
Arithmetic Coordinates
on Dynamical Moduli Spaces

Robert Rumely

Special Session on Arithmetic Dynamics

Seattle Joint Mathematics Meetings

January 6, 2016

Robert Rumely Arithmetic Coordinates on Dynamical Moduli Spaces



Background

Let K be a complete, algebraically closed, non-archimedean
field, with ring of integers O, maximal ideal m, and residue field
k̃ . Let | · | be the absolute value on K and let ord(·) be the
associated additive valuation.

We write P1
K for the Berkovich Projective Line over K , and ζG

for the Gauss point.

Let ϕ ∈ K (z) be a rational function of degree d ≥ 2. If
γ ∈ GL2(K ), write ϕγ = γ−1 ◦ ϕ ◦ γ.

A normalized representation for ϕγ is a pair (Fγ ,Gγ) of
homogeneous polynomials of degree d in O[X ,Y ], with at least
one coefficient a unit of O, and ϕγ(z) = Fγ(z,1)/Gγ(z,1).
It is unique up to scaling by a unit of O.
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The Function ordResϕ(·)

The number ord(Res(ϕγ)) := ord(Res(Fγ ,Gγ)) is well-defined,
and independent of the choice of normalized representation.

The function γ 7→ ord(Res(ϕγ)) factors through a function
ordResϕ(·) : P1

K → [0,∞], which is defined on type II points by

ordResϕ(γ(ζG)) = ord(Res(ϕγ)) .

Theorem
The function ordResϕ(·) has the following properties:

It is continuous with respect to the strong topology on P1
K .

It takes the value∞ on P1(K ) and is finite on P1
K \P1(K ).

It is piecewise affine and convex up on each path, with
respect to the logarithmic path distance.
It achieves a minimum on P1

K .
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The Minimal Resultant Locus

The Minimum Resultant Locus MinResLoc(ϕ) is the set of
points in P1

K where ordResϕ(·) takes on its minimum. It is either
a single type II point, or a segment with type II endpoints. If d is
even, it is a single point.
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The Crucial Set

There is a canonical way to assign non-negative integer
weights wϕ(P) to points in the interior of P1

K , such that∑
P wϕ(P) = d − 1.

The weights arise by taking the Laplacian of ordResϕ(·),
restricted to the tree spanned by the classical fixed points
and the Berkovich repelling fixed points of ϕ.

The set of points which receive weight is called the crucial
set of ϕ. It is a conjugation equivariant. There are only
finitely many possible configurations of the crucial set, for a
given d .
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The crucial set and MinResLoc(ϕ) form a bridge between
analytic and moduli-theoretic properties of ϕ(z)

Theorem
The Minimal Resultant Locus MinResLoc(ϕ) is the Barycenter
of the crucial set (with weights wϕ(P)).

Theorem
A conjugate ϕγ is semi-stable in the sense of Geometric
Invariant Theory if and only if γ(ζG) belongs to MinResLoc(ϕ) .

The direction→ in the second theorem is due to Szpiro,
Tepper, and Williams.
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The theme of this talk is that the crucial set should determine
where ϕ lies in the dynamical moduli spaceMd (K ):

Conjecture

There are a compactificationMd ofMd/Spec(O) and an
algebraic stratification of the special fibreMd/Spec(k̃)
determined by the configurations of the crucial set, such that if
[ϕ] ∈Md (K ) is the point corresponding to ϕ, then [ϕ] (mod m)
lies in the stratum corresponding to the crucial set of ϕ.

We will call such a compactification a good arithmetic
compactification ofMd , and the functions which embed it,
good arithmetic coordinates.
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We will show that the conjecture holds for quadratic rational
functions and cubic polynomials, and discuss progress towards
establishing it for cubic rational functions.

This represents joint work with students in two VIGRE groups
and an REU:

John Doyle and Kenneth Jacobs (Configuration of the Crucial
set for a Quadratic Rational Map, ArXiv 1507.03535)

Ebony Harvey, Allan Lacy, Marko Milosevich, Lori Watson,
(Configurations of the Crucial Set for a Cubic Polynomial, in
preparation)

Hailey Armstrong, Cameron Bjorklund, Matthew Burchfield, Kaj
Hanson, and Daniel West (Configurations of the Crucial Set for
Cubic Rational Maps, onging project)
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The Weights wϕ(P)

There are two reasons a point can receive weight.
Only points of type II, in H1

K := P1
K \P1(K ), can have

wϕ(P) > 0.

