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Superattracting fixed points

Setup: Let f : (C2, 0)→ (C2, 0) be a dominant holomorphic germ
for which 0 is a superattracting fixed point, i.e., f ′(0) is nilpotent.

We would like to say something both interesting and general about
the local dynamics of f .

Method: We’ll study an associated dynamical system f• : V → V on
a certain space of valuations V, and conclude something about f .
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The valuation space V

Definition

Let U be the set of all semivaluations ν: C¹x , yº→ R∪ {+∞} for
which

1 ν|C× ≡ 0

2 ν(φ)≥ 0 for all φ, and ν(φ)> 0 ⇐⇒ φ(0) = 0.

The dynamical system f : (C2, 0)→ (C2, 0) induces a dynamical
system f : U → U in the usual way:

f (ν)(φ) := ν(φ ◦ f ).
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The valuation space V

A semivaluation ν ∈ U is normalized if min{ν(x),ν(y)}= 1. Let V
be the set of all such ν.

We get an induced dynamical system f• : V → V, essentially given
by

f•(ν) := f (ν)/c ←− Normalize!
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Structure of V

The structure of V resembles that of a 1-d Berkovich disk. It is a
compact Hausdorff, path connected, and has a tree structure.



Divisorial points

The branch points of V are the divisorial valuations.



Divisorial points

Construction:
If π: X → (C2, 0) is a modification of (C2, 0) and E ⊆ π−1(0) is a
prime divisor of X , the divisorial valuation νE ∈ V associated to E
is:

νE(φ) := ordE(φ ◦π)/c ←− Normalize!

If you know the orbit of νE under f•, then you know the orbit of E
itself under f : X ¹¹Ë X .

Note: Understanding the orbits of exceptional prime divisors E is
needed when studying algebraic stability, one of the central topics
in complex dynamics in dimension ≥ 2.
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Global setting

This method for studying stability using dynamics on normalized
valuations spaces was initiated in the works of Favre-Jonsson.

Dynamical compactifications of C2 (2008)



Understanding the dynamics of f•

The dynamics of f• on most of V is very tame and easy to
understand.

Theorem (G.-Ruggiero)

Let f : (C2, 0)→ (C2, 0) be a dominant holomorphic germ for which
the origin is a superattracting fixed point. Then, possibly after
replacing f with f 2,

1 every ν ∈ V which is not an end of V lies in the basin of
attraction of some fixed point ν? of f•, and

2 the set of all such ν? is an interval in V.
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Application to stability

Application (G.-Ruggiero)

Let f : (C2, 0)→ (C2, 0) be a dominant holomorphic germ for which
the origin is a superattracting fixed point. Then one can find
arbitrarily high modifications π: X → (C2, 0) over the origin for
which the lift f : X ¹¹Ë X is “eventually stable.”

Eventually Stable: For each prime divisor E ⊆ π−1(0), one has
f n(E) 6⊂ Indet( f : X ¹¹Ë X ) for sufficiently large n.
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The singular setting

Replace (C2, 0) with (X , x0), where X = normal complex surface,
and x0 ∈ X is a singularity of X .

One can associate to (X , x0) an analogous valuation space V on
which to study dynamics, with structure resembling Berkovich
curves.



The space V for a cusp singularity



Dynamics and stability for singularities

Theorem (G.-Ruggiero)

Suppose f : (X , x0)→ (X , x0) is a non-invertible holomorphic germ.
Then, assuming (X , x0) is not a cusp singularity, one can replace f by
a suitable iterate so that

1 every ν ∈ V which is not an end of V lies in the basin of
attraction of some fixed point ν? of f•, and

2 the set of all such ν? forms an interval or a circle in V.



Dynamics and stability for singularities

Application (G.-Ruggiero)

Assuming (X , x0) is not a cusp, one can find arbitrarily high
modifications π: X ′→ (X , x0) over x0 for which the lift f : X ′ ¹¹Ë X ′

is “eventually stable.”



Analogy to dynamics on hyperbolic Riemann surfaces

A classical theorem of Fatou classifies all the possible dynamics of
holomorphic maps f : Σ→ Σ, where Σ is a hyperbolic Riemann
surface.

Key tool: f is non-expansive with respect to the hyperbolic metric.

In proving our main dynamical theorems, we introduce a metric
with respect to which f• is non-expansive.
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