Higher-Dimensional Nonarchimedean Dynamics

Alon Levy
Royal Institute of Technology

AMS Joint Mathematics Meeting
Special Session on Arithmetic Dynamics
January 6, 2016
Notation and Definitions

- K is any field, usually a complete valued field.
Notation and Definitions

- K is any field, usually a complete valued field.
- $\psi : \mathbb{P}^n \to \mathbb{P}^n$ defined over K, $\deg \psi > 1$.

Let $\phi(0) = 0$, with $\phi^* T_0$ in Jordan canonical form, with eigenvalues $\lambda_1, \ldots, \lambda_n$. We call them the multipliers at 0.

When K is a complete valued field, we'd like to study ϕ analytically. The best tool for this is the linearization.

Definition. We say ϕ (or ψ) is formally linearizable at the fixed point 0 if there exists $L = (L_1, \ldots, L_n)$, $L_i \in K[[x_1, \ldots, x_n]]$ such that $\phi \circ L = L \circ \phi^* T_0$.

If K is valued and L has positive radius of convergence, we say ϕ is analytically linearizable.

Warning. We will routinely pass from ϕ to an iterate. So everything here that is stated for a fixed point is also valid for periodic points.
Notation and Definitions

- K is any field, usually a complete valued field.
- $\psi : \mathbb{P}^n \to \mathbb{P}^n$ defined over K, $\deg \psi > 1$.
- $\varphi = (\varphi_1, \ldots, \varphi_n)$ is a dehomogenization of ψ, and $\varphi_i \in K[[x_1, \ldots, x_n]]$.
Notation and Definitions

- K is any field, usually a complete valued field.
- $\psi : \mathbb{P}^n \to \mathbb{P}^n$ defined over K, $\deg \psi > 1$.
- $\varphi = (\varphi_1, \ldots, \varphi_n)$ is a dehomogenization of ψ, and $\varphi_i \in K[[x_1, \ldots, x_n]]$.
- Let $\varphi(0) = 0$, with $\varphi_* T_0$ in Jordan canonical form, with eigenvalues $\lambda_1, \ldots, \lambda_n$. We call them the **multipliers** at 0.

When K is a complete valued field, we'd like to study φ analytically. The best tool for this is the linearization.

Definition. We say φ (or ψ) is **formally linearizable** at the fixed point 0 if there exists $L = (L_1, \ldots, L_n)$, $L_i \in K[[x_1, \ldots, x_n]]$ such that $\varphi \circ L = L \circ \varphi_* T_0$.

If K is valued and L has positive radius of convergence, we say φ is **analytically linearizable**.

Warning. We will routinely pass from φ to an iterate. So everything here that is stated for a fixed point is also valid for periodic points.
Notation and Definitions

- K is any field, usually a complete valued field.
- $\psi : \mathbb{P}^n \rightarrow \mathbb{P}^n$ defined over K, $\deg \psi > 1$.
- $\varphi = (\varphi_1, \ldots, \varphi_n)$ is a dehomogenization of ψ, and $\varphi_i \in K[[x_1, \ldots, x_n]]$.
- Let $\varphi(0) = 0$, with $\varphi_* T_0$ in Jordan canonical form, with eigenvalues $\lambda_1, \ldots, \lambda_n$. We call them the **multipliers** at 0.

When K is a complete valued field, we’d like to study φ analytically. The best tool for this is the linearization.
Notation and Definitions

- K is any field, usually a complete valued field.
- $\psi : \mathbb{P}^n \to \mathbb{P}^n$ defined over K, $\deg \psi > 1$.
- $\varphi = (\varphi_1, \ldots, \varphi_n)$ is a dehomogenization of ψ, and $\varphi_i \in K[[x_1, \ldots, x_n]]$.
- Let $\varphi(0) = 0$, with $\varphi_* T_0$ in Jordan canonical form, with eigenvalues $\lambda_1, \ldots, \lambda_n$. We call them the multipliers at 0.

When K is a complete valued field, we’d like to study φ analytically. The best tool for this is the linearization.

Definition. We say φ (or ψ) is **formally linearizable** at the fixed point 0 if there exists $L = (L_1, \ldots, L_n)$, $L_i \in K[[x_1, \ldots, x_n]]$ such that $\varphi \circ L = L \circ \varphi_* T_0$.

If K is valued and L has positive radius of convergence, we say φ is **analytically linearizable**.
Notation and Definitions

- K is any field, usually a complete valued field.
- $\psi : \mathbb{P}^n \rightarrow \mathbb{P}^n$ defined over K, $\deg \psi > 1$.
- $\varphi = (\varphi_1, \ldots, \varphi_n)$ is a dehomogenization of ψ, and $\varphi_i \in K[[x_1, \ldots, x_n]]$.
- Let $\varphi(0) = 0$, with $\varphi_* T_0$ in Jordan canonical form, with eigenvalues $\lambda_1, \ldots, \lambda_n$. We call them the multipliers at 0.

