Higher-Dimensional Nonarchimedean Dynamics

Alon Levy Royal Institute of Technology

AMS Joint Mathematics Meeting Special Session on Arithmetic Dynamics January 6, 2016

► *K* is any field, usually a complete valued field.

(ロ)、(型)、(E)、(E)、 E) の(の)

► *K* is any field, usually a complete valued field.

• $\psi : \mathbb{P}^n \to \mathbb{P}^n$ defined over *K*, deg $\psi > 1$.

- ► *K* is any field, usually a complete valued field.
- $\psi : \mathbb{P}^n \to \mathbb{P}^n$ defined over K, deg $\psi > 1$.
- $\varphi = (\varphi_1, \dots, \varphi_n)$ is a dehomogenization of ψ , and $\varphi_i \in K[[x_1, \dots, x_n]].$

- ► *K* is any field, usually a complete valued field.
- $\psi : \mathbb{P}^n \to \mathbb{P}^n$ defined over K, deg $\psi > 1$.
- $\varphi = (\varphi_1, \dots, \varphi_n)$ is a dehomogenization of ψ , and $\varphi_i \in K[[x_1, \dots, x_n]].$
- Let φ(0) = 0, with φ_{*} T₀ in Jordan canonical form, with eigenvalues λ₁,..., λ_n. We call them the multipliers at 0.

- ► *K* is any field, usually a complete valued field.
- $\psi : \mathbb{P}^n \to \mathbb{P}^n$ defined over *K*, deg $\psi > 1$.
- $\varphi = (\varphi_1, \dots, \varphi_n)$ is a dehomogenization of ψ , and $\varphi_i \in K[[x_1, \dots, x_n]].$
- Let φ(0) = 0, with φ_{*} T₀ in Jordan canonical form, with eigenvalues λ₁,..., λ_n. We call them the multipliers at 0.

When K is a complete valued field, we'd like to study φ analytically. The best tool for this is the linearization.

- ► *K* is any field, usually a complete valued field.
- $\psi : \mathbb{P}^n \to \mathbb{P}^n$ defined over *K*, deg $\psi > 1$.
- $\varphi = (\varphi_1, \dots, \varphi_n)$ is a dehomogenization of ψ , and $\varphi_i \in K[[x_1, \dots, x_n]].$
- Let φ(0) = 0, with φ_{*} T₀ in Jordan canonical form, with eigenvalues λ₁,..., λ_n. We call them the multipliers at 0.

When K is a complete valued field, we'd like to study φ analytically. The best tool for this is the linearization.

Definition. We say φ (or ψ) is **formally linearizable** at the fixed point **0** if there exists $L = (L_1, \ldots, L_n), L_i \in K[[x_1, \ldots, x_n]]$ such that $\varphi \circ L = L \circ \varphi_* T_0$.

- ► *K* is any field, usually a complete valued field.
- $\psi : \mathbb{P}^n \to \mathbb{P}^n$ defined over *K*, deg $\psi > 1$.
- $\varphi = (\varphi_1, \dots, \varphi_n)$ is a dehomogenization of ψ , and $\varphi_i \in K[[x_1, \dots, x_n]].$
- Let φ(0) = 0, with φ_{*} T₀ in Jordan canonical form, with eigenvalues λ₁,..., λ_n. We call them the multipliers at 0.

When K is a complete valued field, we'd like to study φ analytically. The best tool for this is the linearization.

Definition. We say φ (or ψ) is **formally linearizable** at the fixed point **0** if there exists $L = (L_1, \ldots, L_n), L_i \in K[[x_1, \ldots, x_n]]$ such that $\varphi \circ L = L \circ \varphi_* T_0$. If K is valued and L has positive radius of convergence, we say φ is **analytically linearizable**.

- ► *K* is any field, usually a complete valued field.
- $\psi : \mathbb{P}^n \to \mathbb{P}^n$ defined over K, deg $\psi > 1$.
- $\varphi = (\varphi_1, \dots, \varphi_n)$ is a dehomogenization of ψ , and $\varphi_i \in K[[x_1, \dots, x_n]].$
- Let φ(0) = 0, with φ_{*} T₀ in Jordan canonical form, with eigenvalues λ₁,..., λ_n. We call them the multipliers at 0.

