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1. Introduction and main result

We study the initial-value problem for the Zakharov system in two spatial dimensions:

i∂tu+ ∆u = nu,

∂2
t n−∆n = ∆|u|2,

(1.1)

where u : R2+1 → C and n : R2+1 → R, with initial data

(u|t=0, n|t=0, ∂tn|t=0) = (u0, n0, n1).

This system was introduced by Zakharov [22] as a model for the propagation of Langmuir

waves in a plasma.

We address the question of local well-posedness of (1.1) for large data in low

regularity Sobolev spaces. For k, ` ∈ R we define the space

Hk,` := Hk(R2; C)×H`(R2; R)×H`−1(R2; R)

with the natural norm. By Xk,`
T we denote the space of all tempered distributions (u, n)

on (0, T )× R2 such that

u ∈ C([0, T ];Hk(R2; C)),

n ∈ C([0, T ];H`(R2; R)) ∩ C1([0, T ];H`−1(R2; R)).

with the standard norm, see (2.4). For 0 < r ≤ R we also define

Hk,`
R,r := {(u0, n0, n1) ∈ Hk,` : ‖(u0, n0, n1)‖Hk,` ≤ R; ‖u0‖L2 ≤ r}

as a metric subspace of Hk,`.

Our main result is the local well-posedness of (1.1) in H0,− 1
2 , which was phrased as

an open problem by Merle [19, p. 58, ll. 14–15].

Theorem 1.1. For every 0 < r ≤ R and initial data (u0, n0, n1) ∈ H
0,− 1

2
R,r and time

T . min{〈R〉−2r−2, 1}, there exists a subspace XT ⊂ X
0,− 1

2
T and a unique solution

(u, n) ∈ XT of the Cauchy problem (1.1). The map

H
0,− 1

2
R,r −→ X

0,− 1
2

T : (u0, n0, n1) 7→ (u, n)

is locally Lipschitz-continuous.

Remark 1. Note that a-priori the nonlinear system (1.1) is not well-defined for rough

distributions. The precise notion of solution in Theorem 1.1 is explained in Section 3.

The auxiliary space XT is based on generalized Fourier restriction spaces.

Remark 2. Notice that Theorem 1.1 implies in particular that locally the flow map for

smooth data extends continuously to initial data in H0,− 1
2 . The uniqueness claim in

Theorem 1.1 is restricted to the subspace XT of X
0,− 1

2
T , which ensures that (u, n) is the

unique limit of smooth solutions.
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Local well-posedness of (1.1) in the low-regularity setting has been previously

considered by many authors: Bourgain–Colliander [6] proved local well-posedness in

spaces which comprise the energy space and established global well-posedness in the

energy space under a smallness condition. The local result has been improved later by

Ginibre–Tsutsumi–Velo [12]. Both aforementioned approaches are based on the Fourier

restriction norm method. For previous well-posedness results we refer the reader to the

references in [6, 12]. In [12] Ginibre–Tsutsumi–Velo obtain local well-posedness of (1.1)

in the case of space dimension d = 2 in the space Hk ×H` ×H`−1 for (k, `) confined to

the strip ` ≥ 0, 2k ≥ `+ 1. The optimal corner of this strip occurs at H
1
2 × L2 ×H−1,

one-half a derivative away from the result in Theorem 1.1.

One motivation for considering the space L2 ×H−1/2 ×H−3/2 is the connection to

the cubic nonlinear Schrödinger equation in two spatial dimensions

i∂tu+ ∆u+ |u|2u = 0. (1.2)

Consider the Zakharov system with wave speed λ > 0:

i∂tu+ ∆u = nu,

1

λ2
∂2

t n−∆n = ∆|u|2.
(1.3)

Then formally (1.3) converges to (1.2) as λ→∞ in the sense that for fixed initial

data uλ → u, where (uλ, nλ) solves (1.3) and u solves (1.2) with the same initial data.

Rigorous results of this type in a high regularity setting were obtained by Schochet–

Weinstein [21], Added–Added [1], Ozawa–Tsutsumi [20], see also the recent work by

Masmoudi–Nakanishi [18] on this issue in 3d.

Local well-posedness in L2 of (1.2) was obtained by Cazenave–Weissler [7]. However,

in this version of well-posedness, the time interval of existence depends directly upon the

initial data, not just on the L2 norm of the initial data. Indeed, via the pseudoconformal

transformation, it can be shown that a result giving the maximal time of existence in

terms of the L2 norm alone is not possible‡.
Remark 3. Our result gives local well-posedness of (1.3) with a time of existence

depending on the L2 norm of u0, but also on the H−1/2 × H−3/2 norm of the wave

data (n0, n1) as well as the wave speed. Indeed, this claim follows by combining the

rescaling

uλ(t, x) = λu(λ2t, λx), vλ(t, x) = λ2v(λ2t, λx)

and Theorem 1.1. However, note that the lower bound on the maximal time of existence

obtain by this method tends to zero as the wave speed goes to infinity.

Global well-posedness of (1.1) is known for initial data in the energy space

H1 × L2 × H−1 with ‖u0‖L2 ≤ ‖Q‖L2 , see [6, 13]; see also [10] regarding bounds on

higher order Sobolev norms. Recently, the imposed regularity assumption has been

‡ Note that Killip-Tao-Visan [16] have recently obtained global well-posedness for (1.2) if u0 ∈ L2 is
radial and ‖u0‖L2 < ‖Q‖L2 , see (1.4).
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slightly weakened in [11]. Here, Q is the ground state solution for (1.2), i.e. Q is the

unique solution to

−Q+ ∆Q+ |Q|2Q = 0, Q > 0, Q(x) = Q(|x|), Q ∈ S(R2) (1.4)

of minimal L2 mass. This gives rise to a blow-up solution of (1.2) by the pseudoconformal

transformation. This idea is exploited in [14], where Glangetas–Merle construct a family

of blow-up solutions for (1.1) of the form

u(t, x) =
ω

T − t
e

i

„
θ+ ω2

T−t
− |x|2

4(T−t)

«
Pω

(
xω

T − t

)
n(t, x) =

(
ω

T − t

)2

Nω

(
xω

T − t

) (1.5)

for parameters θ ∈ S1, T > 0, and ω � 1, such that Pω ∈ H1 is smooth

and radially symmetric, Nω ∈ L2 is a radially symmetric Schwartz function, and

(Pω, Nω) → (Q,−Q2) in H1 ×L2 as ω →∞. In particular, this implies the necessity of

the smallness assumption ‖u0‖L2 ≤ ‖Q‖L2 for any global existence result for (1.1).

We prove Theorem 1.1 by the contraction method in a suitably defined Fourier

restriction norm space, which gives a certain lower bound on the time of existence. By

adapting the argument of Colliander–Holmer–Tzirakis [9] using the L2 conservation of

u(t) and iteration, we are able to show that this time can in fact be extended to the

longer lifespan given in Theorem 1.1. In summary, the time of existence we obtain is

based on

(i) sharp multilinear estimates

(ii) the L2 conservation law for the Schrödinger part.

Reviewing the solutions (1.5) constructed by Glangetas–Merle we observe that Theorem

1.1 contains the optimal§ lifespan for Schrödinger data with fixed L2 norm larger than

the ground state mass.

Theorem 1.2 (follows from [13, 14]). For each r > ‖Q‖L2 there exists c > 0

such that for every R ≥ r there exists a smooth solution (u, n) with initial datum

(u(0), n(0), ∂tn(0)) ∈ H
0,− 1

2
R,r which blows up at time T := cR−2, i.e.

‖n(t)‖
H− 1

2
+ ‖∂tn(t)‖

H− 3
2
→∞ (t→ T ). (1.6)

The absence of the L2 norm of u in (1.6) is due to the L2 conservation law. We

refer the reader to [13, 14] for further properties of the blow-up solutions such as L2

norm concentration for u. Finally, we state a result which shows the optimality of the

imposed regularity assumptions in Theorem 1.1.

Theorem 1.3. Assume there exists 0 < r ≤ R and T > 0 such that the flow map

u0 7→ u for smooth data extends continuously to a map

Hk,`
r,R → Xk,`

T

§ up to the implicit multiplicative constant
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for some ` − 2k + 1
2
> 0 or ` < −1

2
. Then this map fails to be C2 at the origin with

respect to these norms.

The rest of the paper is organized as follows: In Section 2, we set up the notation

and introduce function spaces which we will use in the sequel. In Section 3 we outline

the standard procedure (cp. [12]) for reducing (1.1) to a first order (in time) system.

Section 4 is devoted to the crucial multilinear estimates which are the main ingredients

in the proof of Theorem 1.1. Section 5 contains estimates for the linear group and

the conclusion of the proof of Theorem 1.1. The counterexamples which lead to the

sharpness result of Theorem 1.3 are constructed in Section 6, along with a proof of

Theorem 1.2 (which is based on the results from [13, 14]). In the Appendix we give an

alternative proof of Proposition 4.4 which keeps the paper self-contained.
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2. Notation and function spaces

We write A . B if there is a harmless constant c > 0 such that A ≤ cB. Moreover,

we write A & B iff B . A. and A ∼ B iff A . B and A & B. Throughout this work

we will denote dyadic numbers 2n for n ∈ N by capital letters, e.g. N = 2n, L = 2l, . . ..

Let ψ ∈ C∞
0 ((−2, 2)) be an even, non-negative function with the property ψ(r) = 1

for |r| ≤ 1. We use it to define a partition of unity in R,

1 =
∑
N≥1

ψN , ψ1 = ψ, ψN(r) = ψ
( r
N

)
− ψ

(
2r

N

)
, N = 2n ≥ 2.

Thus suppψ1 ⊂ [−2, 2] and suppψN ⊂ [−2N,−N/2] ∪ [N/2, 2N ] for N ≥ 2. For

f : R2 → C we define the dyadic frequency localization operators PN by

Fx(PNf)(ξ) = ψN(|ξ|)Fxf(ξ).