When K is a complete valued field, we’d like to study φ analytically. The best tool for this is the linearization.

Definition. We say φ (or ψ) is formally linearizable at the fixed point 0 if there exists $L = (L_1, \ldots, L_n), L_i \in K[[x_1, \ldots, x_n]]$ such that $\varphi \circ L = L \circ \varphi_* T_0$. If K is valued and L has positive radius of convergence, we say φ is analytically linearizable.
Notation and Definitions

- K is any field, usually a complete valued field.
- $\psi : \mathbb{P}^n \to \mathbb{P}^n$ defined over K, $\deg \psi > 1$.
- $\varphi = (\varphi_1, \ldots, \varphi_n)$ is a dehomogenization of ψ, and $\varphi_i \in K[[x_1, \ldots, x_n]]$.
- Let $\varphi(0) = 0$, with $\varphi_* T_0$ in Jordan canonical form, with eigenvalues $\lambda_1, \ldots, \lambda_n$. We call them the multipliers at 0.

When K is a complete valued field, we’d like to study φ analytically. The best tool for this is the linearization.

Definition. We say φ (or ψ) is formally linearizable at the fixed point 0 if there exists $L = (L_1, \ldots, L_n), L_i \in K[[x_1, \ldots, x_n]]$ such that $\varphi \circ L = L \circ \varphi_* T_0$. If K is valued and L has positive radius of convergence, we say φ is analytically linearizable.

Warning. We will routinely pass from φ to an iterate. So everything here that is stated for a fixed point is also valid for periodic points.
Background on Linearization

There is considerable past work on whether φ is linearizable in 1 dimension. This depends on the value of the multiplier λ.

φ is formally linearizable iff $\lambda \neq 0$ or a root of unity, since the coefficients of L have $\lambda^k - \lambda$ in the denominators.

Over any valued field, φ is analytically linearizable if $|\lambda| \neq 0$, 1.

If $|\lambda| = 1$ but λ is not a root of unity, it depends on K. If $K = \mathbb{C}_p$ and λ is algebraic, φ is analytically linearizable. If $K = \mathbb{C}$, $\lambda = e^{\pi i \theta}$, φ is linearizable iff θ is not too irrational (Brjuno 1971-72, Yoccoz 1995).

In several variables, if $K = \mathbb{C}_p$ and the λ_i are algebraic and multiplicatively independent, then φ is analytically linearizable (Hermann-Yoccoz 1983).

This is not a necessary condition: at $(1, 1, \ldots, 1)$, the power map is linearizable via $L_i = e^{x_i}$ but $\lambda_1 = \ldots = \lambda_n$.

One benefit of linearization: there exist nicely intersecting analytic hypersurfaces: $x_i = 0$ for each i (if $\varphi^* T_0$ is diagonal).
Background on Linearization

There is considerable past work on whether φ is linearizable in 1 dimension. This depends on the value of the multiplier λ.

- φ is formally linearizable iff $\lambda \neq 0$ or a root of unity, since the coefficients of L have $\lambda^k - \lambda$ in the denominators.

- Over any valued field, φ is analytically linearizable if $|\lambda| \neq 0$.

- If $|\lambda| = 1$ but λ is not a root of unity, it depends on K.
 - If $K = \mathbb{C}$ and λ is algebraic, φ is analytically linearizable.
 - If $K = \mathbb{C}$ and $\lambda = e^{\pi i \theta}$, φ is linearizable iff θ is not too irrational (Brjuno 1971-72, Yoccoz 1995).

- In several variables, if $K = \mathbb{C}$ and the λ_is are algebraic and multiplicatively independent, then φ is analytically linearizable (Hermann-Yoccoz 1983).

This is not a necessary condition: at $(1, 1, ..., 1)$, the power map is linearizable via $L_i = e^{x_i}$ but $\lambda_1 = ... = \lambda_n$.

One benefit of linearization: there exist nicely intersecting analytic hypersurfaces: $x_i = 0$ for each i (if $\varphi^* T_0$ is diagonal).
Background on Linearization

There is considerable past work on whether φ is linearizable in 1 dimension. This depends on the value of the multiplier λ.

- φ is formally linearizable iff $\lambda \neq 0$ or a root of unity, since the coefficients of L have $\lambda^k - \lambda$ in the denominators.
- Over any valued field, φ is analytically linearizable if $|\lambda| \neq 0, 1$.

One benefit of linearization: there exist nicely intersecting analytic hypersurfaces: $x_i = 0$ for each i (if φ^*T_0 is diagonal).
Background on Linearization

There is considerable past work on whether φ is linearizable in 1 dimension. This depends on the value of the multiplier λ.

- φ is formally linearizable iff $\lambda \neq 0$ or a root of unity, since the coefficients of L have $\lambda^k - \lambda$ in the denominators.
- Over any valued field, φ is analytically linearizable if $|\lambda| \neq 0, 1$.
- If $|\lambda| = 1$ but λ is not a root of unity, it depends on K.
Background on Linearization

There is considerable past work on whether \(\varphi \) is linearizable in 1 dimension. This depends on the value of the multiplier \(\lambda \).