When K is a complete valued field, we'd like to study φ analytically. The best tool for this is the linearization.

Definition. We say φ (or ψ) is **formally linearizable** at the fixed point **0** if there exists $L = (L_1, \ldots, L_n), L_i \in K[[x_1, \ldots, x_n]]$ such that $\varphi \circ L = L \circ \varphi_* T_0$. If K is valued and L has positive radius of convergence, we say φ is **analytically linearizable**.

Warning. We will routinely pass from φ to an iterate. So everything here that is stated for a fixed point is also valid for periodic points.

There is considerable past work on whether φ is linearizable in 1 dimension. This depends on the value of the multiplier λ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

There is considerable past work on whether φ is linearizable in 1 dimension. This depends on the value of the multiplier λ .

• φ is formally linearizable iff $\lambda \neq 0$ or a root of unity, since the coefficients of *L* have $\lambda^k - \lambda$ in the denominators.

There is considerable past work on whether φ is linearizable in 1 dimension. This depends on the value of the multiplier λ .

- φ is formally linearizable iff λ ≠ 0 or a root of unity, since the coefficients of L have λ^k − λ in the denominators.
- Over any valued field, φ is analytically linearizable if $|\lambda| \neq 0, 1$.

There is considerable past work on whether φ is linearizable in 1 dimension. This depends on the value of the multiplier λ .

- φ is formally linearizable iff λ ≠ 0 or a root of unity, since the coefficients of L have λ^k − λ in the denominators.
- Over any valued field, φ is analytically linearizable if $|\lambda| \neq 0, 1$.

• If $|\lambda| = 1$ but λ is not a root of unity, it depends on K.

There is considerable past work on whether φ is linearizable in 1 dimension. This depends on the value of the multiplier λ .

- φ is formally linearizable iff λ ≠ 0 or a root of unity, since the coefficients of L have λ^k − λ in the denominators.
- Over any valued field, φ is analytically linearizable if $|\lambda| \neq 0, 1$.

If |λ| = 1 but λ is not a root of unity, it depends on K. If
K = C_p and λ is algebraic, φ is analytically linearizable.

There is considerable past work on whether φ is linearizable in 1 dimension. This depends on the value of the multiplier λ .

- φ is formally linearizable iff λ ≠ 0 or a root of unity, since the coefficients of L have λ^k − λ in the denominators.
- Over any valued field, φ is analytically linearizable if $|\lambda| \neq 0, 1$.
- If |λ| = 1 but λ is not a root of unity, it depends on K. If K = C_p and λ is algebraic, φ is analytically linearizable. If K = C, λ = e^{πiθ}, φ is linearizable iff θ is not too irrational (Brjuno 1971-72, Yoccoz 1995).

In several variables, if $K = \mathbb{C}_p$ and the λ_i s are algebraic and multiplicatively independent, then φ is analytically linearizable (Hermann-Yoccoz 1983).

There is considerable past work on whether φ is linearizable in 1 dimension. This depends on the value of the multiplier λ .

- φ is formally linearizable iff λ ≠ 0 or a root of unity, since the coefficients of L have λ^k − λ in the denominators.
- Over any valued field, φ is analytically linearizable if $|\lambda| \neq 0, 1$.
- If |λ| = 1 but λ is not a root of unity, it depends on K. If K = C_p and λ is algebraic, φ is analytically linearizable. If K = C, λ = e^{πiθ}, φ is linearizable iff θ is not too irrational (Brjuno 1971-72, Yoccoz 1995).

In several variables, if $K = \mathbb{C}_p$ and the λ_i s are algebraic and multiplicatively independent, then φ is analytically linearizable (Hermann-Yoccoz 1983). This is not a necessary condition: at (1, 1, ..., 1), the power map is linearizable via $L_i = e^{x_i}$ but $\lambda_1 = ... = \lambda_n$.

There is considerable past work on whether φ is linearizable in 1 dimension. This depends on the value of the multiplier λ .