For u : R2×R → C we define (PNu)(x, t) = (PNu(·, t))(x). We will often write uN = PNu

for brevity. We denote the space-time Fourier support of PN by the corresponding Gothic

letter

P1 =
{
(ξ, τ) ∈ R2 × R | |ξ| ≤ 2

}
,

PN =
{
(ξ, τ) ∈ R2 × R | N/2 ≤ |ξ| ≤ 2N

}
.
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Moreover, for dyadic L ≥ 1 we define the modulation localization operators

F(SLu)(τ, ξ) = ψL(τ + |ξ|2)Fu(τ, ξ) (Schrödinger case), (2.1)

F(W±
L u)(τ, ξ) = ψL(τ ± |ξ|)Fu(τ, ξ) (Wave case), (2.2)

and the corresponding space-time Fourier supports

S1 =
{
(ξ, τ) ∈ R2 × R | |τ + |ξ|2| ≤ 2

}
,

SL =
{
(ξ, τ) ∈ R2 × R | L/2 ≤ |τ + |ξ|2| ≤ 2L

}
,

respectively

W±
1 =

{
(ξ, τ) ∈ R2 × R | |τ ± |ξ|| ≤ 2

}
,

W±
L =

{
(ξ, τ) ∈ R2 × R | L/2 ≤ |τ ± |ξ|| ≤ 2L

}
.

We also define an equidistant partition of unity in R,

1 =
∑
j∈Z

βj, βj(s) = ψ(s− j)

(∑
k∈Z

ψ(s− k)

)−1

.

Finally, for A ∈ N we define an equidistant partition of unity on the unit circle,

1 =
A−1∑
j=0

βA
j , βA

j (θ) = βj

(
Aθ

π

)
+ βj−A

(
Aθ

π

)
We observe that supp (βA

j ) ⊂ ΘA
j , where

ΘA
j :=

[ π
A

(j − 2),
π

A
(j + 2)

]
∪
[
−π +

π

A
(j − 2),−π +

π

A
(j + 2)

]
.

Next we introduce the angular frequency localization operators QA
j ,

Fx(Q
A
j f)(ξ) = βA

j (θ)Fxf(ξ), where ξ = |ξ|(cos θ, sin θ).

For u : R2×R → C, (x, t) 7→ u(x, t) we set (QA
j u)(x, t) = (QA

j u(·, t))(x). These operators

localize functions in frequency to the sets

QA
j =

{
(|ξ| cos(θ), |ξ| sin(θ), τ) ∈ R2 × R | θ ∈ ΘA

j

}
.

For A ∈ N we can now decompose u : R2 × R → C as

u =
A−1∑
j=0

QA
j u.

Next we turn our attention to defining the spaces which play a crucial role in our

analysis. As explained in the introduction, for k, ` ∈ R and T > 0 we define the space

Xk,`
T as the Banach space of all pairs of space-time distributions (u, n)

u ∈ C([0, T ];Hk(R2; C)),

n ∈ C([0, T ];H`(R2; R)) ∩ C1([0, T ];H`−1(R2; R)),
(2.3)

endowed with the standard norm defined via

‖(u, n)‖2

Xk,`
T

= ‖u‖2
L∞([0,T ];Hk

x ) + ‖n‖2
L∞([0,T ];H`

x) + ‖∂tn‖2
L∞([0,T ];H`−1

x )
. (2.4)
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Let σ, b ∈ R, 1 ≤ p < ∞. In connection to the operator i∂t + ∆ we define the

Bourgain space XS
σ,b,p of all u ∈ S ′(R2 × R) for which the norm

‖u‖XS
σ,b,p

=

∑
N≥1

N2σ

(∑
L≥1

Lpb‖SLPNu‖p
L2

) 2
p


1
2

is finite. Similarly, to the half-wave operators i∂t±〈∇〉 we associate the Bourgain spaces

XW±

σ,b,p of all v ∈ S ′(R2 × R) for which the norm

‖v‖
XW±

σ,b,p
=

∑
N≥1

N2σ

(∑
L≥1

Lpb‖W±
L PNu‖p

L2

) 2
p


1
2

is finite. For p = ∞ we modify the definition as usual:

‖v‖
XW±

σ,b,∞
=

(∑
N≥1

N2σ sup
L≥1

L2b‖W±
L PNu‖2

L2

) 1
2

,

‖u‖XS
σ,b,∞

=

(∑
N≥1

N2σ sup
L≥1

L2b‖SLPNu‖2
L2

) 1
2

.

In cases where the Schwartz space S(R2×R) is not dense in XW±

σ,b,p or XS
σ,b,p, respectively,

we redefine the spaces and take the closure of S(R2×R) instead. Therefore, it is enough

to prove all estimates in these spaces for Schwartz functions.

Notice that a change of τ ± |ξ| to τ ± 〈ξ〉 in (2.2) would lead to equivalent norms.

Finally, we define XW
σ,b,p similar to XW±

σ,b,p by means of replacing τ ± |ξ| in (2.2) by

|τ | − |ξ|. XW
σ,b,p will only be used to describe the regularity for solutions of the full wave

equation in Theorem 1.1.

For a normed space B ⊂ S ′(Rn×R; C) of space-time distributions we denote by B

the space of complex conjugates with the induced norm.

A calculation shows that XW±
s,b,p = XW∓

s,b,p. By duality,

(XS
s,b,p)

∗ = XS
−s,−b,p′ , (2.5)

(XW±
s,b,p)

∗ = XW±
−s,−b,p′ , (2.6)

for 1 ≤ p <∞, s, b ∈ R.

For T > 0 we define the space B(T ) of restrictions of distributions in B to the set

Rn × (0, T ) with the induced norm

‖u‖B(T ) = inf{‖ũ‖B : ũ ∈ B is an extension of u to Rn × R}.

3. The reduced system

For the Zakharov system there is a standard procedure to factor the wave operator in

order to derive a first order system. In this section we outline the approach described

in [12].
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Suppose that (u, n) is a sufficiently regular solution to (1.1). We define 〈∇〉 =

(1−∆)
1
2 and v = n+ i〈∇〉−1∂tn and obtain the system

i∂tu+ ∆u = (Re v)u,

i∂tv − 〈∇〉v = − ∆

〈∇〉
|u|2 − 〈∇〉−1Re v.

(3.1)

Given a solution (u, v) to (3.1) with initial data (u0, v0), we obtain a solution to the

original system (1.1) by setting n = Re v.

In the following sections we will study the system (3.1) and prove a well-posedness

result for this system since it is slightly more convenient to iterate the reduced system

(3.1) instead of (1.1) for symmetry reasons.

We call a pair of distributions (u, n) a solution to (1.1) if

(u, n+ i〈∇〉−1∂tn) (3.2)

is a solution of (3.1) in the sense of the integral equation (5.10). The uniqueness class

XT in the statement of Theorem 1.1 can be chosen as all (u, n) such that u ∈ XS
0, 1

2
,1
(T ),

n ∈ XW
− 1

2
, 1
2
,1
(T ) and ∂tn ∈ XW

− 3
2
, 1
2
,1
(T ), see Section 2 for definitions.

We now reformulate the statement of Theorem 1.1 into a similar statement about

the reduced system (3.1).

From the above relation (3.2) between v and n and the definitions it follows that

if v ∈ XW+
− 1

2
, 1
2
,1
(T ) is a solution to (3.1) then we have n = Re v ∈ XW

− 1
2
, 1
2
,1
(T ); since

∂tn = 〈∇〉Im v it also follows that ∂tn ∈ XW
− 3

2
, 1
2
,1
(T ). Conversely, if n ∈ XW

− 1
2
, 1
2
,1
(T ) and

∂tn ∈ XW
− 3

2
, 1
2
,1
(T ) then a straightforward computation shows that v ∈ XW+

− 1
2
, 1
2
,1
(T ).

The above considerations allow us to claim the statement of Theorem 1.1 by a

proving a similar statement about the reduced system (3.1) with initial data (u0, v0) ∈
L2 × H− 1

2 . Obviously, in the context of (3.1) we adjust the definition of XT to

XS
0, 1

2
,1
(T )×XW+

− 1
2
, 1
2
,1
(T ).

We finish the section with a simple remark. According to the linear part of the

equation of v in (3.1), the corresponding XW+
s,b,p spaces should have been defined with

the weight τ + 〈ξ〉 instead of τ + |ξ|. However, a direct computation shows that the two

spaces are the same. The reason behind it is that we deal with local theory T ≤ 1 and

inhomogeneous norms.

In the sequel of the paper we will restrict our attention to the reduced system (3.1).

4. Multilinear estimates

This section is devoted to the proof of the following Theorem.

Theorem 4.1. For all 0 < T ≤ 1 and for all functions u, u1, u2 ∈ XS
0, 5

12
,1
(T ) and

v ∈ XW+
− 1

2
, 5
12

,1
(T ) the following estimates hold true:

‖uv‖XS

0,− 5
12 ,∞

(T ) . ‖u‖XS

0, 5
12 ,1

(T )‖v‖XW+

− 1
2 , 5

12 ,1
(T ), (4.1)
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‖uv̄‖XS

0,− 5
12 ,∞

(T ) . ‖u‖XS

0, 5
12 ,1

(T )‖v‖XW+

− 1
2 , 5

12 ,1
(T ), (4.2)∥∥∥∥ ∆

〈∇〉
(u1ū2)

∥∥∥∥
XW+

− 1
2 ,− 5

12 ,∞
(T )

. ‖u1‖XS

0, 5
12 ,1

(T )‖u2‖XS

0, 5
12 ,1

(T ). (4.3)

We introduce the notation

I(f, g1, g2) =

∫
f(ζ1 − ζ2)g1(ζ1)g2(ζ2)dζ1dζ2,

where ζi = (ξi, τi), i = 1, 2. Using (2.5) and (2.6) and the fact that Fu = Fu(−·), we

can reduce Theorem 4.1 to the following trilinear estimate:

Proposition 4.2. For all v, u1, u2 ∈ S(R2 × R) it holds

|I(Fv,Fu1,Fu2)| . ‖u1‖XS

0, 5
12 ,1

‖u2‖XS

0, 5
12 ,1

‖v‖XW±
− 1

2 , 5
12 ,1

. (4.4)

The proof of Proposition 4.2 is given at the end of this section. As building

blocks we provide a number of preliminary estimates first. These are concerned with

functions which are dyadically localized in frequency and modulation. In some cases we

additionally differentiate frequencies by their angular separation.

We start this analysis by recalling the well-known bilinear generalization of the

linear L4 Strichartz estimate for the Schrödinger equation due to Bourgain [5, Lemma

111], see (4.5) below. We observe that a similar estimate is true for a Wave-Schrödinger

interaction.

Proposition 4.3 (Bilinear Strichartz estimates).