If ϕ(P) = P, then wϕ(P) = degϕ(P)− 1 + NShearing(P).
Here degϕ(P) is the degree of the reduction of ϕ at P.
A tangent direction ~v ∈ TP is called a shearing direction if it
contains a classical fixed point, but is moved by ϕ. The
number of shearing directions NShearing(P) is a measure of
the discrepancy between the local and global behavior of ϕ
at P.
If ϕ(P) 6= P, and P is a branch point of the tree ΓFix
spanned by the classical fixed points of ϕ, then
wϕ(P) = valence(P)− 2.
Otherwise wϕ(P) = 0.
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Example: The weights wϕ(P) for a quadratic function

If ϕ(z) ∈ K (z) is quadratic, then deg(ϕ)− 1 = 1 so there is a
unique point in the crucial set. This point is turns out to be the
unique point in the Minimal Resultant Locus, that is, ordResϕ(P)
is minimal.

There are just four possible configurations for the crucial set:
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Example: The weights wϕ(P) for a quadratic function

Configuration I: ϕ has potential good reduction; there is a point
where degϕ(P) = 2.

An example with P = ζG: ϕ(z) = z2/(z2 − 1) specializes to
ϕ̃(z) = z2/(z2 − 1) (mod m). wϕ(P) = 2− 1 + 0 = 1.

Configuration II: ϕ has potential multiplicative reduction; there is
a branch point P of ΓFix with ϕ(P) = P, such that after a change
of coordinates, ϕ̃(P) = λ̃z (mod m) for some λ̃ 6= 0̃, 1̃ ∈ k̃ .

An example with P = ζG: ϕ(z) = (1−p)z(z−a)
(1−a)(z−p) specializes to

ϕ̃(z) = λ̃z (mod m) where λ = ˜(1− a)
−1

(mod m).
Fixed points 0,1,∞. ~v1 is sheared. wϕ(P) = 1− 1 + 1 = 1.
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(1−a)(z−p) specializes to

ϕ̃(z) = λ̃z (mod m) where λ = ˜(1− a)
−1

(mod m).
Fixed points 0,1,∞. ~v1 is sheared. wϕ(P) = 1− 1 + 1 = 1.
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Example: The weights wϕ(P) for a quadratic function

Configuration III: ϕ has potential additive reduction; there a
point P of ΓFix with ϕ(P) = P, which is not a branch point of ΓFix,
such that after a change of coordinates, ϕ̃(P) = z + 1 (mod m).

An example with P = ζG: ϕ(z) = z(z+1)
z+p specializes to

ϕ̃(z) = z + 1 (mod m). Fixed points 0,1/p,∞. ~v0 is sheared.
wϕ(P) = 1− 1 + 1 = 1.

Configuration IV: ϕ has potential constant reduction; there is a
branch point P of ΓFix which is moved.

An example with P = ζG: ϕ(z) = z(z−1)
p + 1 has fixed points

0,1,∞, and ϕ(ζG) = ζ0,p 6= ζG. wϕ(P) = max(0,3− 2) = 1.
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The Coarse Moduli Space for Quadratic Functions

For a quadratic rational function, let σ1, σ2 be the usual
symmetric functions in the multipliers at the fixed points. It was
shown by Silverman thatM2/Spec(Z) exists as a coarse
moduli space, and thatM2

∼= A2/Spec(Z), with coordinate
functions σ1, σ2.

Its natural compactification is P2/Spec(Z). We will identify
(x , y) ∈ A2 with (x : y : 1) ∈ P2 and base change to O.