- φ is formally linearizable iff λ ≠ 0 or a root of unity, since the coefficients of L have λ^k − λ in the denominators.
- Over any valued field, φ is analytically linearizable if $|\lambda| \neq 0, 1$.
- If |λ| = 1 but λ is not a root of unity, it depends on K. If K = C_p and λ is algebraic, φ is analytically linearizable. If K = C, λ = e^{πiθ}, φ is linearizable iff θ is not too irrational (Brjuno 1971-72, Yoccoz 1995).

In several variables, if $K = \mathbb{C}_p$ and the λ_i s are algebraic and multiplicatively independent, then φ is analytically linearizable (Hermann-Yoccoz 1983). This is not a necessary condition: at $(1, 1, \ldots, 1)$, the power map is linearizable via $L_i = e^{\chi_i}$ but $\lambda_1 = \ldots = \lambda_n$.

One benefit of linearization: there exist nicely intersecting analytic hypersurfaces: $x_i = 0$ for each *i* (if $\varphi_* T_0$ is diagonal).

We cannot always linearize, but still want to recover good analytic properties. For this, we introduce the **partial linearization**, which lets us separate groups of eigenvalues.

We cannot always linearize, but still want to recover good analytic properties. For this, we introduce the **partial linearization**, which lets us separate groups of eigenvalues.

Notation: $\langle a_1, \ldots, a_k \rangle$ is the multiplicative semigroup generated by the a_i s.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We cannot always linearize, but still want to recover good analytic properties. For this, we introduce the **partial linearization**, which lets us separate groups of eigenvalues.

Notation: $\langle a_1, \ldots, a_k \rangle$ is the multiplicative semigroup generated by the a_i s.

Main Lemma (1). Suppose $\lambda_1, \ldots, \lambda_r \notin \langle \lambda_{r+1}, \ldots, \lambda_n \rangle$. Then $\exists ! f_i \in K[[x_{r+1}, \ldots, x_n]], i = 1, \ldots, r$ such that the system of formal equations $x_i = f_i$ is φ -invariant.

We cannot always linearize, but still want to recover good analytic properties. For this, we introduce the **partial linearization**, which lets us separate groups of eigenvalues.

Notation: $\langle a_1, \ldots, a_k \rangle$ is the multiplicative semigroup generated by the a_i s.

Main Lemma (1). Suppose $\lambda_1, \ldots, \lambda_r \notin \langle \lambda_{r+1}, \ldots, \lambda_n \rangle$. Then $\exists ! f_i \in K[[x_{r+1}, \ldots, x_n]], i = 1, \ldots, r$ such that the system of formal equations $x_i = f_i$ is φ -invariant.

Main Lemma (2). If $\lambda_1, \ldots, \lambda_r \notin \overline{\langle \lambda_{r+1}, \ldots, \lambda_n \rangle}$ in the analytic topology on a valued field K, then the f_i s have positive radius of convergence, and define a φ -invariant analytic subvariety V, tangent to $x_1 = \ldots = x_r = 0$.

We cannot always linearize, but still want to recover good analytic properties. For this, we introduce the **partial linearization**, which lets us separate groups of eigenvalues.

Notation: $\langle a_1, \ldots, a_k \rangle$ is the multiplicative semigroup generated by the a_i s.

Main Lemma (1). Suppose $\lambda_1, \ldots, \lambda_r \notin \langle \lambda_{r+1}, \ldots, \lambda_n \rangle$. Then $\exists ! f_i \in K[[x_{r+1}, \ldots, x_n]], i = 1, \ldots, r$ such that the system of formal equations $x_i = f_i$ is φ -invariant.

Main Lemma (2). If $\lambda_1, \ldots, \lambda_r \notin \overline{\langle \lambda_{r+1}, \ldots, \lambda_n \rangle}$ in the analytic topology on a valued field K, then the f_i s have positive radius of convergence, and define a φ -invariant analytic subvariety V, tangent to $x_1 = \ldots = x_r = 0$.

Proof idea. We construct f_i explicitly, and get denominators

$$\lambda_j - \prod_{\alpha_j \ge 0, \sum \alpha_j > 0} \lambda_{r+1}^{\alpha_{r+1}} \dots \lambda_n^{\alpha_n}$$

The conditions of the main lemmas are satisfied when $|\lambda_i| < 1 \Leftrightarrow i \leq r$, or when $|\lambda_i| > 1 \Leftrightarrow i \leq r$.

