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> o) : P" — P" defined over K, deg1) > 1.

» © =(p1,...,9n) is a dehomogenization of v, and
i € K[[x1, ..., xa]].

» Let ¢(0) = 0, with ¢, Tp in Jordan canonical form, with
eigenvalues A1,..., A\,. We call them the multipliers at 0.

When K is a complete valued field, we'd like to study ¢
analytically. The best tool for this is the linearization.

Definition. We say ¢ (or ) is formally linearizable at the fixed
point 0 if there exists L = (Ly,...,Ln), L; € K[[x1,...,Xn]] such
that po L = Lo, Tp. If K is valued and L has positive radius of
convergence, we say  is analytically linearizable.

Warning. We will routinely pass from ¢ to an iterate. So
everything here that is stated for a fixed point is also valid for
periodic points.
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(1,1,...,1), the power map is linearizable via L; = € but

Al =...= A

One benefit of linearization: there exist nicely intersecting analytic
hypersurfaces: x; = 0 for each i (if ¢, Tg is diagonal).



Partial Linearization
We cannot always linearize, but still want to recover good analytic
properties. For this, we introduce the partial linearization, which
lets us separate groups of eigenvalues.



Partial Linearization

We cannot always linearize, but still want to recover good analytic
properties. For this, we introduce the partial linearization, which
lets us separate groups of eigenvalues.

Notation: (a1, ..., ax) is the multiplicative semigroup generated by
the ajs.



Partial Linearization
We cannot always linearize, but still want to recover good analytic
properties. For this, we introduce the partial linearization, which
lets us separate groups of eigenvalues.

Notation: (a1, ..., ax) is the multiplicative semigroup generated by
the ajs.

Main Lemma (1). Suppose A1,..., Ar & (Ary1,...,Ap). Then
Alf; € K[[xr4+1,---,xa]], i =1,...,r such that the system of formal

equations x; = f; is @-invariant.



Partial Linearization
We cannot always linearize, but still want to recover good analytic
properties. For this, we introduce the partial linearization, which
lets us separate groups of eigenvalues.

Notation: (a1, ..., ax) is the multiplicative semigroup generated by
the ajs.

Main Lemma (1). Suppose A1,..., Ar & (Ary1,...,Ap). Then
Alf; € K[[xr4+1,---,xa]], i =1,...,r such that the system of formal

equations x; = f; is @-invariant.

Main Lemma (2). If A\1,...,Ar & (Ar41,...,\p) in the analytic
topology on a valued field K, then the f;s have positive radius of
convergence, and define a -invariant analytic subvariety V/,
tangentto x3 = ... =x, = 0.



Partial Linearization
We cannot always linearize, but still want to recover good analytic
properties. For this, we introduce the partial linearization, which
lets us separate groups of eigenvalues.

Notation: (a1, ..., ax) is the multiplicative semigroup generated by
the ajs.

Main Lemma (1). Suppose A1,..., Ar & (Ary1,...,Ap). Then
Alf; € K[[xr4+1,---,xa]], i =1,...,r such that the system of formal

equations x; = f; is @-invariant.

Main Lemma (2). If A\1,...,Ar & (Ar41,...,\p) in the analytic
topology on a valued field K, then the f;s have positive radius of
convergence, and define a -invariant analytic subvariety V/,
tangentto x3 = ... =x, = 0.

Proof idea. We construct f; explicitly, and get denominators

Qr41 o
M- JT Ao
OszO,ZOzj>0
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The conditions of the main lemmas are satisfied when
[Ai| <1lei<r orwhen |\|>1&i<r.

Proposition. The behavior of V (attracting, repelling, etc.) near
0 under ¢ depends on A; for i < r. The behavior of 0 under ¢|y
depends on A; for i > r.

Example. Suppose |\j| > 1 when i < r and |\;| <1 when i > r.
Then V is repelling, i.e. points near 0 that are not on V get
farther away from V/, but on V itself, points near 0 are attracted
to 0. Observe that we also have A\,11,...,A\p & (A1,...,A,), so we
also have complementary invariant subvariety W. W is attracting
under ¢ and 0 is repelling under ¢|w .

This generalizes hyperbolic dynamics, which pulls apart attracting
and repelling directions over C; see Yoccoz 1995.
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Definition. Let K be a valued field. A periodic (or fixed) point is
isolated if it has an analytic neighborhood with no periodic points
except itself.

The question of whether fixed points are isolated has been studied
in 1 dimension. Some background:

» If |[A] <1, then x is isolated (it has an attracting basin).

> If char K =0 and |A| > 1, then x is not isolated (Julia
1918/C, Bézivin 2001/C,).

» If [\] =1 and K = C, then isolated <> linearizable.

» If |[A] =1 and K is nonarchimedean, then conjecturally
isolated, proven in all cases except if A is a root of unity and
char K = p (Benedetto 2000, Rivera-Letelier 2001-3,
Lindahl-Rivera-Letelier 2014).

It is natural to ask whether periodic points are isolated in several
variables.
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Theorem 1. (L.) Let K = C,. If |A;] <1 for all i, then the fixed
point 0 is isolated.

Proof idea. There are three main ingredients to the proof:

1. Use the main lemmas with |\;| < 1 for i < r and |\;| =1 for
i > r. Near 0, periodic points only occur on V. This reduces
the problem to when |\;| =1 for all i.

2. Compute explicitly the lowest-degree nonzero terms of the
equations ©*(x) = x. These can be shown to have coefficients
with valuations growing as O(log,, k).

3. Apply the theory of tropical intersection and the Newton
polytope (Rabinoff 2012), argue that a k-cycle near 0 is
impossible for large k if valuations grow as O(v/k).

If n =1, this proof also works if char K = p and X is not a root of
unity, because the constant coefficient valuation grows as O(k).
But if n > 1 then k ¢ O(~+/k) and the argument fails.
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Conjecture. (Zhang) Let v : ]P% — IE%, degy > 1. Then

dx € P"(Q) such that the forward orbit of x is Zariski-dense.

Zhang's conjecture is connected to the dynamical Mordell-Lang
conjecture.

» Zhang's conjecture is trivial if Q is replaced by C.

> It is false, even over C, if 1 is allowed to be a rational map.
Fibral maps are counterexamples, e.g. (xi,x2) — (x1, x5 + x1).

» If there exists a fixed (or periodic) point with multiplicatively
independent multipliers, then the conjecture is true, and in
fact we can find x whose forward orbit is not contained in any
analytic subvariety (Amerik-Bogomolov-Rovinsky 2011).

The main lemmas help us in extending ABR to additional cases.
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Theorem 2. (L.) Zhang's conjecture is true if there exists a fixed
(or periodic) point whose eigenvalues satisfy at least one of the
following two conditions:

1. One eigenvalue is zero and the rest are multiplicatively
independent.

2. n =2, one eigenvalue is a root of unity and the other is not.

Proof idea. In the first case, assume A1 = 0, and choose a
completion K such that the other multipliers are indifferent. Apply
the main lemma with r = 1 and Amerik-Bogomolov-Rovinsky.

In the second case, assume A\» = 1, and choose a completion K
such that [A1| < 1. Apply the main lemma with r = 1. If K is
p-adic, the proof of the first case works, even without ABR.

If K = C, the situation is more difficult, because 0 is in the Julia
set of ¢|y. We choose x such that it is attracted to an attracting
petal near 0, and then argue the orbit cannot possibly be contained
in an analytic subvariety.