- \(\varphi \) is formally linearizable iff \(\lambda \neq 0 \) or a root of unity, since the coefficients of \(L \) have \(\lambda^k - \lambda \) in the denominators.
- Over any valued field, \(\varphi \) is analytically linearizable if \(|\lambda| \neq 0, 1 \).
- If \(|\lambda| = 1 \) but \(\lambda \) is not a root of unity, it depends on \(K \). If \(K = \mathbb{C}_p \) and \(\lambda \) is algebraic, \(\varphi \) is analytically linearizable.
Background on Linearization

There is considerable past work on whether φ is linearizable in 1 dimension. This depends on the value of the multiplier λ.

- φ is formally linearizable iff $\lambda \neq 0$ or a root of unity, since the coefficients of L have $\lambda^k - \lambda$ in the denominators.
- Over any valued field, φ is analytically linearizable if $|\lambda| \neq 0, 1$.
- If $|\lambda| = 1$ but λ is not a root of unity, it depends on K. If $K = \mathbb{C}_p$ and λ is algebraic, φ is analytically linearizable. If $K = \mathbb{C}$, $\lambda = e^{\pi i \theta}$, φ is linearizable iff θ is not too irrational (Brjuno 1971-72, Yoccoz 1995).

In several variables, if $K = \mathbb{C}_p$ and the λ_is are algebraic and multiplicatively independent, then φ is analytically linearizable (Hermann-Yoccoz 1983).
Background on Linearization

There is considerable past work on whether φ is linearizable in 1 dimension. This depends on the value of the multiplier λ.

- φ is formally linearizable iff $\lambda \neq 0$ or a root of unity, since the coefficients of L have $\lambda^k - \lambda$ in the denominators.
- Over any valued field, φ is analytically linearizable if $|\lambda| \neq 0, 1$.
- If $|\lambda| = 1$ but λ is not a root of unity, it depends on K. If $K = \mathbb{C}_p$ and λ is algebraic, φ is analytically linearizable. If $K = \mathbb{C}$, $\lambda = e^{\pi i \theta}$, φ is linearizable iff θ is not too irrational (Brjuno 1971-72, Yoccoz 1995).

In several variables, if $K = \mathbb{C}_p$ and the λ_is are algebraic and multiplicatively independent, then φ is analytically linearizable (Hermann-Yoccoz 1983). This is not a necessary condition: at $(1, 1, \ldots, 1)$, the power map is linearizable via $L_i = e^{x_i}$ but $\lambda_1 = \ldots = \lambda_n$.

Background on Linearization

There is considerable past work on whether \(\varphi \) is linearizable in 1 dimension. This depends on the value of the multiplier \(\lambda \).

- \(\varphi \) is formally linearizable iff \(\lambda \neq 0 \) or a root of unity, since the coefficients of \(L \) have \(\lambda^k - \lambda \) in the denominators.
- Over any valued field, \(\varphi \) is analytically linearizable if \(|\lambda| \neq 0, 1 \).
- If \(|\lambda| = 1 \) but \(\lambda \) is not a root of unity, it depends on \(K \). If \(K = \mathbb{C}_p \) and \(\lambda \) is algebraic, \(\varphi \) is analytically linearizable. If \(K = \mathbb{C}, \lambda = e^{\pi i \theta} \), \(\varphi \) is linearizable iff \(\theta \) is not too irrational (Brjuno 1971-72, Yoccoz 1995).

In several variables, if \(K = \mathbb{C}_p \) and the \(\lambda_i \)s are algebraic and multiplicatively independent, then \(\varphi \) is analytically linearizable (Hermann-Yoccoz 1983). This is not a necessary condition: at \((1,1,\ldots,1)\), the power map is linearizable via \(L_i = e^{x_i} \) but \(\lambda_1 = \ldots = \lambda_n \).

One benefit of linearization: there exist nicely intersecting analytic hypersurfaces: \(x_i = 0 \) for each \(i \) (if \(\varphi_\ast T_0 \) is diagonal).
Partial Linearization

We cannot always linearize, but still want to recover good analytic properties. For this, we introduce the partial linearization, which lets us separate groups of eigenvalues.
Partial Linearization

We cannot always linearize, but still want to recover good analytic properties. For this, we introduce the **partial linearization**, which lets us separate groups of eigenvalues.

Notation: \(\langle a_1, \ldots, a_k \rangle \) is the multiplicative semigroup generated by the \(a_i \)s.
Partial Linearization

We cannot always linearize, but still want to recover good analytic properties. For this, we introduce the **partial linearization**, which lets us separate groups of eigenvalues.

Notation: \(\langle a_1, \ldots, a_k \rangle \) is the multiplicative semigroup generated by the \(a_i \)s.

