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The Berkovich Projective Line




Rational Functions on the Berkovich Projective Line

Let K be a complete and algebraically closed non-archimedean
field. (E.g. K =Cp).

Let ¢ € K(z) be a rational function of degree d > 2.
[deg ¢ := max{deg f,deg g}, where ¢ = /g in lowest terms.]

Then ¢ : PY(K) — P}(K), and this action extends continuously to
¢ : Pger — P,

Write ¢" :== ¢popo---0 .

n times



Fatou and Julia sets in Berkovich Space

For ¢ € K(z), define the (Berkovich) Fatou set of ¢ to be

F={x€Pg, :xhasa neighborhood Us.t.
PL. ~ U ¢"(U) is infinite},

n>0

and the (Berkovich) Julia set of ¢ to be J = P§_, ~ F.

Facts:

» 7 is closed and hence compact.
» J is invariant under ¢, i.e., 3~ 1(J) = J.

» There is a natural Borel probability measure 1 = 14 such that

> supp(p) = J
» wis invariant under ¢, i.e., u(¢~(E)) = u(E).



Measure-theoretic Entropy (a.k.a. Metric Entropy)

Let X be a topological space and f : X — X a continuous map.
Let © be an f-invariant Borel probability measure on X.

(Recall: f-invariant means pu(f~1(E)) = u(E).)
Definition. The measure-theoretic entropy of (f, ) is

1
hu(f) =sup lim —H,(PV f PV ...V "P),

P n—oo N

where
> F{Ur, ..., Un} = {F9(U1),...,f 7 (Un)},
» PVvP ={UnU :UeP,U P},
> Hu(P) = —u(U) log(n(V)).
vep
and the supremum is over all finite Borel partitions of X.



Example: the Tent Map

Let X =[0,1], A =Lebesgue measure, and f : X — X with graph
14?

0 | T
0 12 1
Using the partition P = {[0,1/2],(1/2,1]}, one can show that
hx(f) = log 2.

Similarly, the d-to-1 version of the tent map, with d zigs, has
h\(f) = log d.



Topological Entropy

Let X be a compact topological space and f : X — X a
continuous map.
Definition. The topological entropy of f is
hiop(f) = sup lim % log NUV FUNV -V FU),

where .

» the supremum is over all finite open covers U of X,

> F{U1,...,Un} = {F7(Uh),...,f 7 (Un)},

>»UVU ={UnU :Uel,U el

» N(U) = min number of elements of U needed to cover X.

The Variational Principle: If X is compact and metrizable, then
heop(f) = sup h,(f),

“w
where the sup is over all f-invariant Borel probability measures.



Entropy: Complex vs. Non-archimedean Dynamics

Fact: Let ¢ € C(z) be a rational function of degree d > 2, with
associated Julia set 7 C PY(C) and invariant measure z. Then

h#(¢) = htop(¢) =logd.

Theorem (Favre & Rivera-Letelier, 2010)

Let ¢ € K(z) be a rational function of degree d > 2, with
associated Julia set 7 C PL_ and invariant measure ji. Then

0 < hu(9) < hiop(9) < log d.

But both equalities of the C theorem can fail (or not) for K.



Examples

0 < hu(9) < hrop(¢) < logd.

Example 1. ¢ € K(z) has good reduction. Then J = {((0,1)} is
a single point, and 0 = h;,(¢) = hiop(¢) < log d.

Example 2. ¢(z) = z? — az with |a| > 1. Then J is a Cantor set
contained in P}(K), and 0 < h,(¢) = hiop(0) = log 2.

Example 3. Let E/K be an elliptic curve of multiplicative
reduction, and ¢ € K(z) the Lattés map with x([m]P) = ¢(x[P]).
Then (J, 1) = ([0,1], ), with ¢ acting as the m-zig tent map.
So 0 < logm = h,(¢) = hiop(¢) < log(m?).



Non-Maximal Entropy

Favre and Rivera-Letelier gave examples where h,(¢) < hop(¢).
These included:

> a degree 5 rational function with Julia set a Cantor set, and

> a degree 10 rational function with Julia set an interval.

In both cases, the Julia set was contained in an interval.

Motivated by these examples, Favre and Rivera-Letelier ask:

Question: Is there a rational function ¢ of degree < 9 with
connected Julia set 7 and with h,(¢) < hiop(9)?



Yes, there is, at least in small residue characteristic

Theorem (Bajpai, RB, Chen, Kim, Marschall, Onul, Xiao)
Let K have residue characteristic 3 (e.g. K = C3), fix a € K* with

6
az’+1
3 < 1, and let =
31l <1 and ket o) = 7
en

» The Julia set J of ¢ is path-connected, with infinitely many
branch points,
5
> h,(¢) = Iog2 + 11 log 6 =~ log 3.2954, and
> hiop(P) = Iog (3, where 3 = 3.8558 is the largest real root of
t3 —4t2 —t +6.

S0 0 < hy(¢) < hop(@) < log6.



Dynamics of ¢(z) =

az* +

72— z

in residue characteristic 2
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Dynamics of ¢(z) = i in residue characteristic 2
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Dynamics of ¢(z) = in residue characteristic 2
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Dynamics of ¢(z) = in residue characteristic 2
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Dynamics of ¢(z) = in residue characteristic 2
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Dynamics of ¢(z) = in residue characteristic 2




: az" +1
Dynamics of ¢(z) = 22— in residue characteristic 2
72—z

With |2| < |a| < 1, we can show:

» The Julia set J of ¢ is path-connected and contains the
above tree.

» 7 has infinitely many branch points, with infinite branching at
each branch point.

> h,(¢) = Iog2 ~ log2.5618.

> hiop(¢) = Iog ~, where v = 2.8136 is the largest real root of
t3—2t2 -3t +2=0.



Another map, in residue characteristic p > 3
Fix a,b € K* with [p|Y/ (™) < |a| <1=[b| = |b— 1| = [b+1],

and let ¢(z) = (z=1)(z—b)1 +2° —lzp). (degp =p+2.)

z(z — a?)




Another map, in residue characteristic p > 3

Fix a,b € K* with [p|Y/ (™) < |a| <1=[b| = |b— 1| = [b+1],
—1)(z - b)(1 +a” " 12P

Nz - b)(1+2” 7z ) (degp =p+2))

and let ¢(z) = (z

z(z — a?)




Dynamics of this new map

For the degree p + 2 map of the previous slide,

» The Julia set J of ¢ is path-connected and contains the
above tree.

» 7 has infinitely many branch points, with infinite branching at
each branch point.

> hu(0) =log(p+2) —
> htop(¢) = log 3.
Thus, 0 < h,(¢) < hop(@) < log(deg ).

p
+2

log p < log 3.



Two Questions

Can we achieve h,(¢) < hiop(@) or hiop(¢) < log(deg ¢) without
either

(a) J contained in an interval, or

(b) exploiting wild ramification?

Is hop(¢) always the logarithm of an algebraic integer?



