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A motivating question

Question: Let X be a variety, let φ : X → X be a morphism, let
α ∈ X be a point, and let V ⊂ X be a subvariety. What can you
say about the set

Zφ,α,V = {n ∈ N | φn(α) ∈ V }?

Could Zφ,α,V be arbitrary? Or must it have some structure?
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say about the set

Zφ,α,V = {n ∈ N | φn(α) ∈ V }?

Could Zφ,α,V be arbitrary? Or must it have some structure?

First observation: If it happens that

I φb(α) ∈ V for some b ≥ 0, and

I φa(V ) ⊆ V for some a ≥ 1,

then Zφ,α,V contains the infinite arithmetic progression aN + b.
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Second observation: Conversely, if Zφ,α,V contains an infinite
arithmetic progression, then a Zariski-closure argument can be
used to produce a periodic subvariety of V meeting the orbit of α.



A motivating question

Question: Let X be a variety, let φ : X → X be a morphism, let
α ∈ X be a point, and let V ⊂ X be a subvariety. What can you
say about the set

Zφ,α,V = {n ∈ N | φn(α) ∈ V }?

Could Zφ,α,V be arbitrary? Or must it have some structure?

Question (cont.): Apart from the possible existence of infinite
arithmetic progressions in Zφ,α,V , what else can you say about its
structure? If it contains no infinite arithmetic progressions, how
large can it be?



Statement of a Theorem

Theorem: Let X be a variety, let φ : X → X be a morphism, let
α ∈ X , and let V be a Zariski-closed subset of X . Then

{n ∈ N | φn(α) ∈ V } = A ∪ B

where A is a (possibly empty) finite union of infinite arithmetic
progressions, and B is a set of (Banach) density zero.

Remarks:

I The dynamical Mordell-Lang conjecture states that, in
characteristic zero, B is actually finite.

I S ⊆ N has Banach density zero if |S∩I ||I | → 0 as |I | → +∞
over all intervals I ⊂ N.

I Actually holds for arbitrary Noetherian spaces.
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Statement of a Theorem

This theorem is due to:

I L. Denis: special case of automorphisms of Pn in
characteristic p.

I W. Gignac: ergodic theory and measure theory on Zariski
spaces (should also mention C. Favre)

I Bell-Ghioca-Tucker: elementary arguments (they also get
some quantitative results)

I Petsche: special case of affine varieties



A proof for affine varieties

Step 1: Reduce the Theorem to the following formally weaker
statement.

Theorem: Let X be an affine variety, let φ : X → X be a
morphism, let α ∈ X be a point, and let V be a Zariski-closed
subset of X . If the set {n ∈ N | φn(α) ∈ V } contains no infinite
arithmetic progressions, then it has (Banach) density zero.

Step 2: Introduce a Berkovich space.

We have X = SpecA for some finitely generated k-algebra A. Let
X = M(A), the Berkovich spectrum of A as a trivially-normed
Banach ring.
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A proof for affine varieties

Step 2 (cont.): More precisely, X is the set of all functions
[·] : A → R satisfying

(i) 0 ≤ [f ] ≤ 1 for all f ∈ A;

(ii) [0] = 0 and [r ] = 1 for all nonzero r ∈ k ;

(iii) [f + g ] ≤ max{[f ], [g ]} for all f , g ∈ A;

(iv) [fg ] = [f ][g ] for all f , g ∈ A.

I In words, each [·] is “a multiplicative seminorm on A
restricting to the trivial absolute value on k .”

I Give X the coarsest topology under which each function
X→ R, given by [·] 7→ [f ] for some f ∈ A, is continuous.



A proof for affine varieties

Facts:

I X is a compact Hausdorff space.

I There exists a natural reduction map

π : X→ X π([·]) = {f ∈ A | [f ] < 1}.

(Recall X = Spec(A) is the prime ideal spectrum of A.)

I The reduction map π is surjective, and it is anti-continuous
with respect to the Hausdorff topology on X and the Zariski
topology on X .



Ergodic theory interlude

Definition: Let M be a metric space, and let T : M → M be a
function. A point α ∈ M is a recurrent point for T if some
subsequence of the forward orbit {T k(α)}∞k=0 converges to α.

Poincare recurrence theorem (a la Furstenberg): Let
M be a compact metric space, let T : M → M be a continuous
function, and let µ be a T -invariant unit Borel measure on M.
Then µ-almost all points of M are recurrent for T .

Idea of the proof: The forward orbit of a non-recurrent point
takes up too much room for there to be very many of them.



A proof for affine varieties

Sketch of an argument:

I Consider φ : X → X , α ∈ X , and a Zariski-closed subset V of
X such that Zφ,α,V = {n ∈ N | φn(α) ∈ V } has positive
upper-Banach density.

I Going up: Lift the dynamical system to a continuous map
T : X→ X. Via Prokhorov’s theorem, there exists a
T -invariant probability measure µ on X charging π−1(V ). Via
the Poincaré recurrence theorem, there exists a T -recurrent
point ζ ∈ π−1(V ) ∩ supp(µ).

I Going back down: π(ζ) is a periodic subvariety of V
meeting the forward orbit of α. This leads to an infinite
arithmetic progression in Zφ,α,V .



An example in characteristic p

Example:

I K = Fp(t), field of rational functions in one variable t.

I φ : K 2 → K 2 defined by φ(x , y) = (tx , (1− t)y).

I α = (1, 1) and V = {x + y = 1} in K 2.

I Then φn(α) = (tn, (1− t)n) and

{n ∈ N | φn(α) ∈ V } = {p` | ` ≥ 0}.