The following theorem, which strengthens a theorem of Diane
Yap, says P2 is a good arithmetic compactification ofM2, and
that σ1 and σ2 are good arithmetic coordinates.
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Theorem (J. Doyle, K. Jacobs, R. Rumely)
Let K be a complete, algebraically closed, non-archimedean
valued field with ring of integers O and residue field k̃ . Let
ϕ(z) ∈ K (z) have degree 2.
Write s([ϕ]) = (σ1(ϕ) : σ2(ϕ) : 1) ∈ P2(K ), and let s̃([ϕ]) be its
specialization in P2(k̃). Then
(A) ϕ has potential good reduction iff s̃([ϕ]) ∈ A2(k̃).
(B) ϕ has potential multiplicative reduction iff s̃([ϕ]) = (1̃ : x̃ : 0̃)

where x̃ 6= 2̃; if ϕ̃(z) ≡ λ̃z then x̃ = λ̃+ 1̃/λ̃.
(C) ϕ has potential additive reduction iff s̃([ϕ]) = (1̃ : 2̃ : 0̃).
(D) ϕ has potential constant reduction iff s̃([ϕ]) = (1̃ : 0̃ : 0̃).
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Cubic Polynomials

Let ϕ(z) = az3 + bz2 + cz + d ∈ K [z] be a cubic polynomial.

Under affine conjugacy, the Monic Centered Normal Form for
ϕ(z) is

ϕγ(z) = z3 + Cz + D

where C is unique and D is determined up to a factor of ±1.

The Monic Centered Normal Form exists when char(K ) 6= 3,
but need not exist when char(K ) = 3.
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Fixed Point Normal Form

The VIGRE group found another normal form for a cubic
polynomial which always exists.

ϕγ(z) is in Fixed Point Normal Form if it is monic, and one of its
fixed points is 0. If the fixed points are 0, F1, F2 then

ϕγ(z) = z(z − F1)(z − F2) + z
= z3 − (F1 + F2)z2 + (1 + F1F2)z

It determined up to six possibilities; if ϕγ is conjugated by
γ1(z) ∈ {±z,±z + F1,±z + F2} the resulting polynomials ϕγ◦γ1

are also in fixed point normal form, with fixed point sets

{0,F1,F2} , {0,−F1,−F2} ,
{0,−F1,F2 − F1} , {0,F1,F1 − F2} ,
{0,−F2,F1 − F2} , {0,F2,F2 − F1} .
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The Group of Symmetries G

If one orders the fixed points F1, F2, a generic cubic
ϕ(z) ∈ K [z] corresponds to 12 ordered pairs, acted on by a
group of 2× 2 matrices G ∼= {±1} × S3:

±
[

F1
F2

]
=±

[
1 0
0 1

][
F1
F2

]
,±
[

F2
F1

]
=±

[
0 1
1 0

][
F1
F2

]
,

±
[

F2 − F1
−F1

]
=±

[
−1 1
−1 0

][
F1
F2

]
,±
[
−F1

F2 − F1

]
=±

[
−1 0
−1 1

][
F1
F2

]
,

±
[
−F2

F1 − F2

]
=±

[
0 −1
1 −1

][
F1
F2

]
,±
[

F1 − F2
−F2

]
=±

[
1 −1
0 −1

][
F1
F2

]
.
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Now let F1 and F2 be variables, so Spec
(
K [F1,F2]

) ∼= A2.

The moduli space P3(K ) of cubic polynomials is isomorphic to
the quotient of A2(K ) by G, for the action above, and if
K [F1,F2]G is the ring of invariants, then
P3 ∼= Spec

(
K [F1,F2]G

)
.

Theorem
Let H be a field, and let F1 and F2 be independent variables.
Let G act on H[F1,F2] via the action above. Put
µ2 = F 2

1 − F1F2 + F 2
2 , µ3 = F1(F1 − F2)F2,

µ6 = µ2
3 = F 2

1 (F1 − F2)2F 2
2 . Then

(A) If char(H) 6= 2, one has H[F1,F2]G = H[µ2, µ6].
(B) If char(H) = 2, one has H[F1,F2]G = H[µ2, µ3].