(i) Let v1, v2 ∈ L2(R3) be dyadically Fourier-localized such that

suppFvi ⊂ PNi
∩SLi

for L1, L2 ≥ 1, N1, N2 ≥ 1. Then the following estimate holds:

‖v1v2‖L2(R3) .

(
N1

N2

) 1
2

L
1
2
1L

1
2
2 ‖v1‖L2‖v2‖L2 . (4.5)

(ii) Let u, v ∈ L2(R3) be such that

suppFu ⊂ C × R ∩W±
L , suppFv ⊂ PN1 ∩SL1

for L,L1 ≥ 1, N1 ≥ 1 and a cube C ⊂ R2 of side length d ≥ 1. Then the following

estimate holds:

‖uv‖L2(R3) .

(
min{d,N1}

N1

) 1
2

L
1
2L

1
2
1 ‖u‖L2‖v‖L2 . (4.6)

In particular, if

suppFu ⊂ PN ∩W±
L , suppFv ⊂ PN1 ∩SL1

for L,L1 ≥ 1, N,N1 ≥ 1, it follows

‖uv‖L2(R3) .

(
min{N,N1}

N1

) 1
2

L
1
2L

1
2
1 .‖u‖L2‖v1‖L2 . (4.7)
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On the left hand side of (4.5), (4.7) and (4.5) we may replace each function with its

complex conjugate.

Proof. As remarked above the estimate (4.5) is provided by [5, Lemma 111], so it remains

to show (4.6) and (4.7). With f = Fu and g = Fv it follows∥∥∥∥∫ f(ξ1, τ1)g(ξ − ξ1, τ − τ1)dξ1dτ1

∥∥∥∥
L2

ξ,τ

. sup
ξ,τ

|E(ξ, τ)|
1
2‖f‖L2‖g‖L2

by the Cauchy-Schwarz inequality, where

E(ξ, τ) = {(ξ1, τ1) ∈ supp f | (ξ − ξ1, τ − τ1) ∈ supp g} ⊂ R3.

With l = min{L,L1} and l = max{L,L1} the volume of this set can be estimated as

|E(ξ, τ)| ≤ l · |{ξ1 | |τ ± |ξ1|+ |ξ − ξ1|2| . l, ξ1 ∈ C, |ξ − ξ1| ∼ N1}|,

by Fubini’s theorem. The latter subset of R2 is contained in a cube of side length

m, where m ∼ min{d,N1}, so if N1 = 1 the estimate follows. If N1 ≥ 2 and the

first component ξ1,1 is fixed, then the second component ξ1,2 is confined to an interval

of length m, and vice versa. In the subset where |(ξ − ξ1)2| & N1 we observe that

|∂ξ1,2(τ ± |ξ1| + |ξ − ξ1|2)| & N1, and similarly in the subset where |(ξ − ξ1)1| & N1 we

observe that |∂ξ1,1(τ ± |ξ1|+ |ξ − ξ1|2)| & N1. This shows that

|{ξ1 | |τ ± |ξ1|+ |ξ − ξ1|2| . l, ξ1 ∈ C, |ξ − ξ1| ∼ N1}| . N−1
1 lm,

and the claim (4.6) follows. This also implies the claim (4.7) because the dyadic annulus

of radius N is contained in a cube of side length d ∼ N .

Let ∠(ξ1, ξ2) ∈ [0, π
2
] denote the (smaller) angle between the lines spanned by ξ1, ξ2 ∈ R2.

For dyadic numbers 64 ≤ A ≤M we consider the following angular decomposition

R2 × R2 =

{
∠(ξ1, ξ2) ≤

16π

M

}
∪

⋃
64≤A≤M

{
16π

A
≤ ∠(ξ1, ξ2) ≤

32π

A

}
=

⋃
0≤j1,j2≤M−1
|j1−j2|≤16

QM
j1
×QM

j2
∪

⋃
64≤A≤M

⋃
0≤j1,j2≤A−1
16≤|j1−j2|≤32

QA
j1
×QA

j2
(4.8)

Therefore, we consider for each dyadic A ∈ [64,M ] slices of angular aperture ∼ A−1

with an angular separation of size ∼ A−1, and additionally slices which are of angular

aperture less than M−1. This is a dyadic, angular Whitney type decomposition with

threshold M .

Proposition 4.4 (Transverse high-high interactions, low modulation). Let f, g1, g2 ∈ L2

with ‖f‖L2 = ‖g1‖L2 = ‖g2‖L2 = 1 and

supp (f) ⊂ W±
L ∩PN , supp (gk) ⊂ QA

jk
∩PNk

∩SLk
(k = 1, 2).

where the frequencies N,N1, N2 and modulations L,L1, L2 satisfy

64 ≤ N . N1 ∼ N2, L1, L2, L . N2
1
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while the angular localization parameters A and j1, j2 satisfy

64 ≤ A� N1, 16 ≤ |j1 − j2| ≤ 32

Then the following estimate holds

|I(f, g1, g2)| .
1

N
1
2
1

(
A

N1

) 1
2

(L1L2L)
1
2 . (4.9)

The following proof of Proposition 4.4 is based on a quantitative, nonlinear version

of the classical Loomis-Whitney-inequality [17].

Proposition 4.5 (see [2]). Let C1, C2, C3 be cubes in R3 of diameter 2R > 0. Consider

two paraboloids in R3 which are graphs of φ1, φ2 ∈ C1,1 within C1, C2 and a cone in

R3 which is a graph of φ3 ∈ C1,1 within C3, such that the homogeneous semi-norms

satisfy [φj]C1,1 . 1. Moreover, assume that they are transversal in the sense that the

determinant of every triple of unit normals to points on the surfaces within these cubes

is at least of size θ > 0 and suppose that R . θ. Now, for given subsets Σ1,Σ2,Σ3 of

the above surfaces which are contained in the 1
2
-shrinked cubes with same center and

for each f ∈ L2(Σ1) and g ∈ L2(Σ2) the restriction of the convolution f ∗ g to Σ3 is a

well-defined L2(Σ3)-function which satisfies

‖f ∗ g‖L2(Σ3) ≤
C√
θ
‖f‖L2(Σ1)‖g‖L2(Σ2). (4.10)

This follows from [2, Corollary 1.6]. We also refer the interested reader to the

earlier paper [3] which contains a version of the aforementioned inequality in broader

generality under slightly more restrictive and non-scalable assumptions. To keep the

paper self-contained, we provide an independent proof of Proposition 4.4 in Appendix

A which is based on elementary geometric considerations and orthogonality.

Proof. We abuse notation and replace g2 by g2(−·) and change variables ζ2 7→ −ζ2 to

obtain the usual convolution structure. From now on it holds |τ2−|ξ2|2| ∼ L2 within the

support of g2. We consider only the case supp (f) ⊂ W−
L since in the case supp (f) ⊂ W+

L

the same arguments apply.

For fixed ξ1, ξ2 we change variables c1 = τ1 + |ξ1|2, c2 = τ2 − |ξ2|2. By decomposing

f into ∼ L pieces and applying the Cauchy-Schwarz inequality, it suffices to prove∣∣∣∣∫ g1(φ
−
c1

(ξ1))g2(φ
+
c2

(ξ2))f(φ−c1(ξ1) + φ+
c2

(ξ2))dξ1dξ2

∣∣∣∣
.
A

1
2

N1

‖g1 ◦ φ−c1‖L2
ξ
‖g2 ◦ φ+

c2
‖L2

ξ
‖f‖L2

(4.11)

where f is now supported in c ≤ τ − |ξ| ≤ c + 1 and φ±ck
(ξ) = (ξ,±|ξ|2 + ck), k = 1, 2,

and the implicit constant is independent of c, c1, c2.

We refine the localization on ξ and τ components by orthogonality methods, see

also Lemma Appendix A.1. Since the support of f in the τ direction is confined to an

interval of length . N1, |ξ2|2−|ξ1|2 is localized in a specific interval of length ∼ N1 which

in turn localizes |ξ2| − |ξ1| in an interval of size ∼ 1. By decomposing the plane into
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annuli of size ∼ 1 and using the Cauchy-Schwarz inequality, we reduce (4.11) further

to the additional assumption that the support of g1 ◦ φ−c1 and g2 ◦ φ+
c2

is an interval of

length ∼ 1 . N1A
−1. Recalling the additional angular localization, we can assume that

g1, g2 and f are each localized in cubes of size N1A
−1 with respect to the ξ variables.

We use the parabolic scaling (ξ, τ) 7→ (N1ξ,N
2
1 τ) to define

f̃(ξ, τ) = f(N1ξ,N
2
1 τ), g̃k(ξk, τk) = gk(N1ξk, N

2
1 τk), k = 1, 2.

If we set c̃k = ckN
−2
k , equation (4.11) reduces to∣∣∣∣∫ g̃1(φ

−
c̃1

(ξ1))g̃2(φ
+
c̃2

(ξ2))f̃(φ−c̃1(ξ1) + φ+
c̃2

(ξ2))dξ1dξ2

∣∣∣∣
.
A

1
2

N1

‖g̃1 ◦ φ−c̃1‖L2
ξ
‖g̃2 ◦ φ+

c̃2
‖L2

ξ
‖f̃‖L2 ,

(4.12)

where now g̃k is supported in a cube of size ∼ A−1 with |ξk| ∼ 1 and the supports are

separated by ∼ A−1. f̃ is supported in a neighborhood of size N−2
1 of the surface S3

parametrized by (ξ, ψN1(ξ)) for ψN1(ξ) = |ξ|
N1

+ c
N2

1
. Let us put ε = N−2

1 and denote

this neighborhood by S3(ε). The separation of ξ1 and ξ2 above implies also that in the

support of f̃ we have |ξ| & A−1 ≥ N−1
1 .

By density and duality it is enough to consider continuous g̃1, g̃2 and we can further

rewrite the above estimate as

‖g̃1|S1 ∗ g̃2|S2‖L2(S3(ε)) . A
1
2 ε

1
2‖g̃1‖L2(S1)‖g̃2‖L2(S2) (4.13)

where Si, i = 1, 2 are parametrized by φ±c̃i
. The above localization properties of the

support of g̃i are inherited by Si, which implies that the maximal diameter of the S1,

S2 and S3 is at most R ∼ A−1. Obviously, the parametrizations of the paraboloids S1

and S2 have C1,1 semi-norm ∼ 1. Concerning S3 we estimate

|∇ψN1(ξ)−∇ψN1(η)| . N−1
1 | ξ

|ξ|
− η

|η|
| . |ξ − η|

where we have used that |ξ|, |η| ≥ N−1
1 in the base of S3. Therefore, the C1,1 semi-norm

for our parametrization of S3 is . 1.

