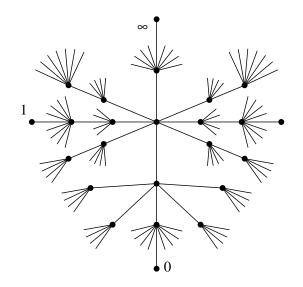
Non-archimedean connected Julia sets with branching

Rob Benedetto, Amherst College

AMS Special Session on Arithmetic Dynamics JMM, Seattle

Wednesday, January 6, 2016

The Berkovich Projective Line



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rational Functions on the Berkovich Projective Line

Let K be a complete and algebraically closed non-archimedean field. (E.g. $K = \mathbb{C}_p$).

Let $\phi \in K(z)$ be a rational function of degree $d \geq 2$.

 $[\deg \phi := \max\{\deg f, \deg g\}, \text{ where } \phi = f/g \text{ in lowest terms.}]$

Then $\phi : \mathbb{P}^1(\mathcal{K}) \to \mathbb{P}^1(\mathcal{K})$, and this action extends continuously to $\phi : \mathbb{P}^1_{\mathsf{Ber}} \to \mathbb{P}^1_{\mathsf{Ber}}$.

Write $\phi^n := \underbrace{\phi \circ \phi \circ \cdots \circ \phi}_{n \text{ times}}$.

Fatou and Julia sets in Berkovich Space

For $\phi \in K(z)$, define the (Berkovich) **Fatou set** of ϕ to be

$$\mathcal{F} = \{x \in \mathbb{P}^1_{\mathsf{Ber}} : x \text{ has a neighborhood } U \text{ s.t.}$$

 $\mathbb{P}^1_{\mathsf{Ber}} \smallsetminus \bigcup_{n \ge 0} \phi^n(U) \text{ is infinite}\},$

and the (Berkovich) Julia set of ϕ to be $\mathcal{J} = \mathbb{P}^1_{\mathsf{Ber}} \smallsetminus \mathcal{F}$.

Facts:

- J is closed and hence compact.
- \mathcal{J} is invariant under ϕ , i.e., $\phi^{-1}(\mathcal{J}) = \mathcal{J}$.
- ▶ There is a natural Borel probability measure $\mu = \mu_{\phi}$ such that
 - $supp(\mu) = \mathcal{J}$.
 - μ is invariant under ϕ , i.e., $\mu(\phi^{-1}(E)) = \mu(E)$.

Measure-theoretic Entropy (a.k.a. Metric Entropy)

Let X be a topological space and $f : X \rightarrow X$ a continuous map. Let μ be an *f*-invariant Borel probability measure on X.

(**Recall**: *f*-invariant means $\mu(f^{-1}(E)) = \mu(E)$.)

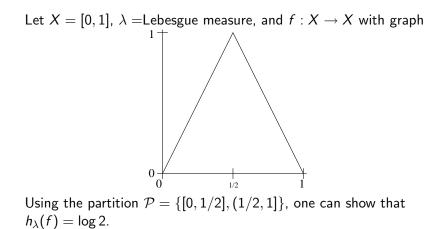
Definition. The *measure-theoretic entropy* of (f, μ) is

$$h_{\mu}(f) = \sup_{\mathcal{P}} \lim_{n \to \infty} \frac{1}{n} H_{\mu}(\mathcal{P} \vee f^{-1}\mathcal{P} \vee \cdots \vee f^{-n}\mathcal{P}),$$

where

and the supremum is over all finite Borel partitions of X.

Example: the Tent Map



Similarly, the *d*-to-1 version of the tent map, with *d* zigs, has $h_{\lambda}(f) = \log d$.

Topological Entropy

Let X be a *compact* topological space and $f : X \rightarrow X$ a continuous map.

Definition. The topological entropy of f is $h_{top}(f) = \sup_{\mathcal{U}} \lim_{n \to \infty} \frac{1}{n} \log N(\mathcal{U} \vee f^{-1}\mathcal{U} \vee \cdots \vee f^{-n}\mathcal{U}),$

where

• the supremum is over all finite open covers \mathcal{U} of X,

•
$$f^{-j}{U_1,\ldots,U_m} = {f^{-j}(U_1),\ldots,f^{-j}(U_m)},$$

- $\blacktriangleright \ \mathcal{U} \lor \mathcal{U}' = \{ U \cap U' : U \in \mathcal{U}, U' \in \mathcal{U}' \},\$
- $N(U) = \min$ number of elements of U needed to cover X.