The conditions of the main lemmas are satisfied when $|\lambda_i| < 1 \Leftrightarrow i \leq r$, or when $|\lambda_i| > 1 \Leftrightarrow i \leq r$.

Proposition. The behavior of V (attracting, repelling, etc.) near **0** under φ depends on λ_i for $i \leq r$. The behavior of **0** under $\varphi|_V$ depends on λ_i for i > r.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The conditions of the main lemmas are satisfied when $|\lambda_i| < 1 \Leftrightarrow i \leq r$, or when $|\lambda_i| > 1 \Leftrightarrow i \leq r$.

Proposition. The behavior of V (attracting, repelling, etc.) near **0** under φ depends on λ_i for $i \leq r$. The behavior of **0** under $\varphi|_V$ depends on λ_i for i > r.

Example. Suppose $|\lambda_i| > 1$ when $i \le r$ and $|\lambda_i| < 1$ when i > r. Then V is repelling, i.e. points near **0** that are not on V get farther away from V, but on V itself, points near **0** are attracted to **0**.

The conditions of the main lemmas are satisfied when $|\lambda_i| < 1 \Leftrightarrow i \leq r$, or when $|\lambda_i| > 1 \Leftrightarrow i \leq r$.

Proposition. The behavior of V (attracting, repelling, etc.) near **0** under φ depends on λ_i for $i \leq r$. The behavior of **0** under $\varphi|_V$ depends on λ_i for i > r.

Example. Suppose $|\lambda_i| > 1$ when $i \le r$ and $|\lambda_i| < 1$ when i > r. Then V is repelling, i.e. points near **0** that are not on V get farther away from V, but on V itself, points near **0** are attracted to **0**. Observe that we also have $\lambda_{r+1}, \ldots, \lambda_n \notin \overline{\langle \lambda_1, \ldots, \lambda_r \rangle}$, so we also have complementary invariant subvariety W. W is attracting under φ and **0** is repelling under $\varphi|_W$.

The conditions of the main lemmas are satisfied when $|\lambda_i| < 1 \Leftrightarrow i \leq r$, or when $|\lambda_i| > 1 \Leftrightarrow i \leq r$.

Proposition. The behavior of V (attracting, repelling, etc.) near **0** under φ depends on λ_i for $i \leq r$. The behavior of **0** under $\varphi|_V$ depends on λ_i for i > r.

Example. Suppose $|\lambda_i| > 1$ when $i \le r$ and $|\lambda_i| < 1$ when i > r. Then V is repelling, i.e. points near **0** that are not on V get farther away from V, but on V itself, points near **0** are attracted to **0**. Observe that we also have $\lambda_{r+1}, \ldots, \lambda_n \notin \overline{\langle \lambda_1, \ldots, \lambda_r \rangle}$, so we also have complementary invariant subvariety W. W is attracting under φ and **0** is repelling under $\varphi|_W$.

This generalizes hyperbolic dynamics, which pulls apart attracting and repelling directions over \mathbb{C} ; see Yoccoz 1995.

Definition. Let K be a valued field. A periodic (or fixed) point is **isolated** if it has an analytic neighborhood with no periodic points except itself.

Definition. Let K be a valued field. A periodic (or fixed) point is **isolated** if it has an analytic neighborhood with no periodic points except itself.

The question of whether fixed points are isolated has been studied in 1 dimension. Some background:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition. Let K be a valued field. A periodic (or fixed) point is **isolated** if it has an analytic neighborhood with no periodic points except itself.

The question of whether fixed points are isolated has been studied in 1 dimension. Some background:

• If $|\lambda| < 1$, then x is isolated (it has an attracting basin).

Definition. Let K be a valued field. A periodic (or fixed) point is **isolated** if it has an analytic neighborhood with no periodic points except itself.

The question of whether fixed points are isolated has been studied in 1 dimension. Some background:

- If $|\lambda| < 1$, then x is isolated (it has an attracting basin).
- If char K = 0 and |λ| > 1, then x is not isolated (Julia 1918/C, Bézivin 2001/C_p).

Definition. Let K be a valued field. A periodic (or fixed) point is **isolated** if it has an analytic neighborhood with no periodic points except itself.