Finally, we need to analyze the transversality properties of our surfaces. In other

words, we need to determine a uniform lower bound θ on the size of the determinant d

of the matrix of three unit normal vector fields. Intuitively it is clear that – since the

parabolically rescaled cone is almost flat – this is determined by the minimal angular

separation ∼ A−1 between the ξ-supports of g1 and g2. In fact, we will show that

θ & A−1 below. In summary, we have R . θ and we invoke (4.10) to obtain (4.13).

Let us carefully verify the transversality condition θ & A−1 indicated above: The

determinant of any three unit normals to S1, S2, and S3 is given by

d =

∣∣∣∣∣∣∣
2ξ1
〈2ξ〉

2η1

〈2η〉
ζ1

|ζ|〈N1〉
2ξ2
〈2ξ〉

2η2

〈2η〉
ζ2

|ζ|〈N1〉
1
〈2ξ〉 − 1

〈2η〉
N1

〈N1〉

∣∣∣∣∣∣∣
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which we expand as d = d1 + d2 + d3, with main contribution

d1 =
N1

〈N1〉

∣∣∣∣∣ 2ξ1
〈2ξ〉

2η1

〈2η〉
2ξ2
〈2ξ〉

2η2

〈2η〉

∣∣∣∣∣
and the error terms

d2 = − ζ2
|ζ|〈N1〉

∣∣∣∣∣ 2ξ1
〈2ξ〉

2η1

〈2η〉
1
〈2ξ〉 − 1

〈2η〉

∣∣∣∣∣ , d3 =
ζ1

|ζ|〈N1〉

∣∣∣∣∣ 2ξ2
〈2ξ〉

2η2

〈2η〉
1
〈2ξ〉 − 1

〈2η〉

∣∣∣∣∣ .
The contribution of the last two terms d2 and d3 is bounded by

|d2|+ |d3| .
|ζ1|+ |ζ2|
|ζ|〈N1〉

. N−1
1

The first determinant d1 can be rewritten as

d1 =
N1

〈N1〉
2|ξ|
〈2ξ〉

2|η|
〈2η〉

∣∣∣∣∣ ξ1
|ξ|

η1

|η|
ξ2
|ξ|

η2

|η|

∣∣∣∣∣ =
N1

〈N1〉
2|ξ|
〈2ξ〉

2|η|
〈2η〉

sin ∠

(
ξ

|ξ|
,
η

|η|

)
Recalling that |ξ|, |η| ∼ 1 (since they are in the support of g1, respectively g2), it follows

that N1

〈N1〉
2|ξ|
〈2ξ〉

2|η|
〈2η〉 & 1. By the angular separation between S1 and S2 we obtain |d1| & A−1

and by recalling that A� N1 it follows that |d| & A−1.

In the case where the maximal modulation is high a different bound will be

favourable.

Proposition 4.6 (Transverse high-high interactions, high modulation). Let f, g1, g2 ∈
L2, ‖f‖L2 = ‖g1‖L2 = ‖g2‖L2 = 1 such that

supp (f) ⊂ PN ∩W±
L , supp (gk) ⊂ QA

jk
∩PNk

∩SLk
(k = 1, 2),

with 64 ≤ N . N1 ∼ N2 and 64 ≤ A ≤ N1. Moreover, assume that 16 ≤ |j1 − j2| ≤ 32.

Then

|I(f, g1, g2)| .
L

1
2
1L

1
2
2L

1
2N− 1

2

max{L,L1, L2}
1
2

(
N1

A

) 1
2

(4.14)

Remark 4. The estimate (4.14) gives a better bound than (4.9) in the case where

max{L,L1, L2} ≥
(
N1

A

)2
N1

N
. (4.15)

Proof of Proposition 4.6. After a rotation we may assume that j1 = 0. Due to the

localization of the wedges we observe that the integral vanishes unless N & N1A
−1,

since |ξ2,2 − ξ1,2| ∼ N1A
−1. We consider two cases:

(i) N ∼ N1A
−1

(ii) N � N1A
−1.
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In case (i) we start with the subcase where max{L,L1, L2} = L. From the bilinear

Strichartz estimate for the Schrödinger equation (4.5), using N ∼ A−1N1, we obtain

|I(f, g1, g2)| . (L1L2)
1
2 ‖f‖L2‖g1‖L2‖g2‖L2 .

The subcases where max{L,L1, L2} = Li for i = 1, 2 follow in the same way by using

(4.7) instead of (4.5).

In Case (ii) we also start with the subcase where max{L,L1, L2} = L. Without

any restriction in generality assume also that L1 ≤ L2. Denoting

χ = 1QA
j1
∩PN1

∩SL1
1QA

j2
∩PN2

∩SL2

we use Cauchy-Schwarz to estimate∣∣∣∣∫ f(ζ1 − ζ2)g1(ζ1)g2(ζ2)dζ1dζ2

∣∣∣∣ . ‖χf(ζ1 − ζ2)‖L2‖g1(ζ1)g2(ζ2)‖L2

. sup
ζ0∈PN∩W±

L

|B(ζ0)|
1
2‖f‖L2‖g1‖L2‖g2‖L2

where

B(ζ0) = {ζ1 | ζ1 ∈ QA
j1
∩PN1 ∩SL1 ; ζ1 − ζ0 ∈ QA

j2
∩PN2 ∩SL2}.

To bound the size of the set B(ζ0) we observe that for ζ0 = (ξ0, τ0) and ζ1 = (ξ1, τ1) as

above we must have |ξ0,1| ∼ N and

|τ1 − ξ2
1 | . L1, |ξ1,2| .

N1

A
, |τ1 − τ0 + |ξ1 − ξ0|2| ∼ L2.

Since ∂ξ1,1(|ξ1|2 − |ξ1 − ξ0|2) = 2ξ0,1 which has size N , it follows that

|B(ξ0, τ0)| . L1
L2

N

N1

A
(4.16)

and the conclusion of the Proposition follows.

Let us now assume that max{L,L1, L2} = L1; the subcase when max{L,L1, L2} =

L2 is similar. Using Cauchy-Schwarz as above we obtain

|I(f, g1, g2)| . sup
ζ1∈QA

j1
∩PN1

∩SL1

|C(ζ1)|
1
2‖f‖L2‖g1‖L2‖g2‖L2 ,

where

C(ζ1) = {ζ2 | ζ2 ∈ QA
j2
∩PN2 ∩SL2 ; ζ1 − ζ2 ∈ PN ∩W±

L}.

Setting l = min{L,L2} and l = max{L,L2}, we observe that given ξ2, τ2 can only range

in an interval of size . l. On the other hand, for ξ2 we have the restrictions

|ξ2,2| .
N1

A
, |τ1 + |ξ2|2 ± |ξ1 − ξ2|| . l.

Since |∂ξ2,1(|ξ2|2 ± |ξ1 − ξ2|)| = 2|ξ2,1| & N1, we obtain

|C(ζ1)| . l
l

N1

N1

A
=
LL2

A
(4.17)

again concluding the proof of the Proposition.
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Next, we consider the case where the frequencies ξ1 and ξ2 are almost parallel. This

can be viewed as an almost one-dimensional interaction.

Proposition 4.7 (Parallel high-high interactions). Let f, g1, g2 ∈ L2, ‖f‖L2 = ‖g1‖L2 =

‖g2‖L2 = 1 such that

supp (f) ⊂ PN ∩W±
L , supp (gk) ⊂ QA

jk
∩PNk

∩SLk
(k = 1, 2),

with 1 � N . N1 ∼ N2. Assume that A ∼ N1 and |j1 − j2| ≤ 16. Then for all

L,L1, L2 ≥ 1 we have

|I(f, g1, g2)| . L
5
12
1 L

5
12
2 L

5
12

1

N
1
2

(
N

N1

) 1
4

(4.18)

Proof. After a rotation we may assume that j1 = 0. Due to the localization of the

wedges we observe that |ξ0,2|, |ξ1,2|, |ξ2,2| . 1. This shows that |ξ1,1 − ξ2,1| = |ξ0,1| ∼ N ,

|ξ1,1|, |ξ2,1| ∼ N1. In addition, we must have

||ξ1 − ξ2| ± (|ξ1|2 − |ξ2|2)| . max{L,L1, L2}

If N � N1 then the above left hand side must have size NN1. Thus we have established

the following dichotomy:

either N ∼ N1 or NN1 . max{L,L1, L2}. (4.19)

Then we can use the same argument as in Case (ii) of the proof of Proposition 4.6.

If L = max{L1, L2, L} then the bound (4.16) holds, and corresponding to the two

cases in (4.19) we only need to compute

L1L2
1

N

N1

A
= L1L2

1

N
. L

2
3
1L

2
3
2L

2
3

1

N

N

N1

respectively

L1L2
1

N

N1

A
= L

5
6
1L

5
6
2L

1
3

1

N
. L

5
6
1L

5
6
2L

5
6

1

N

1

(NN1)
1
2

both of which are stronger than needed.

On the other hand if L1 = max{L,L1, L2} then (4.17) holds, and we conclude as

above taking into account the two cases in (4.19). The case L2 = max{L,L1, L2} is

similar.

The next proposition covers the case of high-low interactions.

Proposition 4.8 (high-low interactions). Let f, g1, g2 ∈ L2 be functions with ‖f‖L2 =

‖g1‖L2 = ‖g2‖L2 = 1 such that

supp (f) ⊂ PN ∩W±
L , supp (gk) ⊂ PNk

∩SLk
(k = 1, 2),

with 1 ≤ N1 � N2 or 1 ≤ N2 � N1. Then, for all L,L1, L2 ≥ 1 we have

|I(f, g1, g2)| . L
5
12
1 L

5
12
2 L

5
12N− 1

2 min

{
N1

N2

,
N2

N1

} 1
6

(4.20)
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Proof. Assume first that N1 � N2. Then, the integral vanishes unless N2 ∼ N and

max{L,L1, L2} & ||ξ1|2 − |ξ2|2 ± |ξ1 − ξ2|| & N2
2 . (4.21)

We consider three cases:

Case 1: L = max{L,L1, L2}. Then by the bilinear Strichartz estimate (4.5) we

have

|I(f, g1, g2)| . ‖f‖L2‖F−1g1F−1g2‖L2 . L
1
2
1L

1
2
2

(
N1

N2

) 1
2

Then the claim follows due to (4.21).