Main Lemma (1). Suppose \(\lambda_1, \ldots, \lambda_r \notin \langle \lambda_{r+1}, \ldots, \lambda_n \rangle \). Then \(\exists ! f_i \in K[[x_{r+1}, \ldots, x_n]], i = 1, \ldots, r \) such that the system of formal equations \(x_i = f_i \) is \(\varphi \)-invariant.
Partial Linearization

We cannot always linearize, but still want to recover good analytic properties. For this, we introduce the partial linearization, which lets us separate groups of eigenvalues.

Notation: $\langle a_1, \ldots, a_k \rangle$ is the multiplicative semigroup generated by the a_is.

Main Lemma (1). Suppose $\lambda_1, \ldots, \lambda_r \notin \langle \lambda_{r+1}, \ldots, \lambda_n \rangle$. Then $\exists! f_i \in K[[x_{r+1}, \ldots, x_n]], i = 1, \ldots, r$ such that the system of formal equations $x_i = f_i$ is φ-invariant.

Main Lemma (2). If $\lambda_1, \ldots, \lambda_r \notin \langle \lambda_{r+1}, \ldots, \lambda_n \rangle$ in the analytic topology on a valued field K, then the f_is have positive radius of convergence, and define a φ-invariant analytic subvariety V, tangent to $x_1 = \ldots = x_r = 0$.
Partial Linearization

We cannot always linearize, but still want to recover good analytic properties. For this, we introduce the **partial linearization**, which lets us separate groups of eigenvalues.

Notation: $\langle a_1, \ldots, a_k \rangle$ is the multiplicative semigroup generated by the a_is.

Main Lemma (1). Suppose $\lambda_1, \ldots, \lambda_r \notin \langle \lambda_{r+1}, \ldots, \lambda_n \rangle$. Then $\exists! f_i \in K[[x_{r+1}, \ldots, x_n]], i = 1, \ldots, r$ such that the system of formal equations $x_i = f_i$ is φ-invariant.

Main Lemma (2). If $\lambda_1, \ldots, \lambda_r \notin \langle \lambda_{r+1}, \ldots, \lambda_n \rangle$ in the analytic topology on a valued field K, then the f_is have positive radius of convergence, and define a φ-invariant analytic subvariety V, tangent to $x_1 = \ldots = x_r = 0$.

Proof idea. We construct f_i explicitly, and get denominators

$$
\lambda_j = \prod_{\alpha_j \geq 0, \sum \alpha_j > 0} \lambda_{r+1}^{\alpha_{r+1}} \cdots \lambda_n^{\alpha_n}
$$
Partial Linearization: Examples and Consequences

The conditions of the main lemmas are satisfied when
\[|\lambda_i| < 1 \iff i \leq r, \text{ or when } |\lambda_i| > 1 \iff i \leq r. \]
Partial Linearization: Examples and Consequences

The conditions of the main lemmas are satisfied when
\[|\lambda_i| < 1 \Leftrightarrow i \leq r, \text{ or when } |\lambda_i| > 1 \Leftrightarrow i \leq r. \]

Proposition. The behavior of \(V \) (attracting, repelling, etc.) near \(0 \) under \(\varphi \) depends on \(\lambda_i \) for \(i \leq r \). The behavior of \(0 \) under \(\varphi|_V \) depends on \(\lambda_i \) for \(i > r \).
Partial Linearization: Examples and Consequences

The conditions of the main lemmas are satisfied when $|\lambda_i| < 1 \Leftrightarrow i \leq r$, or when $|\lambda_i| > 1 \Leftrightarrow i \leq r$.

Proposition. The behavior of V (attracting, repelling, etc.) near 0 under φ depends on λ_i for $i \leq r$. The behavior of 0 under $\varphi|_V$ depends on λ_i for $i > r$.

Example. Suppose $|\lambda_i| > 1$ when $i \leq r$ and $|\lambda_i| < 1$ when $i > r$. Then V is repelling, i.e. points near 0 that are not on V get farther away from V, but on V itself, points near 0 are attracted to 0.

The conditions of the main lemmas are satisfied when \(|\lambda_i| < 1 \Leftrightarrow i \leq r \), or when \(|\lambda_i| > 1 \Leftrightarrow i \leq r \).

Proposition. The behavior of \(V \) (attracting, repelling, etc.) near \(0 \) under \(\varphi \) depends on \(\lambda_i \) for \(i \leq r \). The behavior of \(0 \) under \(\varphi|_V \) depends on \(\lambda_i \) for \(i > r \).

Example. Suppose \(|\lambda_i| > 1 \) when \(i \leq r \) and \(|\lambda_i| < 1 \) when \(i > r \). Then \(V \) is repelling, i.e. points near \(0 \) that are not on \(V \) get farther away from \(V \), but on \(V \) itself, points near \(0 \) are attracted to \(0 \). Observe that we also have \(\lambda_{r+1}, \ldots, \lambda_n \notin \langle \lambda_1, \ldots, \lambda_r \rangle \), so we also have complementary invariant subvariety \(W \). \(W \) is attracting under \(\varphi \) and \(0 \) is repelling under \(\varphi|_W \).
Partial Linearization: Examples and Consequences

The conditions of the main lemmas are satisfied when
$|\lambda_i| < 1 \Leftrightarrow i \leq r$, or when $|\lambda_i| > 1 \Leftrightarrow i \leq r$.

