0,8)]] 2541
H 4 (RT) H 1 (R) H 1 (Ry)
HhHLgL;g if s=0

<c

HhHLgW‘g’S + HhHL%OH;1/4 ifs=1

Let T'= max{27}, 1}, and set wo = HSp(f,0) (if s = 1, the compatibility condition
f(0) = 0 is satisfied). Then, by Theorem 12,

sup ||wa(x, — 25+1 + sup ||wo(—, T s
wp [zl <) aegs sz s,

HhHLqu ifs=0
lall gy Sl g <eq o HE |
t Wr H 4 (RT) HhHLng’S + HhHL%OH;IM if s=1
Let w = w1 — wo. Then w satisfies the estimates, and solves the equation. O

3.7 Solution to the nonlinear problem

Theorem 14 (L2 case). Let 1 < a < 5. Let (f,¢) € Vi. Then there exists a
Ty = TO(WHL%, HfHH1/4) > 0 such that
t

Aw = HSy (f,¢) + IHSp, (w]w|*~ 1)) (3.56)
has a fixed point in the space

Zy = C(t € (—00,+00); L(Ry) )NC(x € (—00, +00); HY/AR))NLy LT (3.57)

_ 4a+1)
where r = = —1*.

4(a+1) s 4(atl)

Proof. We apply the estimates with p = O‘T"H, p=a+1,q= 3ar5 04 = a1
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/
Then ap = p’ and % < ]%, so by Holder there exists 6 > 0 such that

a—1 0
<cT
Jwlw] HLngg >C HwHLgng/

We can obtain a similar bound for a difference A(wg) — A(wq), and thus A is a

contraction on Z. 0
In the following case, we follow [CW89].

Theorem 15 (L? critical case). Given (¢, f) € Vp, there exists Ty = Ty(¢, f) > 0
and u € Zy where

Zy = C(t € (—o0,+00); L2(Ry) )N C(z € (—00, +00); HY*(Ry))n LLS

such that
0w+ O2u + ulu[t = 0 in RT x (0,Tp)
u(z,0) = ¢(x) on R
u(0,t) = f(t) on (0, Tp)

Proof. Take T{y sufficiently small so that

HHSTO (¢, f)HL?Lg <0

where ¢ will be chosen sufficiently small later. Note that Ty will depend on ¢ and f,

not just on the corresponding norms of these functions. ¢; will also be selected as
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~léllz + ANl j1ya- Let
t

Ey={w |weC(te (—oo,+00); L2(Ry) )N C(z € (—00,+00); HY*Ry))nLLS

sup [[w(—,t)|[ ;2 < 1
t x

sup [lw(z, =)|| 2541 <1
x 4

H,

HwHL?Lg <20}
Define the map A : Ey — Zj as
Aw = HS7, (6, f) + THS 1, (w]w|*)

We claim that A : Ey — Ep and that A is a contraction on Ey. Given w € Eq, we

have

4
HAwHLng < [|[HS7, (9, f)HLng + [ THS 7, (w]w )HLng

§(5+wa4 6/5.6/5
75,0

5
L9

< 6+ ¢(20)°

<6+ cllw]]

<29

provided ¢ is chosen suitably small. We also have

8wl e + 1wl 17 < AUl + 171 7a) + ellwl g < e
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Now we show that A is a contraction on Ey. We have

4 4
1Awy — Awsl 66 < [ITHST, (wafwn " — walwal ) 76

< ITHS 7 [(wy — wa) (Jwy |+ |w2|4)]||Lng
24 24 5/6
< (/t/‘wl—w2‘6/5(‘w1’ /5 4 Juy| /5)dl‘dt)
X

4 4
< cllur = walpyg (orligyg + ool )

4
< _
<2 le w2||L?Lg
so we also need that 204 < % The same bound holds for
HAwl - Aw2||L<t>OL%

and

Awyp — A
A= Aol

showing that A is a contraction. The fixed point u to A in Ey will be a solution. [

Theorem 16 (H' case). Let 1 < a < co. Let (f,¢) € Vi (in particular, f and
¢ must satisfy the compatibility condition f(0) = ¢(0)). Then there exists a Ty > 0
such that

Aw = HSy (f,¢) + IHSp, (w]w|*~ 1)) (3.58)

has a fixed point in the space

71 = C(t € (—00,400); HY(R,)) N C(z € (—o0, +00); HY4(Ry) ) n Lywath!
(3.59)

_ A(a+1)
where r = ——1~.

4(a+1)

Proof. We apply the estimates, again, with p = O‘T‘Ll, P =a+1,q= SaTs
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¢ =2t By Holder

(a=1)g \ 1/4

9 \e—1)q
foclutl gy < | [ [10mupae)™ ( [luiwar) 7 a

/
Apply Sobolev imbedding to the second piece, and since ap = p’ and aip < L by

p
Holder, we have

a—1 0 P1 P2
< (1
|0 [w]w] ]HLgL}; < T7||w| Lg/Lngw| L HL

The other piece, i.e.

a—1
[w|w] HL?D;

can also be treated with the help of Sobolev. Finally, we need to bound

~1
wol* )
z

0 0
1/a < T |wlFeopgo < T HwH%tooH}j

We can prove similar bounds for A(wg9) — A(wy), and therefore A is a contraction on

7. 0
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