Case 2: L1 = max{L,L1, L2}. Since g1 is localized in frequency in a cube of size N1,

by orthogonality the estimate reduces to the case when f and g2 are frequency localized

in cubes of size N1. Then we use bilinear L2 estimate (4.6) with d = N1 to obtain

|I(f, g1, g2)| . ‖g1‖L2‖F−1fF−1g2‖L2 . L
1
2L

1
2
2

(
N1

N2

) 1
2

and conclude again using (4.21).

Case 3: L2 = max{L,L1, L2}. On one hand, by (4.7) we obtain the bound

|I(f, g1, g2)| . ‖g2‖L2‖F−1fF−1g1‖L2 . L
1
2L

1
2
1

which implies (4.20) if additionally L1 ≤ N2
1 holds.

On the other hand, by Young’s inequality we have

|I(f, g1, g2)| ≤ ‖g2‖L2‖f‖L2
ξL1

τ
‖g1‖L1

ξL2
τ

. L
1
2N1.

which, combined with (4.21), suffices in the elliptic regime L1 > N2
1 .

The case N1 � N2 follows by the same arguments.

Finally, we deal with the case where the wave frequency is very small.

Proposition 4.9 (Very small wave frequency). Let f, g1, g2 ∈ L2 with ‖f‖L2 = ‖g1‖L2 =

‖g2‖L2 = 1 such that

supp (f) ⊂ PN ∩W±
L , supp (gk) ⊂ PNk

∩SLk
(k = 1, 2),

and assume that N . 1. Then,

|I(f, g1, g2)| . L
1
3L

1
3
1L

1
3
2 . (4.22)

Proof. Depending on which of L,L1, L2 is maximal we apply the bilinear Strichartz

refinements (4.5) or (4.7) and the result follows.

We are ready to provide a proof of our main trilinear estimate (4.4).
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Proof of Proposition 4.2. By definition of the norms it is enough to consider functions

with non-negative Fourier transform. We dyadically decompose

ui =
∑

Ni,Li≥1

SLi
PNi

ui , v =
∑

N,L≥1

W±
L PNv.

Setting gLi,Ni

i = FSLi
PNi

ui and fL,N = FW±
L PNv, we observe

I(Fv,Fu1,Fu2) =
∑

N,N1,N2≥1

∑
L,L1,L2≥1

I(fL,N , gL1,N1

1 , gL2,N2

2 ).

Case 1: high-high-low interactions, i.e. N1 ∼ N2 & N ≥ 210.

We fix M = 2−4N1 and use the decomposition (4.8) to write

I(fL,N , gL1,N1

1 , gL2,N2

2 ) =
∑

0≤j1,j2≤M−1
|j1−j2|≤16

I(fL,N , gL1,N1,M,j1
1 , gL2,N2,M,j2

2 )

+
∑

64≤A≤M

∑
0≤j1,j2≤A−1
16≤|j1−j2|≤32

I(fL,N , gL1,N1,A,j1
1 , gL2,N2,A,j2

2 )

where gLi,Ni,A,ji

i = gLi,Ni

i |QA
ji
. We apply Proposition 4.7 to the first term and use Cauchy-

Schwarz to obtain ∑
0≤j1,j2≤M−1
|j1−j2|≤16

I(fL,N , gL1,N1,M,j1
1 , gL2,N2,M,j2

2 )

.
(LL1L2)

5
12

N
1
2

(
N

N1

) 1
4

‖fL,N‖L2

∑
0≤j1,j2≤M−1
|j1−j2|≤16

‖gL1,N1,M,j1
1 ‖L2‖gL2,N2,M,j2

2 ‖L2

.
(LL1L2)

5
12

N
1
2

(
N

N1

) 1
4

‖fL,N‖L2‖gL1,N1

1 ‖L2‖gL2,N2

2 ‖L2 .

Concerning the second term, we split the sum with respect to A into two parts

according to the quantity

α := 2−4 min

{(
N1

N

) 1
2

N1 max{L,L1, L2}−
1
2 , N1

}
.

For the part where 64 ≤ A ≤ α we apply Proposition 4.4 and obtain

S1 :=
∑

64≤A≤α

∑
0≤j1,j2≤A−1
16≤|j1−j2|≤32

I(fL,N , gL1,N1,A,j1
1 , gL2,N2,A,j2

2 )

.

(
LL1L2

N1

) 1
2

‖fL,N‖L2

∑
64≤A≤α

A
1
2

N
1
2
1

∑
0≤j1,j2≤A−1
16≤|j1−j2|≤32

‖gL1,N1,A,j1
1 ‖L2‖gL2,N2,A,j2

2 ‖L2 .

Then, we use Cauchy-Schwarz with respect to j1, j2

S1 .

(
LL1L2

N1

) 1
2

‖fL,N‖L2‖gL1,N1

1 ‖L2‖gL2,N2

2 ‖L2

∑
64≤A≤α

A
1
2

N
1
2
1
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. (LL1L2)
5
12N− 1

2

(
N

N1

) 1
4

‖fL,N‖L2‖gL1,N1

1 ‖L2‖gL2,N2

2 ‖L2 ,

due to the property of the dyadic sum
∑

64≤A≤αA
1
2 . α

1
2 .

For the part where α ≤ A ≤ N1 we use Proposition 4.6 and obtain

S2 :=
∑

α≤A≤M

∑
0≤j1,j2≤A−1
16≤|j1−j2|≤32

I(fL,N , gL1,N1,A,j1
1 , gL2,N2,A,j2

2 )

.
L

1
2L

1
2
1L

1
2
2 ‖fL,N‖L2

max{L1, L2, L}
1
2N

1
2

∑
α≤A≤M

N
1
2
1

A
1
2

∑
0≤j1,j2≤A−1
16≤|j1−j2|≤32

‖gL1,N1,A,j1
1 ‖L2‖gL2,N2,A,j2

2 ‖L2 .

As above, we use Cauchy-Schwarz with respect to j1, j2 and obtain

S2 .
L

1
2L

1
2
1L

1
2
2 ‖fL,N‖L2‖gL1,N1

1 ‖L2‖gL2,N2

2 ‖L2

max{L1, L2, L}
1
2N

1
2

∑
α≤A≤M

N
1
2
1

A
1
2

.
(LL1L2)

5
12

N1/2

(
N

N1

) 1
4

‖fL,N‖L2‖gL1,N1

1 ‖L2‖gL2,N2

2 ‖L2 ,

because of
∑

α≤A≤M A− 1
2 . α−

1
2 .

Case 2: very small wave frequency, i.e. N . 1. In this case, either N1 ∼ N2 or

N,N1, N2 . 1 and we apply Proposition 4.9 and arrive at the bound (4.22)

Case 3: high-low interactions, i.e. N1 � N2 or N1 � N2. We apply Proposition

4.8 and obtain the bound (4.20).

To summarize, we obtain in any case the weakest of all three bounds, namely

I(fL,N , gL1,N1

1 , gL2,N2

2 )

. (LL1L2)
5
12 min

{
N

N1

,
N1

N2

,
N2

N1

} 1
6 ‖fL,N‖L2

N
1
2

‖gL1,N1

1 ‖L2‖gL2,N2

2 ‖L2 ,

which we dyadically sum with respect to L,L1, L2 ≥ 1. Then, we use that for non-

vanishing contributions we must have N . N1 ∼ N2 or N1 . N ∼ N2 or N2 . N and

the prefactor enables us to control the sum by the corresponding dyadic `2-norms.

5. Linear estimates and the proof of Theorem 1.1

Before we prove Theorem 1.1 we present some linear estimates which are well-known at

least in the case of standard Bourgain spaces, see e.g. [12, Section 2].

We define the 1d inhomogeneous Besov norms

‖g‖Bb
2,1

=
∑
L≥1

Lb‖PLg‖L2 , ‖g‖Bb
2,∞

= sup
L≥1

Lb‖PLg‖L2 .

For 0 < T ≤ 1 we define a smooth cutoff function for the interval [0, T ] as ψT (t) = ψ(t/T )

and we define the Fourier localization operator P≤T−1 :=
∑

1≤L≤T−1 PL, cp. Section 2.
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Lemma 5.1. Let 0 < b ≤ 1
2
. For all g ∈ S(R) and T ∈ (0, 1] we have

‖gψT‖Bb
2,1
∼ T−b‖P≤T−1(gψT )‖L2 +

∑
L>T−1

Lb‖PL(gψT )‖L2 , (5.1)

where the implicit constants are independent of T and g.

Proof. On the one hand we have

∑
1≤L≤T−1

Lb‖PL(gψT )‖L2 ≤ 2

 ∑
1≤L≤T−1

L2b

 1
2

‖P≤T−1(gψT )‖L2

. T−b‖P≤T−1(gψT )‖L2 ,

and on the other hand

T−b‖P≤T−1(gψT )‖L2 ≤ T−b‖gψT‖L2 ≤ ‖gψT‖
L

2
1−2b

. ‖gψT‖Bb
2,1

where we have used the embedding Bb
2,1 ⊂ L

2
1−2b in the last step.

In the following, let Xs,b,p(T ) denote either XS
s,b,p(T ) or XW±

s,b,p(T ).

Proposition 5.2. Let s, b ∈ R, 0 < b < 1
2
. There exists a constant C > 0 such that for

all T ∈ (0, 1] the estimate

‖f‖Xs,b,1(T ) ≤ CT
1
2
−b‖f‖X

s, 12 ,1
(T ) (5.2)

holds for all f ∈ Xs, 1
2
,1(T ). Moreover, the embedding Xs, 1

2
,1(T ) ⊂ C([0, T ];Hs) is

continuous, i.e. there exists a constant C > 0 such that for all T ∈ (0, 1] it holds

sup
0≤t≤T

‖f(t)‖Hs ≤ C‖f‖X
s, 12 ,1

(T ) (5.3)

for all f ∈ Xs, 1
2
,1(T ).

