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A MOTIVATING QUESTION

QUESTION: Let X be a variety, let ¢ : X — X be a morphism, let
a € X be a point, and let V' C X be a subvariety. What can you

say about the set

Z¢7a’\/ = {n eN | qb"(a) S V}7

Could Z; o,v be arbitrary? Or must it have some structure?



A MOTIVATING QUESTION

QUESTION: Let X be a variety, let ¢ : X — X be a morphism, let
a € X be a point, and let V' C X be a subvariety. What can you
say about the set

Zyayv ={neN|¢"(a) € V}7
Could Z; o,v be arbitrary? Or must it have some structure?

FIRST OBSERVATION: If it happens that
> ¢P(a) € V for some b > 0, and
» ¢?(V) C V for some a > 1,

then Z; o v contains the infinite arithmetic progression aN + b.



A MOTIVATING QUESTION

QUESTION: Let X be a variety, let ¢ : X — X be a morphism, let
a € X be a point, and let V' C X be a subvariety. What can you
say about the set

Zyayv ={neN|¢"(a) € V}7
Could Z; o,v be arbitrary? Or must it have some structure?

SECOND OBSERVATION: Conversely, if Z; . v contains an infinite
arithmetic progression, then a Zariski-closure argument can be
used to produce a periodic subvariety of V' meeting the orbit of a.



A MOTIVATING QUESTION

QUESTION: Let X be a variety, let ¢ : X — X be a morphism, let
a € X be a point, and let V' C X be a subvariety. What can you
say about the set

Zyayv ={neN|¢"(a) € V}7
Could Z; o,v be arbitrary? Or must it have some structure?

QUESTION (CONT.): Apart from the possible existence of infinite
arithmetic progressions in Z o v, what else can you say about its
structure? If it contains no infinite arithmetic progressions, how
large can it be?



STATEMENT OF A THEOREM

THEOREM: Let X be a variety, let ¢ : X — X be a morphism, let
«a € X, and let V be a Zariski-closed subset of X. Then

{neN|¢"(a) eV} =AUB

where A is a (possibly empty) finite union of infinite arithmetic
progressions, and B is a set of (Banach) density zero.



STATEMENT OF A THEOREM

THEOREM: Let X be a variety, let ¢ : X — X be a morphism, let
«a € X, and let V be a Zariski-closed subset of X. Then

{neN|¢"(a) eV} =AUB

where A is a (possibly empty) finite union of infinite arithmetic
progressions, and B is a set of (Banach) density zero.

REMARKS:

» The dynamical Mordell-Lang conjecture states that, in

characteristic zero, B is actually finite.

» S C N has Banach density zero if % —0as |/| = +o0

over all intervals | C N.

» Actually holds for arbitrary Noetherian spaces.



STATEMENT OF A THEOREM

THIS THEOREM IS DUE TO:

» L. Denis: special case of automorphisms of P in
characteristic p.

» W. Gignac: ergodic theory and measure theory on Zariski
spaces (should also mention C. Favre)

» Bell-Ghioca-Tucker: elementary arguments (they also get
some quantitative results)

» Petsche: special case of affine varieties



A PROOF FOR AFFINE VARIETIES

STEP 1: Reduce the Theorem to the following formally weaker
statement.

THEOREM: Let X be an affine variety, let ¢ : X — X be a
morphism, let & € X be a point, and let V' be a Zariski-closed
subset of X. If the set {n € N | ¢"(«) € V} contains no infinite
arithmetic progressions, then it has (Banach) density zero.
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STEP 1: Reduce the Theorem to the following formally weaker
statement.

THEOREM: Let X be an affine variety, let ¢ : X — X be a
morphism, let & € X be a point, and let V' be a Zariski-closed
subset of X. If the set {n € N | ¢"(«) € V} contains no infinite
arithmetic progressions, then it has (Banach) density zero.

STEP 2: Introduce a Berkovich space.

We have X = Spec A for some finitely generated k-algebra A. Let
X = M(A), the Berkovich spectrum of A as a trivially-normed
Banach ring.



A PROOF FOR AFFINE VARIETIES

STEP 2 (CONT.): More precisely, X is the set of all functions
[]: A — R satisfying

(1) 0<[f] <1forall feA,

(11) [0] =0 and [r] =1 for all nonzero r € k;

[f + g] < max{[f], [g]} for all f,g € A,

[fg] = [f][g] for all f,g € A.
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» In words, each [-] is “a multiplicative seminorm on A
restricting to the trivial absolute value on k."

» Give X the coarsest topology under which each function
X — R, given by [-] — [f] for some f € A, is continuous.



A PROOF FOR AFFINE VARIETIES

FacTs:
» X is a compact Hausdorff space.

» There exists a natural reduction map
T X=X m([])={fe A|[f] <1}

(Recall X = Spec(.A) is the prime ideal spectrum of A.)

» The reduction map 7 is surjective, and it is anti-continuous
with respect to the Hausdorff topology on X and the Zariski
topology on X.



ERGODIC THEORY INTERLUDE

DEFINITION: Let M be a metric space, and let T : M — M be a
function. A point o € M is a recurrent point for T if some
subsequence of the forward orbit { T¥()}3°,, converges to a.

POINCARE RECURRENCE THEOREM (A LA FURSTENBERG): Let
M be a compact metric space, let T : M — M be a continuous
function, and let i be a T-invariant unit Borel measure on M.
Then p-almost all points of M are recurrent for T.

IDEA OF THE PROOF: The forward orbit of a non-recurrent point
takes up too much room for there to be very many of them.



A PROOF FOR AFFINE VARIETIES

SKETCH OF AN ARGUMENT:

» Consider ¢ : X — X, a € X, and a Zariski-closed subset V' of
X such that Z; , v = {n € N | ¢"(a) € V} has positive
upper-Banach density.

» Going up: Lift the dynamical system to a continuous map
T : X — X. Via Prokhorov's theorem, there exists a
T-invariant probability measure p on X charging 7=1(V). Via
the Poincaré recurrence theorem, there exists a T-recurrent
point ¢ € m~1(V) N supp(u).

» Going back down: 7((¢) is a periodic subvariety of V
meeting the forward orbit of .. This leads to an infinite

arithmetic progression in Zy o v.



AN EXAMPLE IN CHARACTERISTIC p

EXAMPLE:
» K =T,(t), field of rational functions in one variable t.
> ¢ K? = K2 defined by é(x,y) = (tx, (1 — t)y).
» a=(1,1)and V={x+y=1}in K2
» Then ¢"(a) = (t",(1 — t)") and

{neN|g¢"(a) e V}={p"|£=0}.