Proposition. The behavior of V (attracting, repelling, etc.) near 0 under φ depends on λ_i for $i \leq r$. The behavior of 0 under $\varphi|_V$ depends on λ_i for $i > r$.

Example. Suppose $|\lambda_i| > 1$ when $i \leq r$ and $|\lambda_i| < 1$ when $i > r$. Then V is repelling, i.e. points near 0 that are not on V get farther away from V, but on V itself, points near 0 are attracted to 0. Observe that we also have $\lambda_{r+1}, \ldots, \lambda_n \notin \langle \lambda_1, \ldots, \lambda_r \rangle$, so we also have complementary invariant subvariety W. W is attracting under φ and 0 is repelling under $\varphi|_W$.

This generalizes hyperbolic dynamics, which pulls apart attracting and repelling directions over \mathbb{C}; see Yoccoz 1995.
Application 1: Isolated Periodic Points—Background

Definition. Let K be a valued field. A periodic (or fixed) point is **isolated** if it has an analytic neighborhood with no periodic points except itself.
Application 1: Isolated Periodic Points—Background

Definition. Let K be a valued field. A periodic (or fixed) point is **isolated** if it has an analytic neighborhood with no periodic points except itself.

The question of whether fixed points are isolated has been studied in 1 dimension. Some background:

- If $|\lambda| < 1$, then x is isolated (it has an attracting basin).
- If $\text{char} K = 0$ and $|\lambda| > 1$, then x is not isolated (Julia 1918/C, B´ezivin 2001/Cp).
- If $|\lambda| = 1$ and $K = \mathbb{C}$, then isolated \iff linearizable.
- If $|\lambda| = 1$ and K is nonarchimedean, then conjecturally isolated, proven in all cases except if λ is a root of unity and $\text{char} K = p$ (Benedetto 2000, Rivera-Letelier 2001-3, Lindahl-Rivera-Letelier 2014).

It is natural to ask whether periodic points are isolated in several variables.
Application 1: Isolated Periodic Points—Background

Definition. Let \(K \) be a valued field. A periodic (or fixed) point is **isolated** if it has an analytic neighborhood with no periodic points except itself.

The question of whether fixed points are isolated has been studied in 1 dimension. Some background:

- If \(|\lambda| < 1 \), then \(x \) is isolated (it has an attracting basin).
Application 1: Isolated Periodic Points—Background

Definition. Let K be a valued field. A periodic (or fixed) point is **isolated** if it has an analytic neighborhood with no periodic points except itself.

The question of whether fixed points are isolated has been studied in 1 dimension. Some background:

- If $|\lambda| < 1$, then x is isolated (it has an attracting basin).
- If $\text{char } K = 0$ and $|\lambda| > 1$, then x is not isolated (Julia 1918/\mathbb{C}, Bézivin 2001/\mathbb{C}_p).
- If $|\lambda| = 1$ and $K = \mathbb{C}$, then isolated \iff linearizable.
- If $|\lambda| = 1$ and K is nonarchimedean, then conjecturally isolated, proven in all cases except if λ is a root of unity and $\text{char } K = p$ (Benedetto 2000, Rivera-Letelier 2001-3, Lindahl-Rivera-Letelier 2014).
Application 1: Isolated Periodic Points—Background

Definition. Let K be a valued field. A periodic (or fixed) point is isolated if it has an analytic neighborhood with no periodic points except itself.

The question of whether fixed points are isolated has been studied in 1 dimension. Some background:

- If $|\lambda| < 1$, then x is isolated (it has an attracting basin).
- If char $K = 0$ and $|\lambda| > 1$, then x is not isolated (Julia 1918/\mathbb{C}, Bézivin 2001/\mathbb{C}_p).
- If $|\lambda| = 1$ and $K = \mathbb{C}$, then isolated \iff linearizable.
Application 1: Isolated Periodic Points—Background

Definition. Let K be a valued field. A periodic (or fixed) point is **isolated** if it has an analytic neighborhood with no periodic points except itself.

The question of whether fixed points are isolated has been studied in 1 dimension. Some background:

- If $|\lambda| < 1$, then x is isolated (it has an attracting basin).
- If $\text{char } K = 0$ and $|\lambda| > 1$, then x is not isolated (Julia 1918/\mathbb{C}, Bézivin 2001/\mathbb{C}_p).
- If $|\lambda| = 1$ and $K = \mathbb{C}$, then isolated \Leftrightarrow linearizable.
- If $|\lambda| = 1$ and K is nonarchimedean, then conjecturally isolated, proven in all cases except if λ is a root of unity and $\text{char } K = p$ (Benedetto 2000, Rivera-Letelier 2001-3, Lindahl-Rivera-Letelier 2014).

