On the distribution of orbits in Affine varieties

Clayton Petsche

Oregon State University

Joint Mathematics Meetings Special Session on Arithmetic Dynamics January 6 2016 Seattle

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

QUESTION: Let X be a variety, let $\phi : X \to X$ be a morphism, let $\alpha \in X$ be a point, and let $V \subset X$ be a subvariety. What can you say about the set

$$Z_{\phi,\alpha,V} = \{ n \in \mathbb{N} \mid \phi^n(\alpha) \in V \}?$$

Could $Z_{\phi,\alpha,V}$ be arbitrary? Or must it have some structure?

QUESTION: Let X be a variety, let $\phi : X \to X$ be a morphism, let $\alpha \in X$ be a point, and let $V \subset X$ be a subvariety. What can you say about the set

$$Z_{\phi,\alpha,V} = \{ n \in \mathbb{N} \mid \phi^n(\alpha) \in V \}?$$

Could $Z_{\phi,\alpha,V}$ be arbitrary? Or must it have some structure?

FIRST OBSERVATION: If it happens that

- $\phi^b(\alpha) \in V$ for some $b \ge 0$, and
- $\phi^a(V) \subseteq V$ for some $a \ge 1$,

then $Z_{\phi,\alpha,V}$ contains the infinite arithmetic progression $a\mathbb{N} + b$.

QUESTION: Let X be a variety, let $\phi : X \to X$ be a morphism, let $\alpha \in X$ be a point, and let $V \subset X$ be a subvariety. What can you say about the set

$$Z_{\phi,\alpha,V} = \{ n \in \mathbb{N} \mid \phi^n(\alpha) \in V \}?$$

Could $Z_{\phi,\alpha,V}$ be arbitrary? Or must it have some structure?

SECOND OBSERVATION: Conversely, if $Z_{\phi,\alpha,V}$ contains an infinite arithmetic progression, then a Zariski-closure argument can be used to produce a periodic subvariety of V meeting the orbit of α .

QUESTION: Let X be a variety, let $\phi : X \to X$ be a morphism, let $\alpha \in X$ be a point, and let $V \subset X$ be a subvariety. What can you say about the set

$$Z_{\phi,\alpha,V} = \{ n \in \mathbb{N} \mid \phi^n(\alpha) \in V \}?$$

Could $Z_{\phi,\alpha,V}$ be arbitrary? Or must it have some structure?

QUESTION (CONT.): Apart from the possible existence of infinite arithmetic progressions in $Z_{\phi,\alpha,V}$, what else can you say about its structure? If it contains no infinite arithmetic progressions, how large can it be?

STATEMENT OF A THEOREM

THEOREM: Let X be a variety, let $\phi : X \to X$ be a morphism, let $\alpha \in X$, and let V be a Zariski-closed subset of X. Then

$$\{n \in \mathbb{N} \mid \phi^n(\alpha) \in V\} = A \cup B$$

where A is a (possibly empty) finite union of infinite arithmetic progressions, and B is a set of (Banach) density zero.

STATEMENT OF A THEOREM

THEOREM: Let X be a variety, let $\phi : X \to X$ be a morphism, let $\alpha \in X$, and let V be a Zariski-closed subset of X. Then

$$\{n \in \mathbb{N} \mid \phi^n(\alpha) \in V\} = A \cup B$$

where A is a (possibly empty) finite union of infinite arithmetic progressions, and B is a set of (Banach) density zero.

REMARKS:

- The dynamical Mordell-Lang conjecture states that, in characteristic zero, B is actually finite.
- S ⊆ N has Banach density zero if |S∩I| / |I| → 0 as |I| → +∞ over all intervals I ⊂ N.
- Actually holds for arbitrary Noetherian spaces.

STATEMENT OF A THEOREM

This theorem is due to:

- ► L. Denis: special case of automorphisms of Pⁿ in characteristic p.
- W. Gignac: ergodic theory and measure theory on Zariski spaces (should also mention C. Favre)
- Bell-Ghioca-Tucker: elementary arguments (they also get some quantitative results)

Petsche: special case of affine varieties

STEP 1: Reduce the Theorem to the following formally weaker statement.