The question of whether fixed points are isolated has been studied in 1 dimension. Some background:

- If $|\lambda| < 1$, then x is isolated (it has an attracting basin).
- If char K = 0 and |λ| > 1, then x is not isolated (Julia 1918/ℂ, Bézivin 2001/ℂ_p).
- If $|\lambda| = 1$ and $K = \mathbb{C}$, then isolated \Leftrightarrow linearizable.

Definition. Let K be a valued field. A periodic (or fixed) point is **isolated** if it has an analytic neighborhood with no periodic points except itself.

The question of whether fixed points are isolated has been studied in 1 dimension. Some background:

- If $|\lambda| < 1$, then x is isolated (it has an attracting basin).
- If char K = 0 and |λ| > 1, then x is not isolated (Julia 1918/ℂ, Bézivin 2001/ℂ_p).
- If $|\lambda| = 1$ and $K = \mathbb{C}$, then isolated \Leftrightarrow linearizable.
- If |λ| = 1 and K is nonarchimedean, then conjecturally isolated, proven in all cases except if λ is a root of unity and char K = p (Benedetto 2000, Rivera-Letelier 2001-3, Lindahl-Rivera-Letelier 2014).

Definition. Let K be a valued field. A periodic (or fixed) point is **isolated** if it has an analytic neighborhood with no periodic points except itself.

The question of whether fixed points are isolated has been studied in 1 dimension. Some background:

- If $|\lambda| < 1$, then x is isolated (it has an attracting basin).
- If char K = 0 and |λ| > 1, then x is not isolated (Julia 1918/ℂ, Bézivin 2001/ℂ_p).
- If $|\lambda| = 1$ and $K = \mathbb{C}$, then isolated \Leftrightarrow linearizable.
- If |λ| = 1 and K is nonarchimedean, then conjecturally isolated, proven in all cases except if λ is a root of unity and char K = p (Benedetto 2000, Rivera-Letelier 2001-3, Lindahl-Rivera-Letelier 2014).

It is natural to ask whether periodic points are isolated in several variables.

Theorem 1. (L.) Let $K = \mathbb{C}_p$. If $|\lambda_i| \le 1$ for all *i*, then the fixed point **0** is isolated.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem 1. (L.) Let $K = \mathbb{C}_p$. If $|\lambda_i| \leq 1$ for all *i*, then the fixed point **0** is isolated.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof idea. There are three main ingredients to the proof:

Theorem 1. (L.) Let $K = \mathbb{C}_p$. If $|\lambda_i| \leq 1$ for all *i*, then the fixed point **0** is isolated.

Proof idea. There are three main ingredients to the proof:

1. Use the main lemmas with $|\lambda_i| < 1$ for $i \le r$ and $|\lambda_i| = 1$ for i > r. Near **0**, periodic points only occur on *V*. This reduces the problem to when $|\lambda_i| = 1$ for all *i*.

Theorem 1. (L.) Let $K = \mathbb{C}_p$. If $|\lambda_i| \leq 1$ for all *i*, then the fixed point **0** is isolated.

Proof idea. There are three main ingredients to the proof:

- 1. Use the main lemmas with $|\lambda_i| < 1$ for $i \le r$ and $|\lambda_i| = 1$ for i > r. Near **0**, periodic points only occur on *V*. This reduces the problem to when $|\lambda_i| = 1$ for all *i*.
- 2. Compute explicitly the lowest-degree nonzero terms of the equations $\varphi^k(\mathbf{x}) = \mathbf{x}$. These can be shown to have coefficients with valuations growing as $O(\log_p k)$.

Theorem 1. (L.) Let $K = \mathbb{C}_p$. If $|\lambda_i| \leq 1$ for all *i*, then the fixed point **0** is isolated.

Proof idea. There are three main ingredients to the proof:

- 1. Use the main lemmas with $|\lambda_i| < 1$ for $i \le r$ and $|\lambda_i| = 1$ for i > r. Near **0**, periodic points only occur on *V*. This reduces the problem to when $|\lambda_i| = 1$ for all *i*.
- Compute explicitly the lowest-degree nonzero terms of the equations φ^k(**x**) = **x**. These can be shown to have coefficients with valuations growing as O(log_p k).

