Lower Bounds for non-Archimedean Lyapunov Exponents

Kenneth Jacobs, University of Georgia

December 10, 2015

K - complete, algebraically closed valued field

 $\phi \in K(z)$, with $\deg(\phi) = d \ge 2$

 $\mathbf{P}_{\mathrm{K}}^{1}$ - Berkovich projective line over K

K - complete, algebraically closed valued field

 $\phi \in K(z)$, with $\deg(\phi) = d \ge 2$

 $\mathbf{P}_{\mathrm{K}}^{1}$ - Berkovich projective line over K

Question

How 'expansive' is ϕ along a typical orbit?

K - complete, algebraically closed valued field

 $\phi \in K(z)$, with $\deg(\phi) = d \ge 2$

 $\mathbf{P}_{\mathrm{K}}^{1}$ - Berkovich projective line over K

Question

How 'expansive' is ϕ along a typical orbit?

K - complete, algebraically closed valued field

 $\phi \in K(z)$, with $\deg(\phi) = d \ge 2$

 $\mathbf{P}_{\mathrm{K}}^{1}$ - Berkovich projective line over K

Question

How 'expansive' is ϕ along a typical orbit?

Measure "expansiveness" with $\log_{\rm v}[\phi']_{\rm z}.$

Measure "expansiveness" with $\log_{\nu}[\phi']_z$.

"Along an orbit:"

Measure "expansiveness" with $\log_{\nu}[\phi']_z$.

"Along an orbit:"

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}\log_{\nu}[\phi']_{\phi^k(z)}$$

Measure "expansiveness" with $\log_{\nu}[\phi']_z$.

"Along an orbit:"

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}\log_{\nu}[\phi']_{\phi^k(z)}$$

- Does this limit exist?

Measure "expansiveness" with $\log_{\nu}[\phi']_z$.

"Along an orbit:"

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}\log_{\nu}[\phi']_{\phi^k(z)}$$

- Does this limit exist?
- How does it vary with z?

Lyapunov Exponent

Theorem (application of Birkhoff Ergodic Theorem)

For μ_{ϕ} -almost every $z \in \mathbf{P}^1_K$:

$$\int \log_{\nu} [\phi']_{\zeta} d\mu_{\phi}(\zeta) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \log_{\nu} [\phi']_{\phi^{k}(z)}.$$

Lyapunov Exponent

Theorem (application of Birkhoff Ergodic Theorem)

For μ_{ϕ} -almost every $z \in \mathbf{P}_{K}^{1}$:

$$\int \log_{\nu} [\phi']_{\zeta} d\mu_{\phi}(\zeta) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \log_{\nu} [\phi']_{\phi^{k}(z)}.$$

We define the *Lyapunov Exponent* of ϕ to be

$$L_{\mathbf{v}}(\phi) := \int_{\mathbf{P}^1_{\mathbf{v}'}} \log_{\mathbf{v}}[\phi']_{\zeta} d\mu_{\phi}(\zeta) \; .$$

Bounds on $L_{\nu}(\phi)$ over \mathbb{C}

Theorem (Lyubich, Friere-Lopes-Mañe, Ruelle) The Lyapunov Exponent is bounded below

$$L_{\nu}(\phi) \geq \frac{1}{2} \log d$$

Bounds on $L_{\nu}(\phi)$ over \mathbb{C}

Theorem (Lyubich, Friere-Lopes-Mañe, Ruelle) The Lyapunov Exponent is bounded below

$$L_{\nu}(\phi) \geq \frac{1}{2} \log d \ (>0) \ .$$

Bounds on $L_{\nu}(\phi)$ over \mathbb{C}

Theorem (Lyubich, Friere-Lopes-Mañe, Ruelle)

The Lyapunov Exponent is bounded below

$$L_{\nu}(\phi) \geq \frac{1}{2} \log d \ (>0) \ .$$

Proof Ingredients:

- Entropy
- Equidistribution
- Ruelle's Inequality

When K is non-Archimedean...