Proof. We show (5.2) first. By the definition of the restriction norm it suffices to prove

‖fψT‖Xs,b,1
≤ CT

1
2
−b‖f‖X

s, 12 ,1

for all f ∈ S(Rn × R). After conjugating f with the linear group the claim is reduced

to the estimate

‖gψT‖Bb
2,1
≤ CT

1
2
−b‖g‖

B
1
2
2,1

for g ∈ S(R). Then, with gT = g(·T ) we use (5.1) and obtain

‖gψT‖Bb
2,1

. T−b‖P≤T−1(gψT )‖L2 +
∑

L>T−1

Lb‖PL(gψT )‖L2

. T
1
2
−b
∑
L≥1

Lb‖PL(gTψ)‖L2

. T
1
2
−b(‖gTψ‖L2 + ‖gTψ‖Ḣ

1
2
)
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by rescaling. Obviously,

‖gTψ‖L2 ≤ ‖gT‖L∞ . ‖g‖
B

1
2
2,1

and by the 1d Sobolev Multiplication Theorem

‖gTψ‖Ḣ
1
2

. ‖gT‖Ḣ
1
2

+ ‖gT‖L∞ . ‖g‖
B

1
2
2,1

.

The second claim, including formula (5.3), follows from the continuous embedding

B
1
2
2,1 ⊂ C(R; R).

For f ∈ S(R2 × R) and t ∈ R let

IS(f)(t) :=

∫ t

0

ei(t−s)∆f(s)ds, (5.4)

IW+(f)(t) :=

∫ t

0

e−i(t−s)〈∇〉f(s)ds. (5.5)

The following Proposition corresponds to [12, Lemma 2.1].

Proposition 5.3. Let s ∈ R. There exists C > 0 such that for all 0 < T ≤ 1 and

φ ∈ Hs the estimates

‖eit∆φ‖XS

s, 12 ,1
(T ) ≤ C‖φ‖Hs , (5.6)

‖e−it〈∇〉φ‖XW+

s, 12 ,1
(T ) ≤ C‖φ‖Hs , (5.7)

are true, and moreover for sufficiently smooth f the estimates

‖IS(f)‖XS

s, 12 ,1
(T ) ≤ CT

1
12‖f‖XS

s,− 5
12 ,∞

(T ), (5.8)

‖IW+(f)‖XW+

s, 12 ,1
(T ) ≤ CT

1
12‖f‖XW+

s,− 5
12 ,∞

(T ), (5.9)

are true. Therefore, IS and IW+ can be extended to continuous linear operators on

these spaces, which satisfy the same bounds.

Proof. We use the notation as in Proposition 5.2 above.

First, (5.6) and (5.7) are proved as in [12, equation (2.19)] upon replacing the

Sobolev space H
1
2
t by the Besov space B

1
2
2,1.

Second, by choosing appropriate extensions and conjugating with the linear group,

the estimates (5.8) and (5.9) easily reduce to the estimate

‖ψTI(g)‖
B

1
2
2,1

≤ CT
1
12‖g‖

B
− 5

12
2,∞

for all g ∈ S(R), T ∈ (0, 1], where I(g) =
∫ t

0
g(t′)dt′. With gT (t) = g(Tt) we calculate

(ψT I(g))(Tt) = Tψ(t)I(gT )(t).

Now, (5.1) and rescaling yields

‖ψTI(g)‖
B

1
2
2,1

≤ CT‖ψI(gT )‖
B

1
2
2,1

.
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From estimate [12, formula (2.24)] with T = 1 and trivial embeddings we deduce

‖ψI(gT )‖
B

1
2
2,1

≤ C‖gT‖
B
− 5

12
2,∞

.

Finally, rescaling shows that

‖gT‖
B
− 5

12
2,∞

≤ CT−
11
12‖g‖

B
− 5

12
2,∞

for all 0 < T ≤ 1, which concludes the proof.

Definition 5.4. We call (u, v) ∈ XS
s, 1

2
,1
(T ) × XW+

s′, 1
2
,1
(T ) a solution of (3.1) with initial

data (u0, v0) ∈ Hs ×Hs′ , if it solves(
u(t)

v(t)

)
=

(
eit∆u0

e−it〈∇〉v0

)
− i

(
IS(2Re (v)u)(t)

IW+(− ∆
〈∇〉 |u|

2 − 1
〈∇〉Re v)(t)

)
(5.10)

for all t ∈ [0, T ].

Now we are ready to proceed with the proof of our main result.

Proof of Theorem 1.1. Let R = ‖u0‖L2 + ‖v0‖H− 1
2
. Since the time of existence claimed

in Theorem 1.1 is smaller than 1 it is enough to discuss only the case 1 . R.

The estimates (5.8) and (4.1), (4.2) yield

‖IS(2Re (v)u)‖XS

0, 12 ,1
(T ) . T

1
12 (‖uv‖XS

0,− 5
12 ,∞

(T ) + ‖uv̄‖XS

0,− 5
12 ,∞

(T ))

. T
1
12‖u‖XS

0, 5
12 ,1

(T )‖v‖XW+

− 1
2 , 5

12 ,1
(T ),

and (5.2) implies

‖IS(2Re (v)u)‖XS

0, 12 ,1
(T ) . T

1
4‖u‖XS

0, 12 ,1
(T )‖v‖XW+

− 1
2 , 12 ,1

(T ). (5.11)

In a similar manner, using (4.3), we estimate∥∥∥∥IW+(
∆

〈∇〉
|u|2)

∥∥∥∥
XW+

− 1
2 , 12 ,1

(T )

. T
1
12

∥∥∥∥ ∆

〈∇〉
|u|2
∥∥∥∥

XW+

− 1
2 ,− 5

12 ,∞
(T )

. T
1
12‖u‖2

XS

0, 5
12 ,1

(T )

and obtain ∥∥∥∥IW+(
∆

〈∇〉
|u|2)

∥∥∥∥
XW+

− 1
2 , 12 ,1

(T )

. T
1
4‖u1‖XS

0, 12 ,1
(T )‖u2‖XS

0, 12 ,1
(T ). (5.12)

Additionally we obtain

‖IW+(〈∇〉−1Re v)‖XW+

− 1
2 , 12 ,1

(T ) . ‖〈∇〉−1Re v‖L2([0,T ]×R2)

. T
1
2‖v‖

L∞t H
− 1

2
x

. T
1
2‖v‖XW+

− 1
2 , 12 ,1

,
(5.13)
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which easily follows from (5.9). The analoguos estimates for differences can be shown

by the same arguments. Using these nonlinear estimates and the linear estimates in

Proposition 5.3, a standard iteration argument constructs a unique solution

(u, v) ∈ BXS

0, 12 ,1
(T )(0, C‖u0‖L2)×BXW+

− 1
2 , 12 ,1

(T )(0, C‖v0‖H− 1
2
)

for (5.10), provided that T ∼ R−4. In addition, one can show local Lipschitz continuity

of the induced map (u0, v0) 7→ (u, v).

Next we seek to boost the time of existence based on the technique described in

[9]. This is possible due to the L2 norm conservation for u and to the fact that the

nonlinearity for v depends only on u. We claim that the time of existence can be

improved to T ∼ min{R−2‖u0‖−2
L2 , 1}.

Without restricting the generality of the argument we can assume that ‖v0‖H− 1
2
≥

‖u0‖L2 . Then by the above argument we are able to construct solutions on the time

interval δ ∼ ‖v0‖−4

H− 1
2
.

On the other hand, using (5.10), (5.12), (5.13) and that e−it〈∇〉 is unitary we obtain

‖v‖
L∞t H

− 1
2

x ([0,δ]×R2)
≤ ‖v0‖H− 1

2 (R2)
+ Cδ

1
4‖u‖2

XS

0, 12 ,1
(δ) + ‖v‖

L1
t H

− 1
2

x ([0,δ]×R2)

≤ ‖v0‖H− 1
2 (R2)

+ Cδ
1
4‖u0‖2

L2 + δ‖v‖
L∞t H

− 1
2

x ([0,δ]×R2)
.

This allows us to keep reiterating the problem on intervals [jδ, (j+1)δ] for j = 0, 1, . . . ,m

until we double the size of the wave data, i.e. up to the first time when ‖v(t0)‖H− 1
2

=

2‖v0‖H− 1
2

(after this time the value of δ has to be adjusted). After m iterations we

obtain

‖v‖
L∞t H

− 1
2

x ([0,mδ]×R2)
≤ ‖v0‖H− 1

2 (R2)
+ Cmδ

1
4‖u0‖2

L2 +mδ‖v‖
L∞t H

− 1
2

x ([0,mδ]×R2)
.

A direct computation gives m ∼ min (‖v0‖H− 1
2
δ−1/4‖u0‖−2

L2 , δ
−1) and this improves the

time of existence for solutions to

mδ ∼ min (
R

CR−1‖u0‖2
L2

R−4, 1) ∼ min (R−2‖u0‖−2
L2 , 1).

Therefore we are able to improve the life-span of solution to a time T ∼
min (R−2‖u0‖−2

L2 , 1) which implies the claim in Theorem 1.1.

Then a standard argument also establishes the uniqueness of solutions inXS
0, 1

2
,1
(T )×

XW+
− 1

2
, 1
2
,1
(T ) and the Lipschitz dependence with respect to the initial data.

6. Counterexamples

We first show that the time of existence provided in Theorem 1.1 is optimal up to the

multiplicative constant.
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Proof of Theorem 1.2. Fix r > ‖Q‖L2 . There exists ω � 1 such that the Glangetas–

Merle [14, 13] solution Pω, see (1.5), satisfies ‖Pω‖L2 < r. We fix such ω � 1 and

calculate for the corresponding solution (1.5)

‖u(t)‖L2 = ‖Pω‖L2 < r,

and

‖n(t)‖
H− 1

2
+ ‖∂tn(t)‖

H− 3
2
∼ |T − t|−

1
2 .

Theorem 1.2 follows.

Next, we show that our multilinear estimates in Theorem 4.1 are sharp. We follow

the approach which has been pioneered by Bourgain [4] to show non-smoothness of the

flow map. We also refer the reader to [15] where related counterexamples in the 1d case

have been constructed.

In order to avoid unnecessary technicalities, we write XS
k,b to denote XS

k,b,2 and XW±
`,b

to denote XW±
`,b,2 and provide counterexamples for this scale of norms. We remark that

the arguments remain valid for any choice of 1 ≤ p ≤ ∞ instead of 2. The reason is

that the norms XS
k,b,p for distinct p are equivalent up to logarithms of the size of the

modulation (same for XW±
k,b,p), but our counterexamples will always involve powers of the

modulation.