The Variational Principle: If X is compact and metrizable, then $h_{top}(f) = \sup_{u} h_{\mu}(f),$

where the sup is over all *f*-invariant Borel probability measures.

Entropy: Complex vs. Non-archimedean Dynamics

Fact: Let $\phi \in \mathbb{C}(z)$ be a rational function of degree $d \ge 2$, with associated Julia set $\mathcal{J} \subseteq \mathbb{P}^1(\mathbb{C})$ and invariant measure μ . Then

 $h_{\mu}(\phi) = h_{\mathrm{top}}(\phi) = \log d.$

Theorem (Favre & Rivera-Letelier, 2010) Let $\phi \in K(z)$ be a rational function of degree $d \ge 2$, with associated Julia set $\mathcal{J} \subseteq \mathbb{P}^1_{\text{Ber}}$ and invariant measure μ . Then

$$0 \leq h_{\mu}(\phi) \leq h_{top}(\phi) \leq \log d.$$

But both equalities of the \mathbb{C} theorem can fail (or not) for K.

Examples

$$0 \leq h_{\mu}(\phi) \leq h_{top}(\phi) \leq \log d.$$

Example 1. $\phi \in K(z)$ has good reduction. Then $\mathcal{J} = \{\zeta(0, 1)\}$ is a single point, and $0 = h_{\mu}(\phi) = h_{top}(\phi) < \log d$.

Example 2. $\phi(z) = z^2 - az$ with |a| > 1. Then \mathcal{J} is a Cantor set contained in $\mathbb{P}^1(\mathcal{K})$, and $0 < h_{\mu}(\phi) = h_{\text{top}}(\phi) = \log 2$.

Example 3. Let E/K be an elliptic curve of multiplicative reduction, and $\phi \in K(z)$ the Lattès map with $x([m]P) = \phi(x[P])$. Then $(\mathcal{J}, \mu) \cong ([0, 1], \lambda)$, with ϕ acting as the *m*-zig tent map. So $0 < \log m = h_{\mu}(\phi) = h_{top}(\phi) < \log(m^2)$.

Non-Maximal Entropy

Favre and Rivera-Letelier gave examples where $h_{\mu}(\phi) < h_{top}(\phi)$. These included:

- ▶ a degree 5 rational function with Julia set a Cantor set, and
- ▶ a degree 10 rational function with Julia set an interval.

In both cases, the Julia set was contained in an interval.

Motivated by these examples, Favre and Rivera-Letelier ask:

Question: Is there a rational function ϕ of degree ≤ 9 with connected Julia set \mathcal{J} and with $h_{\mu}(\phi) < h_{top}(\phi)$?

Yes, there is, at least in small residue characteristic

Theorem (Bajpai, RB, Chen, Kim, Marschall, Onul, Xiao) Let K have residue characteristic 3 (e.g. $K = \mathbb{C}_3$), fix $a \in K^{\times}$ with $|3| \le |a| < 1$, and let $\phi(z) = \frac{az^6 + 1}{az^6 + z^3 - z}$. Then

 The Julia set *J* of φ is path-connected, with infinitely many branch points,

•
$$h_{\mu}(\phi) = \frac{6}{11} \log 2 + \frac{5}{11} \log 6 \approx \log 3.2954$$
, and

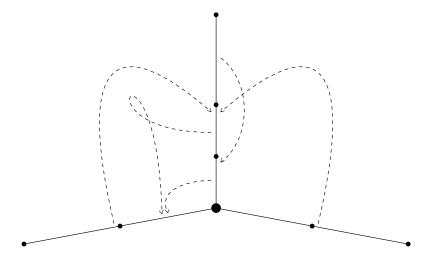
▶ $h_{top}(\phi) = \log \beta$, where $\beta \approx 3.8558$ is the largest real root of $t^3 - 4t^2 - t + 6$.

