On the distribution of orbits in affine varieties

Clayton Petsche
Oregon State University

Joint Mathematics Meetings
Special Session on Arithmetic Dynamics
January 6 2016
Seattle
A motivating question

Question: Let X be a variety, let $\phi : X \rightarrow X$ be a morphism, let $\alpha \in X$ be a point, and let $V \subset X$ be a subvariety. What can you say about the set

$$Z_{\phi,\alpha,V} = \{ n \in \mathbb{N} | \phi^n(\alpha) \in V \}?$$

Could $Z_{\phi,\alpha,V}$ be arbitrary? Or must it have some structure?
A motivating question

Question: Let X be a variety, let $\phi : X \to X$ be a morphism, let $\alpha \in X$ be a point, and let $V \subset X$ be a subvariety. What can you say about the set

$$Z_{\phi, \alpha, V} = \{ n \in \mathbb{N} | \phi^n(\alpha) \in V \}?$$

Could $Z_{\phi, \alpha, V}$ be arbitrary? Or must it have some structure?

First observation: If it happens that

- $\phi^b(\alpha) \in V$ for some $b \geq 0$, and
- $\phi^a(V) \subseteq V$ for some $a \geq 1$,

then $Z_{\phi, \alpha, V}$ contains the infinite arithmetic progression $a\mathbb{N} + b$.
A motivating question

Question: Let X be a variety, let $\phi : X \to X$ be a morphism, let $\alpha \in X$ be a point, and let $V \subset X$ be a subvariety. What can you say about the set

$$Z_{\phi, \alpha, V} = \{ n \in \mathbb{N} | \phi^n(\alpha) \in V \}?$$

Could $Z_{\phi, \alpha, V}$ be arbitrary? Or must it have some structure?

Second observation: Conversely, if $Z_{\phi, \alpha, V}$ contains an infinite arithmetic progression, then a Zariski-closure argument can be used to produce a periodic subvariety of V meeting the orbit of α.
A motivating question

Question: Let X be a variety, let $\phi : X \to X$ be a morphism, let $\alpha \in X$ be a point, and let $V \subset X$ be a subvariety. What can you say about the set

$$Z_{\phi, \alpha, V} = \{ n \in \mathbb{N} | \phi^n(\alpha) \in V \}?$$

Could $Z_{\phi, \alpha, V}$ be arbitrary? Or must it have some structure?

Question (cont.): Apart from the possible existence of infinite arithmetic progressions in $Z_{\phi, \alpha, V}$, what else can you say about its structure? If it contains no infinite arithmetic progressions, how large can it be?
Theorem: Let X be a variety, let $\phi : X \to X$ be a morphism, let $\alpha \in X$, and let V be a Zariski-closed subset of X. Then

$$\{ n \in \mathbb{N} | \phi^n(\alpha) \in V \} = A \cup B$$

where A is a (possibly empty) finite union of infinite arithmetic progressions, and B is a set of (Banach) density zero.
Statement of a Theorem

Theorem: Let X be a variety, let $\phi : X \rightarrow X$ be a morphism, let $\alpha \in X$, and let V be a Zariski-closed subset of X. Then

$$\{ n \in \mathbb{N} \mid \phi^n(\alpha) \in V \} = A \cup B$$

where A is a (possibly empty) finite union of infinite arithmetic progressions, and B is a set of (Banach) density zero.

Remarks:

- The dynamical Mordell-Lang conjecture states that, in characteristic zero, B is actually finite.
- $S \subseteq \mathbb{N}$ has Banach density zero if $\frac{|S \cap I|}{|I|} \rightarrow 0$ as $|I| \rightarrow +\infty$ over all intervals $I \subset \mathbb{N}$.
- Actually holds for arbitrary Noetherian spaces.
Statement of a Theorem

This theorem is due to:

- L. Denis: special case of automorphisms of \mathbb{P}^n in characteristic p.
- W. Gignac: ergodic theory and measure theory on Zariski spaces (should also mention C. Favre)
- Bell-Ghioca-Tucker: elementary arguments (they also get some quantitative results)
- Petsche: special case of affine varieties
A proof for affine varieties

Step 1: Reduce the Theorem to the following formally weaker statement.

Theorem: Let X be an affine variety, let $\phi : X \to X$ be a morphism, let $\alpha \in X$ be a point, and let V be a Zariski-closed subset of X. If the set $\{ n \in \mathbb{N} \mid \phi^n(\alpha) \in V \}$ contains no infinite arithmetic progressions, then it has (Banach) density zero.