Moreover, in Proposition 6.1 we restrict the exposition to the case of the XW+
k,b

space, i.e. the sharpness of (4.2); the case XW+
k,b , i.e. the sharpness of (4.1), follows by

the same argument up to obvious modifications.

Proposition 6.1. The inequality

‖uv‖XS
k,−b′

. ‖v‖XW+
`,b1

‖u‖XS
k,b2

is false in either of the following two situations:

(i) if ` < −1
2
, for any b′, b1, and b2,

(ii) if ` = −1
2

and b′ + b1 + b2 <
5
4
.

This follows from applying Lemma 6.3 with σ = −1 to establish the first claim,

and any σ such that −1 < σ < 0 to establish the second claim.

Proposition 6.2. The inequality∥∥∥∥ ∆

〈∇〉
(uw̄)

∥∥∥∥
XW+

`,−b′

. ‖u‖XS
k,b1
‖w‖XS

k,b2

is false in either of the following two situations:

(i) if `− 2k + 1
2
> 0 for any b′, b1, and b2,

(ii) if `− 2k + 1
2

= 0 and b′ + b1 + b2 <
5
4

This follows from applying Lemma 6.4 with σ = −1 to establish the first claim,

and any σ such that −1 < σ < 0 to establish the second claim.
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Lemma 6.3. For each N � 1, there exist vN and uN such that

‖vNuN‖XS
k,−b′

‖vN‖XW+
`,b1

‖uN‖XS
k,b2

& N−`− 1
2
+(1+σ)[ 5

4
−(b′+b1+b2)]

for all k, ` ∈ R and b′, b1, b2 ≥ 0, and any −1 ≤ σ < 0, with the implicit constant

independent of all of k, `, b′, b1, b2, σ, and N .

Proof. Denote ξ = (ξ1, ξ2) (i.e. ξj now denotes the jth component of ξ). Let v̂ = χE,

where E is the rectangle centered at (ξ1, ξ2, τ) = (2N + 1, 0,−2N − 1) and width

Nσ × N
1
2
(1+σ) × N1+σ, so that on E, we have |τ + |ξ|| . N1+σ. Let û = χF , where F

is the rectangle centered at (ξ1, ξ2, τ) = (−N, 0,−N2) and width Nσ ×N 1
2
(1+σ)×N1+σ,

so that on F , we have |τ + |ξ|2| . N1+σ. Then v̂u & N
3
2
+ 5

2
σχG, where G is a rectangle

centered at (ξ1, ξ2, τ) = (N + 1, 0,−(N + 1)2) and width Nσ × N
1
2
(1+σ) × N1+σ. Note

that on G, we have |τ + |ξ|2| . N1+σ. Then

‖vu‖XS
k,−b′

& N
3
2
+ 5

2
σNkN−(1+σ)b′‖χG‖L2

= N
3
2
+ 5

2
σNkN−(1+σ)b′N

1
2
( 3
2
+ 5

2
σ) ,

and

‖v‖XW+
`,b1

. N `N (1+σ)b1‖χE‖L2 = N `N (1+σ)b1N
1
2
( 3
2
+ 5

2
σ) ,

‖u‖XS
k,b2

. NkN (1+σ)b2‖χF‖L2 = NkN (1+σ)b2N
1
2
( 3
2
+ 5

2
σ) ,

which proves the claim.

Lemma 6.4. For each N � 1, there exists uN and wN such that

‖ ∆
〈∇〉(uN w̄N)‖XW+

`,−b′

‖uN‖XS
k,b1
‖wN‖XS

k,b2

& N `−2k+ 1
2
+(1+σ)[ 5

4
−(b′+b1+b2)]

for all k, ` ∈ R, any b′, b1, b2 ≥ 0, and any −1 ≤ σ < 0, with the implicit constant

independent of all of k, `, b′, b1, b2, σ, and N .

Proof. Let ûN = χE, where E is the rectangle centered at (ξ1, ξ2, τ) = (N + 1, 0,−(N +

1)2) with width Nσ × N
1
2
(1+σ) × N1+σ, so that on E, the quantity |τ + |ξ|2| ≤ N1+σ.

Let ŵN = χF , where F is the rectangle centered at (ξ1, ξ2, τ) = (−N, 0,−N2) with

width Nσ × N
1
2
(1+σ) × N1+σ, so that on F , the quantity |τ + |ξ|2| ≤ N1+σ. Then

ûN w̄N & N
3
2
+ 5

2
σχG, where G is the rectangle centered at (2N + 1, 0,−2N − 1) and

width Nσ ×N
1
2
(1+σ) ×N1+σ so that on G, the quantity |τ + |ξ|| ≤ N1+σ. Thus,∥∥∥∥ ∆

〈∇〉
(uN w̄N)

∥∥∥∥
XW+

`,−b′

& N
3
2
+ 5

2
σN `+1N−(1+σ)b′‖χG‖L2

= N
3
2
+ 5

2
σN `+1N−(1+σ)b′N

1
2
( 3
2
+ 5

2
σ) ,

and

‖uN‖XS
k,b1

. NkN (1+σ)b1‖χE‖L2 = NkN (1+σ)b1N
1
2
( 3
2
+ 5

2
σ) ,
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‖wN‖XS
k,b2

. NkN (1+σ)b2‖χF‖L2 = NkN (1+σ)b2N
1
2
( 3
2
+ 5

2
σ) ,

which proves the claim.

Remark 5. Alternatively, the optimality of our choice of b1 = b2 = b3 = 5
12

can be

seen by an indirect argument: If it was possible to choose smaller b’s, we would be

able to improve the time of existence by the iterative argument given in Section 5

above and would obtain a contradiction to the blow-up of the Glangetas–Merle solutions

constructed in [13, 14].

The following proposition is based on a variant of the example from the proof of

Proposition 6.1 and contains a slightly stronger conclusion.

Proposition 6.5. Fix 0 < T ≤ 1. For all N � T−1 there exists uN ∈ Hk
x and vN ∈ H`

x

such that

sup
|t|≤T

∥∥∥∥∫ t

0

ei(t−t′)∆
(
eit′∆uNRe

(
e−it′〈∇〉vN

))
dt′
∥∥∥∥

Hk
x

&
‖uN‖Hk

x
‖vN‖H`

x

N `+ 1
2

,

where the constant is independent of N .

Proof. Set ûN := χA, where A is the rectangle where ξ = (ξ1, ξ2) satisfies

−N −N−1 ≤ ξ1 ≤ −N +N−1 and − 1 ≤ ξ2 ≤ 1,

such that ‖uN‖Hk ∼ Nk− 1
2 . Similarly, define vN := χB +χ−B for the rectangle B where

2N + 1− 2N−1 ≤ ξ1 ≤ 2N + 1 + 2N−1 and − 2 ≤ ξ2 ≤ 2.

Note that vN is real-valued and ‖vN‖H`
x
∼ N `− 1

2 . We observe that

ûNvN(ξ) & N−1, (6.1)

whenever ξ = (ξ1, ξ2) satisfies

N + 1−N−1 ≤ ξ1 ≤ N + 1 +N−1 and − 1 ≤ ξ2 ≤ 1. (6.2)

We write 2Re (e−it′〈∇〉vN) = (e−it′〈∇〉+eit′〈∇〉)vN . For ξ satisfying (6.2) and N−1 � |t| �
T it holds∣∣∣∣Fx

(∫ t

0

ei(t−t′)∆
(
eit′∆uN(e−it′〈∇〉 + eit′〈∇〉)vN

)
dt′
)

(ξ)

∣∣∣∣
=

∣∣∣∣∫ ∫ t

0

eit′(|ξ|2−|η|2)(e−it′〈ξ−η〉 + eit′〈ξ−η〉)dt′ûN(η)v̂N(ξ − η)dη

∣∣∣∣ & |t|N−1

by (6.1) and because the first phase factor |ξ|2 − |η|2 − 〈ξ − η〉 is bounded whenever

η ∈ A and (6.2) holds for ξ, whereas the second phase factor |ξ|2 − |η|2 + 〈ξ − η〉 is of

size N in this region.

Integrating over this region (6.2) gives∥∥∥∥∫ t

0

ei(t−t′)∆
(
eit′∆uNRe

(
e−it′〈∇〉vN

))
dt′
∥∥∥∥

Hk
x

& |t|Nk− 3
2 ,

which implies the claim.
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The following proposition is based on a variant of the example from the proof of

Proposition 6.2.

Proposition 6.6. Fix 0 < T ≤ 1. For all N � 1 there exists uN ∈ Hk
x such that

sup
|t|≤T

∥∥∥∥∫ t

0

e−i(t−t′)〈∇〉 ∆

〈∇〉

(
eit′∆uNeit′∆uN

)
dt′
∥∥∥∥

H`
x

& N `−2k+ 1
2‖uN‖2

Hk
x
,

where the constant is independent of N .

Proof. Set ûN := χD1 + χD2 , where D1 is the rectangle where ξ = (ξ1, ξ2) satisfies

N + 1−N−1 ≤ ξ1 ≤ N + 1 +N−1 and − 1 ≤ ξ2 ≤ 1,

and D2 is the rectangle where

−N − 2N−2 ≤ ξ1 ≤ −N + 2N−1 and − 2 ≤ ξ2 ≤ 2.

Then, ‖uN‖Hk ∼ Nk− 1
2 . We observe that

ûN ūN(ξ) & N−1, (6.3)

whenever ξ = (ξ1, ξ2) satisfies

2N + 1−N−1 ≤ ξ1 ≤ 2N + 1 +N−1 and − 1 ≤ ξ2 ≤ 1. (6.4)

Therefore, for such ξ and |t| � 1 it holds∣∣∣∣Fx

(∫ t

0

ei(t−t′)〈∇〉 ∆

〈∇〉

(
eit′∆uNeit′∆uN

)
dt′
)

(ξ)

∣∣∣∣
∼ |ξ|

∣∣∣∣∫ t

0

∫
eit′(〈ξ〉−|η|2+|ξ−η|2)ûN(η)ûN(ξ − η)dηdt′

∣∣∣∣ & |t|

by (6.3), |ξ| ∼ N and because the phase factor 〈ξ〉− |η|2 + |ξ− η|2 is bounded whenever

(6.4) holds. Integrating over this region (6.4) gives∥∥∥∥∫ t

0

e−i(t−t′)〈∇〉 ∆

〈∇〉

(
eit∆uNeit∆uN

)
dt′
∥∥∥∥

H`
x

& |t|N `− 1
2

and the claim follows.

