A nonarchimedean approach to local holomorphic dynamics in dimension two

William Gignac¹ j.w. Matteo Ruggiero²

¹Georgia Institute of Technology

²IMJ Université Paris 7

January 6, 2016

Setup: Let $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ be a dominant holomorphic germ for which 0 is a superattracting fixed point, i.e., f'(0) is nilpotent.

We would like to say something both interesting and general about the local dynamics of f.

Setup: Let $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ be a dominant holomorphic germ for which 0 is a superattracting fixed point, i.e., f'(0) is nilpotent.

We would like to say something both interesting and general about the local dynamics of f.

Method: We'll study an associated dynamical system $f_{\bullet} \colon \mathcal{V} \to \mathcal{V}$ on a certain space of valuations \mathcal{V} , and conclude something about f.

The valuation space \mathcal{V}

Definition

Let \mathcal{U} be the set of all semivaluations $v: \mathbb{C}[x, y] \to \mathbb{R} \cup \{+\infty\}$ for which

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

The valuation space $\ensuremath{\mathcal{V}}$

Definition

Let \mathcal{U} be the set of all semivaluations $v: \mathbb{C}[x, y] \to \mathbb{R} \cup \{+\infty\}$ for which

1 $\nu|_{\mathbb{C}^{\times}} \equiv 0$

Definition

Let \mathcal{U} be the set of all semivaluations $v: \mathbb{C}[x, y] \to \mathbb{R} \cup \{+\infty\}$ for which

▲ロト ▲ 得下 ▲ ヨト ▲ ヨト 三日 - の Q ()

- 1 $\nu|_{\mathbb{C}^{\times}} \equiv 0$
- 2 $v(\phi) \ge 0$ for all ϕ , and $v(\phi) > 0 \iff \phi(0) = 0$.

Definition

Let \mathcal{U} be the set of all semivaluations $v: \mathbb{C}[x, y] \to \mathbb{R} \cup \{+\infty\}$ for which

1
$$\nu|_{\mathbb{C}^{\times}} \equiv 0$$

2
$$v(\phi) \ge 0$$
 for all ϕ , and $v(\phi) > 0 \iff \phi(0) = 0$.

The dynamical system $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ induces a dynamical system $f : \mathcal{U} \to \mathcal{U}$ in the usual way:

$$f(v)(\phi) := v(\phi \circ f).$$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

A semivaluation $v \in U$ is **normalized** if $\min\{v(x), v(y)\} = 1$. Let V be the set of all such v.

▲□▶▲舂▶▲≧▶▲≧▶ 差 うくぐ

A semivaluation $v \in U$ is **normalized** if $\min\{v(x), v(y)\} = 1$. Let V be the set of all such v.

We get an induced dynamical system $f_{\bullet} \colon \mathcal{V} \to \mathcal{V}$, essentially given by

$$f_{\bullet}(v) := f(v)$$

A semivaluation $v \in U$ is **normalized** if $\min\{v(x), v(y)\} = 1$. Let V be the set of all such v.

We get an induced dynamical system $f_{\bullet} : \mathcal{V} \to \mathcal{V}$, essentially given by

 $f_{\bullet}(v) := f(v)/c \quad \longleftarrow \text{ Normalize!}$

Structure of \mathcal{V}

The structure of V resembles that of a 1-d Berkovich disk. It is a compact Hausdorff, path connected, and has a tree structure.

The branch points of \mathcal{V} are the **divisorial** valuations.

Construction:

If $\pi: X \to (\mathbb{C}^2, 0)$ is a modification of $(\mathbb{C}^2, 0)$ and $E \subseteq \pi^{-1}(0)$ is a prime divisor of *X*, the divisorial valuation $\nu_E \in \mathcal{V}$ associated to *E* is:

Construction:

If $\pi: X \to (\mathbb{C}^2, 0)$ is a modification of $(\mathbb{C}^2, 0)$ and $E \subseteq \pi^{-1}(0)$ is a prime divisor of *X*, the divisorial valuation $\nu_E \in \mathcal{V}$ associated to *E* is:

$$v_E(\phi) := \operatorname{ord}_E(\phi \circ \pi)$$

Construction:

If $\pi: X \to (\mathbb{C}^2, 0)$ is a modification of $(\mathbb{C}^2, 0)$ and $E \subseteq \pi^{-1}(0)$ is a prime divisor of *X*, the divisorial valuation $\nu_E \in \mathcal{V}$ associated to *E* is:

$$v_E(\phi) := \operatorname{ord}_E(\phi \circ \pi)/c \quad \longleftarrow \text{ Normalize!}$$

Construction:

If $\pi: X \to (\mathbb{C}^2, 0)$ is a modification of $(\mathbb{C}^2, 0)$ and $E \subseteq \pi^{-1}(0)$ is a prime divisor of *X*, the divisorial valuation $\nu_E \in \mathcal{V}$ associated to *E* is:

$$v_E(\phi) := \operatorname{ord}_E(\phi \circ \pi)/c \quad \longleftarrow \text{ Normalize!}$$

If you know the orbit of v_E under f_{\bullet} , then you know the orbit of E itself under $f : X \dashrightarrow X$.