3. Apply the theory of tropical intersection and the Newton polytope (Rabinoff 2012), argue that a *k*-cycle near **0** is impossible for large *k* if valuations grow as $O(\sqrt[n]{k})$.

Theorem 1. (L.) Let $K = \mathbb{C}_p$. If $|\lambda_i| \leq 1$ for all *i*, then the fixed point **0** is isolated.

Proof idea. There are three main ingredients to the proof:

- 1. Use the main lemmas with $|\lambda_i| < 1$ for $i \le r$ and $|\lambda_i| = 1$ for i > r. Near **0**, periodic points only occur on *V*. This reduces the problem to when $|\lambda_i| = 1$ for all *i*.
- 2. Compute explicitly the lowest-degree nonzero terms of the equations $\varphi^k(\mathbf{x}) = \mathbf{x}$. These can be shown to have coefficients with valuations growing as $O(\log_p k)$.
- 3. Apply the theory of tropical intersection and the Newton polytope (Rabinoff 2012), argue that a *k*-cycle near **0** is impossible for large *k* if valuations grow as $O(\sqrt[n]{k})$.

If n = 1, this proof also works if char K = p and λ is not a root of unity, because the constant coefficient valuation grows as O(k). But if n > 1 then $k \notin O(\sqrt[n]{k})$ and the argument fails.

Conjecture. (Zhang) Let $\psi : \mathbb{P}^n_{\overline{\mathbb{Q}}} \to \mathbb{P}^n_{\overline{\mathbb{Q}}}$, deg $\psi > 1$. Then $\exists x \in \mathbb{P}^n(\overline{\mathbb{Q}})$ such that the forward orbit of x is Zariski-dense.

Conjecture. (Zhang) Let $\psi : \mathbb{P}^n_{\overline{\mathbb{Q}}} \to \mathbb{P}^n_{\overline{\mathbb{Q}}}$, deg $\psi > 1$. Then $\exists x \in \mathbb{P}^n(\overline{\mathbb{Q}})$ such that the forward orbit of x is Zariski-dense. Zhang's conjecture is connected to the dynamical Mordell-Lang conjecture.

Conjecture. (Zhang) Let $\psi : \mathbb{P}^n_{\overline{\mathbb{Q}}} \to \mathbb{P}^n_{\overline{\mathbb{Q}}}$, deg $\psi > 1$. Then $\exists x \in \mathbb{P}^n(\overline{\mathbb{Q}})$ such that the forward orbit of x is Zariski-dense. Zhang's conjecture is connected to the dynamical Mordell-Lang conjecture.

• Zhang's conjecture is trivial if $\overline{\mathbb{Q}}$ is replaced by \mathbb{C} .

Conjecture. (Zhang) Let $\psi : \mathbb{P}^n_{\overline{\mathbb{Q}}} \to \mathbb{P}^n_{\overline{\mathbb{Q}}}$, deg $\psi > 1$. Then $\exists x \in \mathbb{P}^n(\overline{\mathbb{Q}})$ such that the forward orbit of x is Zariski-dense. Zhang's conjecture is connected to the dynamical Mordell-Lang conjecture.

- Zhang's conjecture is trivial if $\overline{\mathbb{Q}}$ is replaced by \mathbb{C} .
- ▶ It is false, even over \mathbb{C} , if ψ is allowed to be a rational map. Fibral maps are counterexamples, e.g. $(x_1, x_2) \mapsto (x_1, x_2^2 + x_1)$.

Conjecture. (Zhang) Let $\psi : \mathbb{P}^n_{\overline{\mathbb{Q}}} \to \mathbb{P}^n_{\overline{\mathbb{Q}}}$, deg $\psi > 1$. Then $\exists x \in \mathbb{P}^n(\overline{\mathbb{Q}})$ such that the forward orbit of x is Zariski-dense. Zhang's conjecture is connected to the dynamical Mordell-Lang conjecture.