Finally, we indicate how we use Propositions 6.5 and 6.6 to prove Theorem 1.3.

Proof of Theorem 1.3. Proposition 6.5 shows that for ` < −1
2

the first component of the

directional (Fréchet) derivative of second order of the flow map to the reduced system

(3.1) at 0 with respect to the direction (u0, v0) = (uN , vN) is unbounded.

Proposition 6.6 shows that for `−2k+ 1
2
> 0 the second component of the directional

derivative of second order of the flow map to the reduced system (3.1) at 0 with respect

to the direction (u0, v0) = (uN , 0) is unbounded.

If the flow map to the original system (1.1) were C2 then we could conclude that

the flow map for the reduced system is C2 by the arguments in Section 3. But this

contradicts to the assertions above.
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ξ2 in Case 1

ξ2 in Case 2

ξ1

+1 direction

+2 direction

Figure A1. After rotation, the two possible positions of ξ2 in the proof of Prop. 4.4,
labeled as Case 1 and Case 2.

Appendix A. Alternative proof of Proposition 4.4

Here we present an alternate proof of Proposition 4.4 that does not make use of the

restriction theorem from [2]. The main source of technique for the proof that follows is

Colliander–Delort–Kenig–Staffilani [8].

Proof. We abuse notation and replace g2 by g2(− ·) and change variables ζ2 7→ −ζ2 to

obtain the usual convolution structure. From now on it holds |τ2 − |ξ2|2| ∼ L2 within

the support of g2.

By the change of variables τ1 = −|ξ1|2 + c1, τ2 = |ξ2|2 + c2 and by applying the

Cauchy-Schwarz inequality with respect to c1 and c2 it suffices to consider the trilinear

expression

T (g1,c1 , g2,c2 , f) =

∫
g1,c1(ξ1)g2,c2(ξ2)f(ξ1 + ξ2, |ξ2|2 − |ξ1|2 + c1 + c2)dξ1dξ2

where gk,ck
(ξ) = gk(ξ, (−1)k|ξ|2 + ck) for k = 1, 2 and f is localized in the region

|τ − |ξ|| ≤ L, and prove that

|T (g1,c1 , g2,c2 , f)| . A1/2L1/2

N1

‖g1,c1‖L2
ξ
‖g2,c2‖L2

ξ
‖f‖L2 . (A.1)

We exploit the geometry of the problem in order to better localize the interacting

elements. Taking into account the angular localization and separation of ξ1 and ξ2 which

is ∼ A−1 and their size localization, it follows that after a rotation we may assume that

ξ1,1 > 0, ξ1,2 > 0 with ξ1,1 ∼ N1 and ξ1,2 ∼ N1A
−1, and that either Case 1 or Case 2

below holds (see Figure A1).

Case 1. ξ2,1 < 0, ξ2,2 > 0 with |ξ2,1| ∼ N1 and |ξ2,2| ∼ N1A
−1.

Case 2. ξ2,1 > 0, ξ2,2 < 0 with |ξ2,1| ∼ N1 and |ξ2,2| ∼ N1A
−1.
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support of ξ − ξ2

ξ = ξ1 + ξ2

−ξ2

ξ1

support of ξ1

−ξ2

ξ = ξ1 + ξ2

ξ1

support of ξ1 support of ξ − ξ2

Figure A2. Depiction of Case 1 (top) and Case 2 (bottom). ξ1 is supported in
an annular ring D1 of thickness L/N1 and ξ2 is supported in an annular ring D2 of
thickness L/N1. For fixed ξ = ξ1 + ξ2, ξ1 is confined to D1 and also to ξ −D2. These
two sets have thickness L/N1 but also meet at an angle A−1, and thus ξ1,1 is confined
to an interval of size L/N1 and ξ1,2 is confined to an interval of size LA/N1

In addition we consider the following two cases separately, Case A: L ≥ N and Case B:

L ≤ N .

Case A. Suppose that L ≥ N . Since |τ − |ξ|| ≤ L, we have that |ξ2|2 − |ξ1|2 is confined

to an interval of size L, and thus |ξ2|−|ξ1| is confined to an interval of size L/N1. By the

“orthogonality” Lemma Appendix A.1 below, and Cauchy-Schwarz, we might as well

assume that |ξ1| and |ξ2| are confined to fixed intervals of size L/N1. Note that in the

two cases outlined above, we have (see Fig. A2)

Case A1. ξ1,2 + ξ2,2 ∼ N1A
−1 and if ξ = ξ1 + ξ2 is fixed, then ξ1,1 is contained in an

interval of size LN−1
1 .

Case A2. ξ1,1 + ξ2,1 ∼ N1 and if ξ = ξ1 + ξ2 is fixed, then ξ1,2 is contained in an interval

of size LAN−1
1 .

Let µ = ξ1 + ξ2, ν = −|ξ1|2 + |ξ2|2 + c1 + c2, and in Case 1 let σ = ξ1,1, but in Case 2

let σ = ξ1,2. Denote by J the Jacobian determinant. We have

J =

ξ1,1 ξ1,2 ξ2,1 ξ2,2

µ1 1 0 1 0

µ2 0 1 0 1

ν −2ξ1,1 −2ξ1,2 2ξ2,1 2ξ2,2

σ ∗ ∗ 0 0
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and thus

|J | =

{
2|ξ2,2 + ξ1,2| in Case 1

2|ξ2,1 + ξ1,1| in Case 2
∼

{
N1A

−1 in Case 1

N1 in Case 2
.

So, |J | is essentially constant over the region of integration, and can be removed from

the integration. We obtain

T (g1,c1 , g2,c2 , f) =

∫
g1,c1(ξ1)g2,c2(ξ2)f(µ, ν)|J |−1 dµ dν dσ ≤ |J |−1/2I1I2

where

I1 =

(∫
µ,ν,σ

|J |−1|g1,c1(ξ1)g2,c2(ξ2)|2 dµ dν dσ
)1/2

= ‖g1,c1‖L2
ξ1
‖g2,c2‖L2

ξ2

and

I2 =

(∫
µ,ν

|f(µ, ν)|2
(∫

σ

dσ

)
dµ dν

)1/2

.

The measure of the support of σ, for fixed µ = ξ1 + ξ2, in Case 1 is LN−1
1 and in Case

2 is LAN−1
1 . Thus, we obtain (A.1).

Case B. Now suppose that L ≤ N . Let {Ej} be a partition of [0,+∞) into intervals of

length L. Then the left side of (A.1) becomes∑
j

∫
g1(ξ1)g2(ξ2)f(ξ1 + ξ2, ·)χEj

(|ξ1 + ξ2|) dξ1 dξ2.

For a fixed j, we have that |ξ| is localized to an interval of length L, and since |τ−|ξ|| ≤ L,

we obtain that |ξ2|2−|ξ1|2 is localized to an interval of size L, from which it follows that

|ξ2| − |ξ1| is localized to an interval of length L/N1. We can now follow the argument of

Case A to obtain the bound

|T (g1,c1 , g2,c2 , f)| . A1/2L1/2

N1

∑
j

‖g1(ξ1)g2(ξ2)χEj
(|ξ1 + ξ2|)‖L2

ξ1ξ2
‖f(ξ, τ)χEj

(|ξ|)‖L2
ξτ
.

Applying Cauchy-Schwarz with respect to j we complete the proof of (A.1).

Lemma Appendix A.1. Suppose N1 & 1, 1 . A � N1, k � N2
1 and that x, y ≥ 0

satisfy

k ≤ x2 − y2 ≤ k +N1A
−1 ,

1

4
N1 ≤ x, y ≤ 4N1 .

Decompose [1
4
N1, 4N1] into a sequence of intervals {Ij} each of length A−1. Then there

is a mapping j 7→ k(j) such that

y ∈ Ij ⇒ x ∈ Ik(j)−100 ∪ · · · ∪ Ik(j)+100 .

Moreover, as j ranges over the full set of intervals, k(j) hits a particular element no

more than 100 times.
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Proof. We take Ij = [A−1(j − 1
2
), A−1(j + 1

2
))] (so j ranges from AN1/4 to 4AN1).

Suppose that y ∈ Ij. Then |y − A−1j| ≤ A−1, and therefore

k − 4N1A
−1 ≤ x2 − A−2j2 ≤ k + 4N1A

−1,

which implies that

(A−2j2 + k − 4N1A
−1)−1/2 ≤ x ≤ (A−2j2 + k + 4N1A

−1)−1/2 .

The length of this interval is

8N1A
−1

(A−2j2 + k − 4N1A−1)−1/2 + (A−2j2 + k + 4N1A−1)−1/2
. A−1.

Also, as we increment from j to j + 1, the left endpoint of the interval advances by an

amount

2A−2j

(A−2j2 + k − 4N1A−1)−1/2 + (A−2j2 + k + 4N1A−1)−1/2
& A−1,

and the claim follows.
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[14] Léo Glangetas and Frank Merle. Existence of self-similar blow-up solutions for Zakharov equation
in dimension two. I. Comm. Math. Phys., 160(1):173–215, 1994.

[15] Justin Holmer. Local ill-posedness of the 1D Zakharov system. Electron. J. Differential Equations,
2007(24):22 pp. (electronic), 2007.



On the 2d Zakharov system 31

[16] Rowan Killip, Terence Tao, and Monica Visan. The cubic nonlinear Schrödinger equation in two
dimensions with radial data. arXiv:0707.3188 [math.AP].

[17] Lynn H. Loomis and Hassler Whitney. An inequality related to the isoperimetric inequality. Bull.
Amer. Math. Soc, 55:961–962, 1949.

[18] Nader Masmoudi and Kenji Nakanishi. Energy convergence for singular limits of Zakharov type
systems. Invent. Math., 172(3):535–583, 2008.

[19] Frank Merle. Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations. In
Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), pages
57–66 (electronic), 1998.

[20] Tohru Ozawa and Yoshio Tsutsumi. The nonlinear Schrödinger limit and the initial layer of the
Zakharov equations. Differential Integral Equations, 5(4):721–745, 1992.

[21] Steven H. Schochet and Michael I. Weinstein. The nonlinear Schrödinger limit of the Zakharov
equations governing Langmuir turbulence. Comm. Math. Phys., 106(4):569–580, 1986.

[22] Vladimir E. Zakharov. Collapse of Langmuir waves. Sov. Phys. JETP, 35(5):908–914, 1972.