Note that when char(H) = 2, µ2
3 = µ6 uniquely determines µ3.
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The symmetric functions in the multipliers, σ1, σ3

For ϕ(z) = az3 + bz2 + cz + d one has

σ1 = (b2 − 3ac + 6a)/a,
σ2 = (2b2 − 6ac + 9a)/a,
σ3 = (27a2d2 − 28abcd + 28abd + 4ac3 − 12ac2

+9ac + 4b3d − b2c2 + 2b2c)/a

Theorem
Let H be a field, and let ϕ(z) ∈ H[z] be a cubic polynomial.
Then σ2 = 2σ1 − 3, and
(A) σ1 = µ2 + 3 and σ3 = −µ6 + µ2 + 1;
(B) µ2 = σ1 − 3 and µ6 = −σ3 + σ1 − 2.
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The Coarse Moduli Space of Cubic Polynomials

Theorem
Let H be an algebraically closed field. A coarse moduli space
for cubic polynomials over H exists, and is isomorphic to
A2/Spec(H), with coordinate functions σ1, σ3.
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Configurations of the Crucial set for Cubic Polynomials

Let K be a complete, algebraically closed, nonarchimedean
valued field.

Let ϕ(z) = z3− (F1 + F2)z2 + (1 + F1F2)z be a cubic polynomial
in fixed point normal form. Using the symmetry group G one
can arrange that 0 ≤ |F1| ≤ |F2 and that if 0 6= |F1| = |F2|, then
F1 and F2 lie in distinct tangent directions at ζ0,|F2| ∈ P1

K

There are five possible configurations for the crucial set of ϕ.
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Configurations of the Crucial Set

Configuration I: If |F1|, |F2| ≤ 1, then ϕ has potential good
reduction at P = ζG, and there are no shearing directions.
wϕ(P) = 3− 1 + 0 = 2.

Configuration II: If |F1| = |F2| > 1, there is a branch point
P = ζ0,|F2| of ΓFix with valence 4 which moved by ϕ.
wϕ(P) max(0,4− 2) = 2.

Configuration III: If |F2| > 1 and 1/|F2| < |F1| < |F2, then there
are branch points of ΓFix with valence 3 at P1 = ζ0,|F1| and
P2 = ζ0,|F2|; both are moved.
wϕ(P1) = wϕ(P2) = max(0,3− 2) = 1.
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Configurations of the Crucial Set

Configuration IV: If |F2| > 1 and |F1| = 1/|F2| < 1, then the
branch point P2 = ζ0,|F2| of ΓFix is moved, and the branch point
P1 = ζ0,1/|F2| of ΓFix is a fixed point of degree 2 with no shearing
directions.
wϕ(P1) = wϕ(P2) = 1.

Configuration V: If |F2| > 1 and |F1| < 1/|F2| < 1, then the
branch point P2 = ζ0,|F2| of ΓFix is moved, and the point
P1 = ζ0,1/|F2| ∈ ΓFix is a fixed point of degree 1 with one
shearing direction ~v0.
wϕ(P1) = wϕ(P2) = 1.
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Theorem (E. Harvey, L. Watson, M. Milosevic, R. Rumely)
Let K be a complete, algebraically closed, non-archimedean
valued field with ring of integers O and residue field k̃ . Let
ϕ(z) ∈ K (z) be a cubic polynomial.
Write s([ϕ]) = (σ1(ϕ) : σ3(ϕ) : 1) ∈ P2(K ), and let s̃([ϕ]) be its
specialization in P2(k̃). Then
(A) If ϕ has potential good reduction then s̃([ϕ]) ∈ A2(k̃).
(B) If the crucial set has Configuration II, s̃([ϕ]) = (0̃ : 1̃ : 0̃).
(C) If the crucial set has Configuration III, s̃([ϕ]) = (0̃ : 1̃ : 0̃).
(D) If the crucial set has Configuration IV, s̃([ϕ]) = (1̃ : x̃ : 0̃)

where x̃ = ˜(F1F2)2 + 1̃ 6= 1̃. (In this situation |F1F2| = 1).
(E) If the crucial set has Configuration V, s̃([ϕ]) = (1̃ : 1̃ : 0̃).
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Although for both configurations II and III, s([ϕ]) specializes to
the same point (0̃ : 1̃ : 0̃) of P1(k̃), they can be separated by
blowing up that point with respect to an appropriate ideal,
introducing an extra copy of P1(k̃) in the special fibre.

This leads to a good arithmetic compactification for the moduli
space of cubic polynomials.
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