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

Construction:

If $\pi: X \to (\mathbb{C}^2, 0)$ is a modification of $(\mathbb{C}^2, 0)$ and $E \subseteq \pi^{-1}(0)$ is a prime divisor of *X*, the divisorial valuation $\nu_E \in \mathcal{V}$ associated to *E* is:

$$v_E(\phi) := \operatorname{ord}_E(\phi \circ \pi)/c \quad \longleftarrow \text{ Normalize!}$$

If you know the orbit of v_E under f_{\bullet} , then you know the orbit of E itself under $f : X \dashrightarrow X$.

Note: Understanding the orbits of exceptional prime divisors *E* is needed when studying *algebraic stability*, one of the central topics in complex dynamics in dimension ≥ 2 .

Global setting

This method for studying stability using dynamics on normalized valuations spaces was initiated in the works of Favre-Jonsson.

Dynamical compactifications of \mathbb{C}^2 (2008)

Understanding the dynamics of f_{\bullet}

The dynamics of f_{\bullet} on most of \mathcal{V} is *very* tame and easy to understand.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The dynamics of f_{\bullet} on most of \mathcal{V} is *very* tame and easy to understand.

Theorem (G.-Ruggiero)

Let $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ be a dominant holomorphic germ for which the origin is a superattracting fixed point. Then, possibly after replacing f with f^2 ,

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

The dynamics of f_{\bullet} on most of \mathcal{V} is *very* tame and easy to understand.

Theorem (G.-Ruggiero)

Let $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ be a dominant holomorphic germ for which the origin is a superattracting fixed point. Then, possibly after replacing f with f^2 ,

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

■ every $v \in V$ which is not an end of V lies in the basin of attraction of some fixed point v_* of f_{\bullet} , and

The dynamics of f_{\bullet} on most of \mathcal{V} is *very* tame and easy to understand.

Theorem (G.-Ruggiero)

Let $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ be a dominant holomorphic germ for which the origin is a superattracting fixed point. Then, possibly after replacing f with f^2 ,

- every $v \in V$ which is not an end of V lies in the basin of attraction of some fixed point v_* of f_{\bullet} , and
- **2** the set of all such v_{\star} is an interval in \mathcal{V} .

Application to stability

Application (G.-Ruggiero)

Let $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ be a dominant holomorphic germ for which the origin is a superattracting fixed point. Then one can find arbitrarily high modifications $\pi : X \to (\mathbb{C}^2, 0)$ over the origin for which the lift $f : X \to X$ is "eventually stable."

・ロト・日本・日本・日本・日本・日本

Application to stability

Application (G.-Ruggiero)

Let $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ be a dominant holomorphic germ for which the origin is a superattracting fixed point. Then one can find arbitrarily high modifications $\pi : X \to (\mathbb{C}^2, 0)$ over the origin for which the lift $f : X \to X$ is "eventually stable."

Eventually Stable: For each prime divisor $E \subseteq \pi^{-1}(0)$, one has $f^n(E) \notin \text{Indet}(f: X \dashrightarrow X)$ for sufficiently large *n*.

Replace (\mathbb{C}^2 , 0) with (X, x_0), where X = normal complex surface, and $x_0 \in X$ is a singularity of X.

One can associate to (X, x_0) an analogous valuation space \mathcal{V} on which to study dynamics, with structure resembling Berkovich curves.

The space ${\mathcal V}$ for a cusp singularity

Theorem (G.-Ruggiero)

Suppose $f : (X, x_0) \rightarrow (X, x_0)$ is a non-invertible holomorphic germ. Then, assuming (X, x_0) is not a cusp singularity, one can replace f by a suitable iterate so that

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

- every $v \in V$ which is not an end of V lies in the basin of attraction of some fixed point v_* of f_{\bullet} , and
- **2** the set of all such v_{\star} forms an interval or a circle in \mathcal{V} .

Dynamics and stability for singularities

Application (G.-Ruggiero)

Assuming (X, x_0) is not a cusp, one can find arbitrarily high modifications $\pi: X' \to (X, x_0)$ over x_0 for which the lift $f: X' \to X'$ is "eventually stable."

・ロト・日本・日本・日本・日本・日本

A classical theorem of Fatou classifies all the possible dynamics of holomorphic maps $f : \Sigma \to \Sigma$, where Σ is a hyperbolic Riemann surface.

Key tool: f is non-expansive with respect to the hyperbolic metric.

A classical theorem of Fatou classifies all the possible dynamics of holomorphic maps $f : \Sigma \to \Sigma$, where Σ is a hyperbolic Riemann surface.

Key tool: *f* is non-expansive with respect to the hyperbolic metric.

In proving our main dynamical theorems, we introduce a metric with respect to which f_{\bullet} is non-expansive.