So $0 < h_\mu(\phi) < h_{\mathsf{top}}(\phi) < \log 6$.

Dynamics of
$$\phi(z) = \frac{az^4 + 1}{z^2 - z}$$
 in residue characteristic 2

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

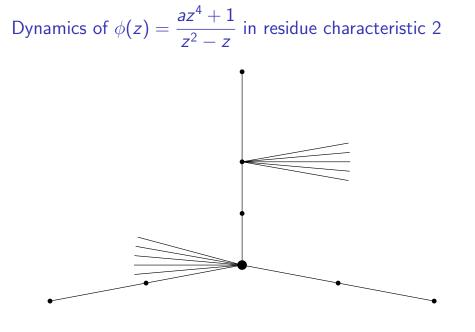
Dynamics of $\phi(z) = \frac{az^4 + 1}{z^2 - z}$ in residue characteristic 2



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dynamics of
$$\phi(z) = \frac{az^4 + 1}{z^2 - z}$$
 in residue characteristic 2

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

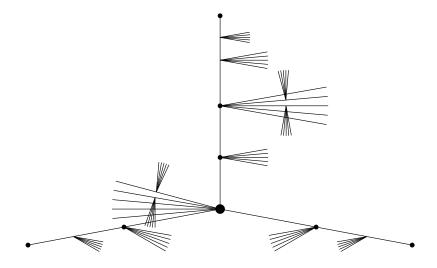


▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● のへで

Dynamics of
$$\phi(z) = \frac{az^4 + 1}{z^2 - z}$$
 in residue characteristic 2

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 - のへで

Dynamics of
$$\phi(z) = \frac{az^4 + 1}{z^2 - z}$$
 in residue characteristic 2



Dynamics of $\phi(z) = \frac{az^4 + 1}{z^2 - z}$ in residue characteristic 2

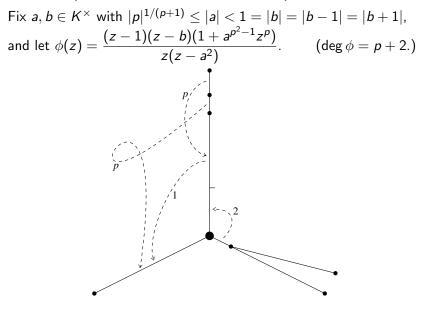
With $|2| \le |a| < 1$, we can show:

- ► The Julia set *J* of *φ* is path-connected and contains the above tree.
- J has infinitely many branch points, with infinite branching at each branch point.

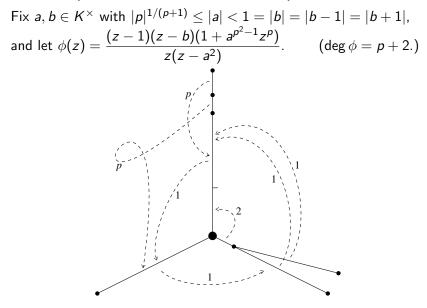
•
$$h_{\mu}(\phi) = \frac{19}{14} \log 2 \approx \log 2.5618.$$

▶ $h_{top}(\phi) = \log \gamma$, where $\gamma \approx 2.8136$ is the largest real root of $t^3 - 2t^2 - 3t + 2 = 0$.

Another map, in residue characteristic $p \geq 3$



Another map, in residue characteristic $p \geq 3$



Dynamics of this new map

For the degree p + 2 map of the previous slide,

- ► The Julia set *J* of *φ* is path-connected and contains the above tree.
- J has infinitely many branch points, with infinite branching at each branch point.

•
$$h_{\mu}(\phi) = \log(p+2) - \frac{p}{p+2}\log p < \log 3.$$

$$h_{top}(\phi) = \log 3.$$

Thus, $0 < h_{\mu}(\phi) < h_{\mathsf{top}}(\phi) < \mathsf{log}(\deg \phi).$

Two Questions

Can we achieve $h_{\mu}(\phi) < h_{top}(\phi)$ or $h_{top}(\phi) < \log(\deg \phi)$ without either

(a) \mathcal{J} contained in an interval, or (b) exploiting wild ramification?

Is $h_{top}(\phi)$ always the logarithm of an algebraic integer?