Step 2: Introduce a Berkovich space. We have $X = \text{Spec} A$ for some finitely generated k-algebra A. Let $X = \mathcal{M}(A)$, the Berkovich spectrum of A as a trivially-normed Banach ring.
A proof for affine varieties

Step 1: Reduce the Theorem to the following formally weaker statement.

Theorem: Let X be an affine variety, let $\phi : X \to X$ be a morphism, let $\alpha \in X$ be a point, and let V be a Zariski-closed subset of X. If the set $\{n \in \mathbb{N} \mid \phi^n(\alpha) \in V\}$ contains no infinite arithmetic progressions, then it has (Banach) density zero.

Step 2: Introduce a Berkovich space.

We have $X = \text{Spec} \, \mathcal{A}$ for some finitely generated k-algebra \mathcal{A}. Let $X = M(\mathcal{A})$, the Berkovich spectrum of \mathcal{A} as a trivially-normed Banach ring.
Step 2 (cont.): More precisely, X is the set of all functions $[\cdot] : \mathcal{A} \to \mathbb{R}$ satisfying

(I) $0 \leq [f] \leq 1$ for all $f \in \mathcal{A}$;

(II) $[0] = 0$ and $[r] = 1$ for all nonzero $r \in k$;

(III) $[f + g] \leq \max\{[f], [g]\}$ for all $f, g \in \mathcal{A}$;

(IV) $[fg] = [f][g]$ for all $f, g \in \mathcal{A}$.

- In words, each $[\cdot]$ is “a multiplicative seminorm on \mathcal{A} restricting to the trivial absolute value on k.”

- Give X the coarsest topology under which each function $X \to \mathbb{R}$, given by $[\cdot] \mapsto [f]$ for some $f \in \mathcal{A}$, is continuous.
A proof for affine varieties

Facts:

- X is a compact Hausdorff space.
- There exists a natural reduction map
 \[\pi : X \rightarrow X \quad \pi([\cdot]) = \{ f \in A \mid [f] < 1 \}. \]

 (Recall $X = \text{Spec}(A)$ is the prime ideal spectrum of A.)
- The reduction map π is surjective, and it is anti-continuous with respect to the Hausdorff topology on X and the Zariski topology on X.
Ergodic theory interlude

Definition: Let M be a metric space, and let $T : M \to M$ be a function. A point $\alpha \in M$ is a **recurrent point** for T if some subsequence of the forward orbit $\{ T^k(\alpha) \}_{k=0}^{\infty}$ converges to α.

Poincare recurrence theorem (a la Furstenberg): Let M be a compact metric space, let $T : M \to M$ be a continuous function, and let μ be a T-invariant unit Borel measure on M. Then μ-almost all points of M are recurrent for T.

Idea of the proof: The forward orbit of a non-recurrent point takes up too much room for there to be very many of them.
A proof for affine varieties

Sketch of an argument:

- Consider $\phi : X \to X$, $\alpha \in X$, and a Zariski-closed subset V of X such that $Z_{\phi, \alpha, V} = \{ n \in \mathbb{N} \mid \phi^n(\alpha) \in V \}$ has positive upper-Banach density.

- **Going up:** Lift the dynamical system to a continuous map $T : X \to X$. Via Prokhorov’s theorem, there exists a T-invariant probability measure μ on X charging $\pi^{-1}(V)$. Via the Poincaré recurrence theorem, there exists a T-recurrent point $\zeta \in \pi^{-1}(V) \cap \text{supp}(\mu)$.

- **Going back down:** $\pi(\zeta)$ is a periodic subvariety of V meeting the forward orbit of α. This leads to an infinite arithmetic progression in $Z_{\phi, \alpha, V}$.
An example in characteristic p

Example:

- $K = \mathbb{F}_p(t)$, field of rational functions in one variable t.
- $\phi : K^2 \to K^2$ defined by $\phi(x, y) = (tx, (1 - t)y)$.
- $\alpha = (1, 1)$ and $V = \{x + y = 1\}$ in K^2.
- Then $\phi^n(\alpha) = (t^n, (1 - t)^n)$ and

$$\{n \in \mathbb{N} \mid \phi^n(\alpha) \in V\} = \{p^\ell \mid \ell \geq 0\}.$$