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Notation and Definitions

I K is any field, usually a complete valued field.

I ψ : Pn → Pn defined over K , degψ > 1.

I ϕ = (ϕ1, . . . , ϕn) is a dehomogenization of ψ, and
ϕi ∈ K [[x1, . . . , xn]].

I Let ϕ(0) = 0, with ϕ∗T0 in Jordan canonical form, with
eigenvalues λ1, . . . , λn. We call them the multipliers at 0.

When K is a complete valued field, we’d like to study ϕ
analytically. The best tool for this is the linearization.

Definition. We say ϕ (or ψ) is formally linearizable at the fixed
point 0 if there exists L = (L1, . . . , Ln), Li ∈ K [[x1, . . . , xn]] such
that ϕ ◦ L = L ◦ ϕ∗T0. If K is valued and L has positive radius of
convergence, we say ϕ is analytically linearizable.

Warning. We will routinely pass from ϕ to an iterate. So
everything here that is stated for a fixed point is also valid for
periodic points.
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Background on Linearization

There is considerable past work on whether ϕ is linearizable in 1
dimension. This depends on the value of the multiplier λ.

I ϕ is formally linearizable iff λ 6= 0 or a root of unity, since the
coefficients of L have λk − λ in the denominators.

I Over any valued field, ϕ is analytically linearizable if |λ| 6= 0, 1.

I If |λ| = 1 but λ is not a root of unity, it depends on K . If
K = Cp and λ is algebraic, ϕ is analytically linearizable. If
K = C, λ = eπiθ, ϕ is linearizable iff θ is not too irrational
(Brjuno 1971-72, Yoccoz 1995).

In several variables, if K = Cp and the λi s are algebraic and
multiplicatively independent, then ϕ is analytically linearizable
(Hermann-Yoccoz 1983). This is not a necessary condition: at
(1, 1, . . . , 1), the power map is linearizable via Li = exi but
λ1 = . . . = λn.

One benefit of linearization: there exist nicely intersecting analytic
hypersurfaces: xi = 0 for each i (if ϕ∗T0 is diagonal).
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Partial Linearization
We cannot always linearize, but still want to recover good analytic
properties. For this, we introduce the partial linearization, which
lets us separate groups of eigenvalues.

Notation: 〈a1, . . . , ak〉 is the multiplicative semigroup generated by
the ai s.

Main Lemma (1). Suppose λ1, . . . , λr /∈ 〈λr+1, . . . , λn〉. Then
∃!fi ∈ K [[xr+1, . . . , xn]], i = 1, . . . , r such that the system of formal
equations xi = fi is ϕ-invariant.

Main Lemma (2). If λ1, . . . , λr /∈ 〈λr+1, . . . , λn〉 in the analytic
topology on a valued field K , then the fi s have positive radius of
convergence, and define a ϕ-invariant analytic subvariety V ,
tangent to x1 = . . . = xr = 0.

Proof idea. We construct fi explicitly, and get denominators

λi −
∏

αj≥0,
∑
αj>0

λ
αr+1

r+1 . . . λ
αn
n
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Partial Linearization: Examples and Consequences

The conditions of the main lemmas are satisfied when
|λi | < 1⇔ i ≤ r , or when |λi | > 1⇔ i ≤ r .

Proposition. The behavior of V (attracting, repelling, etc.) near
0 under ϕ depends on λi for i ≤ r . The behavior of 0 under ϕ|V
depends on λi for i > r .

Example. Suppose |λi | > 1 when i ≤ r and |λi | < 1 when i > r .
Then V is repelling, i.e. points near 0 that are not on V get
farther away from V , but on V itself, points near 0 are attracted
to 0. Observe that we also have λr+1, . . . , λn /∈ 〈λ1, . . . , λr 〉, so we
also have complementary invariant subvariety W . W is attracting
under ϕ and 0 is repelling under ϕ|W .

This generalizes hyperbolic dynamics, which pulls apart attracting
and repelling directions over C; see Yoccoz 1995.
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Application 1: Isolated Periodic Points—Background

Definition. Let K be a valued field. A periodic (or fixed) point is
isolated if it has an analytic neighborhood with no periodic points
except itself.

The question of whether fixed points are isolated has been studied
in 1 dimension. Some background:

I If |λ| < 1, then x is isolated (it has an attracting basin).

I If charK = 0 and |λ| > 1, then x is not isolated (Julia
1918/C, Bézivin 2001/Cp).

I If |λ| = 1 and K = C, then isolated ⇔ linearizable.

I If |λ| = 1 and K is nonarchimedean, then conjecturally
isolated, proven in all cases except if λ is a root of unity and
charK = p (Benedetto 2000, Rivera-Letelier 2001-3,
Lindahl-Rivera-Letelier 2014).

It is natural to ask whether periodic points are isolated in several
variables.
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Application 1: Isolated Periodic Points—Main Result

Theorem 1. (L.) Let K = Cp. If |λi | ≤ 1 for all i , then the fixed
point 0 is isolated.

Proof idea. There are three main ingredients to the proof:

1. Use the main lemmas with |λi | < 1 for i ≤ r and |λi | = 1 for
i > r . Near 0, periodic points only occur on V . This reduces
the problem to when |λi | = 1 for all i .

2. Compute explicitly the lowest-degree nonzero terms of the
equations ϕk(x) = x. These can be shown to have coefficients
with valuations growing as O(logp k).

3. Apply the theory of tropical intersection and the Newton
polytope (Rabinoff 2012), argue that a k-cycle near 0 is
impossible for large k if valuations grow as O( n

√
k).

If n = 1, this proof also works if charK = p and λ is not a root of
unity, because the constant coefficient valuation grows as O(k).
But if n > 1 then k /∈ O( n

√
k) and the argument fails.
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Application 2: Zhang’s Conjecture—Background

Conjecture. (Zhang) Let ψ : Pn
Q → Pn

Q, degψ > 1. Then

∃x ∈ Pn(Q) such that the forward orbit of x is Zariski-dense.

Zhang’s conjecture is connected to the dynamical Mordell-Lang
conjecture.

I Zhang’s conjecture is trivial if Q is replaced by C.

I It is false, even over C, if ψ is allowed to be a rational map.
Fibral maps are counterexamples, e.g. (x1, x2) 7→ (x1, x

2
2 + x1).

I If there exists a fixed (or periodic) point with multiplicatively
independent multipliers, then the conjecture is true, and in
fact we can find x whose forward orbit is not contained in any
analytic subvariety (Amerik-Bogomolov-Rovinsky 2011).

The main lemmas help us in extending ABR to additional cases.
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Application 2: Zhang’s Conjecture—Main Results
Theorem 2. (L.) Zhang’s conjecture is true if there exists a fixed
(or periodic) point whose eigenvalues satisfy at least one of the
following two conditions:

1. One eigenvalue is zero and the rest are multiplicatively
independent.

2. n = 2, one eigenvalue is a root of unity and the other is not.

Proof idea. In the first case, assume λ1 = 0, and choose a
completion K such that the other multipliers are indifferent. Apply
the main lemma with r = 1 and Amerik-Bogomolov-Rovinsky.

In the second case, assume λ2 = 1, and choose a completion K
such that |λ1| < 1. Apply the main lemma with r = 1. If K is
p-adic, the proof of the first case works, even without ABR.

If K = C, the situation is more difficult, because 0 is in the Julia
set of ϕ|V . We choose x such that it is attracted to an attracting
petal near 0, and then argue the orbit cannot possibly be contained
in an analytic subvariety.
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