- Zhang's conjecture is trivial if $\overline{\mathbb{Q}}$ is replaced by \mathbb{C} .
- ▶ It is false, even over \mathbb{C} , if ψ is allowed to be a rational map. Fibral maps are counterexamples, e.g. $(x_1, x_2) \mapsto (x_1, x_2^2 + x_1)$.
- If there exists a fixed (or periodic) point with multiplicatively independent multipliers, then the conjecture is true, and in fact we can find x whose forward orbit is not contained in any analytic subvariety (Amerik-Bogomolov-Rovinsky 2011).

Conjecture. (Zhang) Let $\psi : \mathbb{P}^n_{\overline{\mathbb{Q}}} \to \mathbb{P}^n_{\overline{\mathbb{Q}}}$, deg $\psi > 1$. Then $\exists x \in \mathbb{P}^n(\overline{\mathbb{Q}})$ such that the forward orbit of x is Zariski-dense. Zhang's conjecture is connected to the dynamical Mordell-Lang conjecture.

- Zhang's conjecture is trivial if $\overline{\mathbb{Q}}$ is replaced by \mathbb{C} .
- ▶ It is false, even over \mathbb{C} , if ψ is allowed to be a rational map. Fibral maps are counterexamples, e.g. $(x_1, x_2) \mapsto (x_1, x_2^2 + x_1)$.
- If there exists a fixed (or periodic) point with multiplicatively independent multipliers, then the conjecture is true, and in fact we can find x whose forward orbit is not contained in any analytic subvariety (Amerik-Bogomolov-Rovinsky 2011).

The main lemmas help us in extending ABR to additional cases.

Theorem 2. (L.) Zhang's conjecture is true if there exists a fixed (or periodic) point whose eigenvalues satisfy *at least one* of the following two conditions:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem 2. (L.) Zhang's conjecture is true if there exists a fixed (or periodic) point whose eigenvalues satisfy *at least one* of the following two conditions:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1. One eigenvalue is zero and the rest are multiplicatively independent.

Theorem 2. (L.) Zhang's conjecture is true if there exists a fixed (or periodic) point whose eigenvalues satisfy *at least one* of the following two conditions:

- 1. One eigenvalue is zero and the rest are multiplicatively independent.
- 2. n = 2, one eigenvalue is a root of unity and the other is not.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem 2. (L.) Zhang's conjecture is true if there exists a fixed (or periodic) point whose eigenvalues satisfy *at least one* of the following two conditions:

- 1. One eigenvalue is zero and the rest are multiplicatively independent.
- 2. n = 2, one eigenvalue is a root of unity and the other is not.

Proof idea. In the first case, assume $\lambda_1 = 0$, and choose a completion K such that the other multipliers are indifferent. Apply the main lemma with r = 1 and Amerik-Bogomolov-Rovinsky.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem 2. (L.) Zhang's conjecture is true if there exists a fixed (or periodic) point whose eigenvalues satisfy *at least one* of the following two conditions:

- 1. One eigenvalue is zero and the rest are multiplicatively independent.
- 2. n = 2, one eigenvalue is a root of unity and the other is not.

Proof idea. In the first case, assume $\lambda_1 = 0$, and choose a completion K such that the other multipliers are indifferent. Apply the main lemma with r = 1 and Amerik-Bogomolov-Rovinsky.

In the second case, assume $\lambda_2 = 1$, and choose a completion K such that $|\lambda_1| < 1$. Apply the main lemma with r = 1. If K is p-adic, the proof of the first case works, even without ABR.

Theorem 2. (L.) Zhang's conjecture is true if there exists a fixed (or periodic) point whose eigenvalues satisfy *at least one* of the following two conditions:

- 1. One eigenvalue is zero and the rest are multiplicatively independent.
- 2. n = 2, one eigenvalue is a root of unity and the other is not.

Proof idea. In the first case, assume $\lambda_1 = 0$, and choose a completion K such that the other multipliers are indifferent. Apply the main lemma with r = 1 and Amerik-Bogomolov-Rovinsky.

In the second case, assume $\lambda_2 = 1$, and choose a completion K such that $|\lambda_1| < 1$. Apply the main lemma with r = 1. If K is *p*-adic, the proof of the first case works, even without ABR.

If $K = \mathbb{C}$, the situation is more difficult, because 0 is in the Julia set of $\varphi|_V$. We choose x such that it is attracted to an attracting petal near 0, and then argue the orbit cannot possibly be contained in an analytic subvariety.