It is natural to ask whether periodic points are isolated in several variables.
Application 1: Isolated Periodic Points—Background

Definition. Let K be a valued field. A periodic (or fixed) point is **isolated** if it has an analytic neighborhood with no periodic points except itself.

The question of whether fixed points are isolated has been studied in 1 dimension. Some background:

- If $|λ| < 1$, then x is isolated (it has an attracting basin).
- If $\text{char } K = 0$ and $|λ| > 1$, then x is not isolated (Julia 1918/ℂ, Bézivin 2001/ℂₚ).
- If $|λ| = 1$ and $K = ℂ$, then isolated $⇔$ linearizable.
- If $|λ| = 1$ and K is nonarchimedean, then conjecturally isolated, proven in all cases except if $λ$ is a root of unity and $\text{char } K = p$ (Benedetto 2000, Rivera-Letelier 2001-3, Lindahl-Rivera-Letelier 2014).

It is natural to ask whether periodic points are isolated in several variables.
Application 1: Isolated Periodic Points—Main Result

Theorem 1. (L.) Let $K = \mathbb{C}_p$. If $|\lambda_i| \leq 1$ for all i, then the fixed point 0 is isolated.
Application 1: Isolated Periodic Points—Main Result

Theorem 1. (L.) Let $K = \mathbb{C}_p$. If $|\lambda_i| \leq 1$ for all i, then the fixed point 0 is isolated.

Proof idea. There are three main ingredients to the proof:

1. Use the main lemmas with $|\lambda_i| < 1$ for $i \leq r$ and $|\lambda_i| = 1$ for $i > r$. Near 0, periodic points only occur on V. This reduces the problem to when $|\lambda_i| = 1$ for all i.

2. Compute explicitly the lowest-degree nonzero terms of the equations $\varphi_k(x) = x$. These can be shown to have coefficients with valuations growing as $O(\log p_k)$.

3. Apply the theory of tropical intersection and the Newton polytope (Rabinoff 2012), argue that a k-cycle near 0 is impossible for large k if valuations grow as $O(n^{1/2}k^{1/2})$. If $n = 1$, this proof also works if $\text{char } K = p$ and λ is not a root of unity, because the constant coefficient valuation grows as $O(k)$. But if $n > 1$ then $k/\in O(n^{1/2}k^{1/2})$ and the argument fails.
Application 1: Isolated Periodic Points—Main Result

Theorem 1. (L.) Let $K = \mathbb{C}_p$. If $|\lambda_i| \leq 1$ for all i, then the fixed point 0 is isolated.

Proof idea. There are three main ingredients to the proof:

1. Use the main lemmas with $|\lambda_i| < 1$ for $i \leq r$ and $|\lambda_i| = 1$ for $i > r$. Near 0, periodic points only occur on V. This reduces the problem to when $|\lambda_i| = 1$ for all i.
Application 1: Isolated Periodic Points—Main Result

Theorem 1. (L.) Let $K = \mathbb{C}_p$. If $|\lambda_i| \leq 1$ for all i, then the fixed point 0 is isolated.

Proof idea. There are three main ingredients to the proof:

1. Use the main lemmas with $|\lambda_i| < 1$ for $i \leq r$ and $|\lambda_i| = 1$ for $i > r$. Near 0, periodic points only occur on V. This reduces the problem to when $|\lambda_i| = 1$ for all i.

2. Compute explicitly the lowest-degree nonzero terms of the equations $\varphi^k(x) = x$. These can be shown to have coefficients with valuations growing as $O(\log_p k)$.

If $n = 1$, this proof also works if $\text{char } K = p$ and λ is not a root of unity, because the constant coefficient valuation grows as $O(k)$. But if $n > 1$ then $k/n \in O(n^{1/2}k)$ and the argument fails.
Application 1: Isolated Periodic Points—Main Result

Theorem 1. (L.) Let $K = \mathbb{C}_p$. If $|\lambda_i| \leq 1$ for all i, then the fixed point 0 is isolated.

Proof idea. There are three main ingredients to the proof:

1. Use the main lemmas with $|\lambda_i| < 1$ for $i \leq r$ and $|\lambda_i| = 1$ for $i > r$. Near 0, periodic points only occur on V. This reduces the problem to when $|\lambda_i| = 1$ for all i.

2. Compute explicitly the lowest-degree nonzero terms of the equations $\varphi^k(x) = x$. These can be shown to have coefficients with valuations growing as $O(\log_p k)$.

3. Apply the theory of tropical intersection and the Newton polytope (Rabinoff 2012), argue that a k-cycle near 0 is impossible for large k if valuations grow as $O(\sqrt{n}k)$.
Application 1: Isolated Periodic Points—Main Result

Theorem 1. (L.) Let $K = \mathbb{C}_p$. If $|\lambda_i| \leq 1$ for all i, then the fixed point 0 is isolated.

Proof idea. There are three main ingredients to the proof:

1. Use the main lemmas with $|\lambda_i| < 1$ for $i \leq r$ and $|\lambda_i| = 1$ for $i > r$. Near 0, periodic points only occur on V. This reduces the problem to when $|\lambda_i| = 1$ for all i.