THEOREM: Let X be an affine variety, let $\phi : X \to X$ be a morphism, let $\alpha \in X$ be a point, and let V be a Zariski-closed subset of X. If the set $\{n \in \mathbb{N} \mid \phi^n(\alpha) \in V\}$ contains no infinite arithmetic progressions, then it has (Banach) density zero.

STEP 1: Reduce the Theorem to the following formally weaker statement.

THEOREM: Let X be an affine variety, let $\phi : X \to X$ be a morphism, let $\alpha \in X$ be a point, and let V be a Zariski-closed subset of X. If the set $\{n \in \mathbb{N} \mid \phi^n(\alpha) \in V\}$ contains no infinite arithmetic progressions, then it has (Banach) density zero.

STEP 2: Introduce a Berkovich space.

We have $X = \operatorname{Spec} A$ for some finitely generated *k*-algebra A. Let $\mathbf{X} = M(A)$, the Berkovich spectrum of A as a trivially-normed Banach ring.

STEP 2 (CONT.): More precisely, **X** is the set of all functions [·] : $\mathcal{A} \to \mathbb{R}$ satisfying (I) $0 \leq [f] \leq 1$ for all $f \in \mathcal{A}$; (II) [0] = 0 and [r] = 1 for all nonzero $r \in k$; (III) $[f + g] \leq \max\{[f], [g]\}$ for all $f, g \in \mathcal{A}$; (IV) [fg] = [f][g] for all $f, g \in \mathcal{A}$.

- In words, each [·] is "a multiplicative seminorm on A restricting to the trivial absolute value on k."
- Give X the coarsest topology under which each function
 X → ℝ, given by [·] ↦ [f] for some f ∈ A, is continuous.

FACTS:

- **X** is a compact Hausdorff space.
- There exists a natural reduction map

$$\pi: \mathbf{X} \to X \qquad \pi([\cdot]) = \{ f \in \mathcal{A} \mid [f] < 1 \}.$$

(Recall X = Spec(A) is the prime ideal spectrum of A.)

The reduction map π is surjective, and it is anti-continuous with respect to the Hausdorff topology on X and the Zariski topology on X.

Ergodic theory interlude

DEFINITION: Let M be a metric space, and let $T : M \to M$ be a function. A point $\alpha \in M$ is a **recurrent point** for T if some subsequence of the forward orbit $\{T^k(\alpha)\}_{k=0}^{\infty}$ converges to α .

POINCARE RECURRENCE THEOREM (A LA FURSTENBERG): Let M be a compact metric space, let $T : M \to M$ be a continuous function, and let μ be a T-invariant unit Borel measure on M. Then μ -almost all points of M are recurrent for T.

IDEA OF THE PROOF: The forward orbit of a non-recurrent point takes up too much room for there to be very many of them.

Sketch of an argument:

- Consider φ : X → X, α ∈ X, and a Zariski-closed subset V of X such that Z_{φ,α,V} = {n ∈ ℕ | φⁿ(α) ∈ V} has positive upper-Banach density.
- Going up: Lift the dynamical system to a continuous map $T : \mathbf{X} \to \mathbf{X}$. Via Prokhorov's theorem, there exists a *T*-invariant probability measure μ on \mathbf{X} charging $\pi^{-1}(V)$. Via the Poincaré recurrence theorem, there exists a *T*-recurrent point $\zeta \in \pi^{-1}(V) \cap \operatorname{supp}(\mu)$.

• Going back down: $\overline{\pi(\zeta)}$ is a periodic subvariety of V meeting the forward orbit of α . This leads to an infinite arithmetic progression in $Z_{\phi,\alpha,V}$.

AN EXAMPLE IN CHARACTERISTIC p

EXAMPLE:

- $\mathcal{K} = \mathbb{F}_{\rho}(t)$, field of rational functions in one variable t.
- $\phi: K^2 \to K^2$ defined by $\phi(x, y) = (tx, (1-t)y)$.
- $\alpha = (1, 1)$ and $V = \{x + y = 1\}$ in K^2 .
- Then $\phi^n(\alpha) = (t^n, (1-t)^n)$ and

$$\{n \in \mathbb{N} \mid \phi^n(\alpha) \in V\} = \{p^{\ell} \mid \ell \geq 0\}.$$