2. Compute explicitly the lowest-degree nonzero terms of the equations $\varphi^k(x) = x$. These can be shown to have coefficients with valuations growing as $O(\log p k)$.

3. Apply the theory of tropical intersection and the Newton polytope (Rabinoff 2012), argue that a k-cycle near 0 is impossible for large k if valuations grow as $O(\sqrt[4]{k})$.

If $n = 1$, this proof also works if char $K = p$ and λ is not a root of unity, because the constant coefficient valuation grows as $O(k)$. But if $n > 1$ then $k \notin O(\sqrt[4]{k})$ and the argument fails.
Conjecture. (Zhang) Let $\psi : \mathbb{P}^n_{\mathbb{Q}} \to \mathbb{P}^n_{\mathbb{Q}}$, deg $\psi > 1$. Then
$\exists x \in \mathbb{P}^n(\overline{\mathbb{Q}})$ such that the forward orbit of x is Zariski-dense.
Application 2: Zhang’s Conjecture—Background

Conjecture. (Zhang) Let $\psi : \mathbb{P}^n_\mathbb{Q} \to \mathbb{P}^n_\mathbb{Q}$, $\deg \psi > 1$. Then $\exists x \in \mathbb{P}^n(\overline{\mathbb{Q}})$ such that the forward orbit of x is Zariski-dense.

Zhang’s conjecture is connected to the dynamical Mordell-Lang conjecture.
Application 2: Zhang’s Conjecture—Background

Conjecture. (Zhang) Let $\psi : \mathbb{P}^n_{\mathbb{Q}} \rightarrow \mathbb{P}^n_{\mathbb{Q}}$, deg $\psi > 1$. Then $\exists x \in \mathbb{P}^n(\overline{\mathbb{Q}})$ such that the forward orbit of x is Zariski-dense.

Zhang’s conjecture is connected to the dynamical Mordell-Lang conjecture.

- Zhang’s conjecture is trivial if $\overline{\mathbb{Q}}$ is replaced by \mathbb{C}.
Conjecture. (Zhang) Let $\psi : \mathbb{P}^n_{\overline{\mathbb{Q}}} \to \mathbb{P}^n_{\overline{\mathbb{Q}}}$, $\deg \psi > 1$. Then
$\exists x \in \mathbb{P}^n(\overline{\mathbb{Q}})$ such that the forward orbit of x is Zariski-dense.

Zhang’s conjecture is connected to the dynamical Mordell-Lang conjecture.

- Zhang’s conjecture is trivial if $\overline{\mathbb{Q}}$ is replaced by \mathbb{C}.
- It is false, even over \mathbb{C}, if ψ is allowed to be a rational map. Fibral maps are counterexamples, e.g. $(x_1, x_2) \mapsto (x_1, x_2^2 + x_1)$.

The main lemmas help us in extending ABR to additional cases.
Application 2: Zhang’s Conjecture—Background

Conjecture. (Zhang) Let $\psi : \mathbb{P}^n_{\overline{\mathbb{Q}}} \rightarrow \mathbb{P}^n_{\overline{\mathbb{Q}}}$, $\operatorname{deg} \psi > 1$. Then $\exists x \in \mathbb{P}^n(\overline{\mathbb{Q}})$ such that the forward orbit of x is Zariski-dense.

Zhang’s conjecture is connected to the dynamical Mordell-Lang conjecture.

- Zhang’s conjecture is trivial if $\overline{\mathbb{Q}}$ is replaced by \mathbb{C}.
- It is false, even over \mathbb{C}, if ψ is allowed to be a rational map. Fibral maps are counterexamples, e.g. $(x_1, x_2) \mapsto (x_1, x_2^2 + x_1)$.
- If there exists a fixed (or periodic) point with multiplicatively independent multipliers, then the conjecture is true, and in fact we can find x whose forward orbit is not contained in any analytic subvariety (Amerik-Bogomolov-Rovinsky 2011).
Application 2: Zhang’s Conjecture—Background

Conjecture. (Zhang) Let $\psi : \mathbb{P}^n_{\mathbb{Q}} \rightarrow \mathbb{P}^n_{\mathbb{Q}}$, $\deg \psi > 1$. Then $\exists x \in \mathbb{P}^n(\overline{\mathbb{Q}})$ such that the forward orbit of x is Zariski-dense.

Zhang’s conjecture is connected to the dynamical Mordell-Lang conjecture.

- Zhang’s conjecture is trivial if $\overline{\mathbb{Q}}$ is replaced by \mathbb{C}.
- It is false, even over \mathbb{C}, if ψ is allowed to be a rational map. Fibral maps are counterexamples, e.g. $(x_1, x_2) \mapsto (x_1, x_2^2 + x_1)$.
- If there exists a fixed (or periodic) point with multiplicatively independent multipliers, then the conjecture is true, and in fact we can find x whose forward orbit is not contained in any analytic subvariety (Amerik-Bogomolov-Rovinsky 2011).

The main lemmas help us in extending ABR to additional cases.
Application 2: Zhang’s Conjecture—Main Results

Theorem 2. (L.) Zhang’s conjecture is true if there exists a fixed (or periodic) point whose eigenvalues satisfy *at least one* of the following two conditions:

1. One eigenvalue is zero and the rest are multiplicatively independent.
2. $n = 2$, one eigenvalue is a root of unity and the other is not.

Proof idea.

In the first case, assume $\lambda_1 = 0$, and choose a completion K such that the other multipliers are indifferent. Apply the main lemma with $r = 1$ and Amerik-Bogomolov-Rovinsky.

In the second case, assume $\lambda_2 = 1$, and choose a completion K such that $|\lambda_1| < 1$. Apply the main lemma with $r = 1$. If K is p-adic, the proof of the first case works, even without ABR.

If $K = \mathbb{C}$, the situation is more difficult, because 0 is in the Julia set of $\phi|_V$. We choose x such that it is attracted to an attracting petal near 0, and then argue the orbit cannot possibly be contained in an analytic subvariety.
Application 2: Zhang’s Conjecture—Main Results

Theorem 2. (L.) Zhang’s conjecture is true if there exists a fixed (or periodic) point whose eigenvalues satisfy *at least one* of the following two conditions:

1. One eigenvalue is zero and the rest are multiplicatively independent.

Proof idea. In the first case, assume \(\lambda_1 = 0 \), and choose a completion \(K \) such that the other multipliers are indifferent. Apply the main lemma with \(r = 1 \) and Amerik-Bogomolov-Rovinsky. In the second case, assume \(\lambda_2 \neq 1 \), and choose a completion \(K \) such that \(|\lambda_1| < 1 \). Apply the main lemma with \(r = 1 \). If \(K \) is \(p \)-adic, the proof of the first case works, even without ABR. If \(K = \mathbb{C} \), the situation is more difficult, because 0 is in the Julia set of \(\phi|_V \). We choose \(x \) such that it is attracted to an attracting petal near 0, and then argue the orbit cannot possibly be contained in an analytic subvariety.
Application 2: Zhang’s Conjecture—Main Results

Theorem 2. (L.) Zhang’s conjecture is true if there exists a fixed (or periodic) point whose eigenvalues satisfy *at least one* of the following two conditions:

1. One eigenvalue is zero and the rest are multiplicatively independent.
2. $n = 2$, one eigenvalue is a root of unity and the other is not.
Theorem 2. (L.) Zhang’s conjecture is true if there exists a fixed (or periodic) point whose eigenvalues satisfy \textit{at least one} of the following two conditions:

1. One eigenvalue is zero and the rest are multiplicatively independent.

2. \(n = 2 \), one eigenvalue is a root of unity and the other is not.

Proof idea. In the first case, assume \(\lambda_1 = 0 \), and choose a completion \(K \) such that the other multipliers are indifferent. Apply the main lemma with \(r = 1 \) and Amerik-Bogomolov-Rovinsky.
Application 2: Zhang’s Conjecture—Main Results

Theorem 2. (L.) Zhang’s conjecture is true if there exists a fixed (or periodic) point whose eigenvalues satisfy *at least one* of the following two conditions:

1. One eigenvalue is zero and the rest are multiplicatively independent.
2. $n = 2$, one eigenvalue is a root of unity and the other is not.

Proof idea. In the first case, assume $\lambda_1 = 0$, and choose a completion K such that the other multipliers are indifferent. Apply the main lemma with $r = 1$ and Amerik-Bogomolov-Rovinsky.

In the second case, assume $\lambda_2 = 1$, and choose a completion K such that $|\lambda_1| < 1$. Apply the main lemma with $r = 1$. If K is p-adic, the proof of the first case works, even without ABR.
Application 2: Zhang’s Conjecture—Main Results

Theorem 2. (L.) Zhang’s conjecture is true if there exists a fixed (or periodic) point whose eigenvalues satisfy at least one of the following two conditions:

1. One eigenvalue is zero and the rest are multiplicatively independent.
2. \(n = 2 \), one eigenvalue is a root of unity and the other is not.

Proof idea. In the first case, assume \(\lambda_1 = 0 \), and choose a completion \(K \) such that the other multipliers are indifferent. Apply the main lemma with \(r = 1 \) and Amerik-Bogomolov-Rovinsky.

In the second case, assume \(\lambda_2 = 1 \), and choose a completion \(K \) such that \(|\lambda_1| < 1 \). Apply the main lemma with \(r = 1 \). If \(K \) is \(p \)-adic, the proof of the first case works, even without ABR.

If \(K = \mathbb{C} \), the situation is more difficult, because 0 is in the Julia set of \(\varphi|_V \). We choose \(x \) such that it is attracted to an attracting petal near 0, and then argue the orbit cannot possibly be contained in an analytic subvariety.