Example:
$$K=\mathbb{C}_p$$

Let $\phi(z)=z^p$, so that $\phi'(z)=pz^{p-1}$. Then
$$L_{\nu}(\phi)=\int_{\mathbf{P}^1_K}\log_{\nu}[\phi']d\mu_{\phi}$$

Example:
$$K=\mathbb{C}_p$$

Let $\phi(z)=z^p$, so that $\phi'(z)=pz^{p-1}$. Then
$$L_v(\phi)=\int_{\mathbf{P}_{\mathrm{K}}^1}\log_v[\phi']d\mu_\phi=\log_v[\phi']_{\zeta_{\mathrm{Gauss}}}$$

Example:
$$K = \mathbb{C}_p$$

Let $\phi(z) = z^p$, so that $\phi'(z) = pz^{p-1}$. Then
$$L_v(\phi) = \int_{\mathsf{P}^1_K} \log_v[\phi'] d\mu_\phi = \log_v[\phi']_{\zeta_{\mathsf{Gauss}}}$$

$$= \log_v[pz^{p-1}]_{\zeta_{\mathsf{Gauss}}}$$

Example:
$$K = \mathbb{C}_p$$

Let $\phi(z) = z^p$, so that $\phi'(z) = pz^{p-1}$. Then
$$L_v(\phi) = \int_{\mathbf{P}_{\mathrm{K}}^1} \log_v[\phi'] d\mu_\phi = \log_v[\phi']_{\zeta_{\mathrm{Gauss}}}$$

$$= \log_v[pz^{p-1}]_{\zeta_{\mathrm{Gauss}}}$$

$$= \log_v|p| + \log_v[z^{p-1}]_{\zeta_{\mathrm{Gauss}}}$$

Example:
$$K = \mathbb{C}_p$$

Let $\phi(z) = z^p$, so that $\phi'(z) = pz^{p-1}$. Then
$$L_v(\phi) = \int_{\mathsf{P}^1_K} \log_v[\phi'] d\mu_\phi = \log_v[\phi']_{\zeta_{\mathsf{Gauss}}}$$

$$= \log_v[pz^{p-1}]_{\zeta_{\mathsf{Gauss}}}$$

$$= \log_v|p| + \log_v[z^{p-1}]_{\zeta_{\mathsf{Gauss}}}$$

$$= \log_v|p| < 0.$$

A Special Case

Theorem (J., 2015)

If ϕ has good reduction and also has separable reduction, then $L_{\mathbf{v}}(\phi)=0$.

Theorem (J., 2015)

Let K be a complete, algebraically closed non-Archimedean field with char(K)=0. Let $\phi\in K(z)$ be a non-trivial rational map of degree d.

Let $\kappa = \min(\log_{\nu} |m| : 1 \le m \le d)$, noting that $\kappa \le 0$. Let \mathcal{L}_{ϕ} be the Lipschitz constant for the action of $\mathbb{P}^1(K)$ in the spherical metric. Then

$$L(\phi) \ge \kappa - (d+1)\log_{\nu} \mathcal{L}_{\phi}$$
.

Theorem (J., 2015)

Let K be a complete, algebraically closed non-Archimedean field with char(K)=0. Let $\phi\in K(z)$ be a non-trivial rational map of degree d.

Let $\kappa = \min(\log_v |m| : 1 \le m \le d)$, noting that $\kappa \le 0$. Let \mathcal{L}_{ϕ} be the Lipschitz constant for the action of $\mathbb{P}^1(K)$ in the spherical metric. Then

$$L(\phi) \ge \kappa - (d+1) \log_{\nu} \mathcal{L}_{\phi}$$
.

Theorem (J., 2015)

Let K be a complete, algebraically closed non-Archimedean field with char(K)=0. Let $\phi\in K(z)$ be a non-trivial rational map of degree d.

Let $\kappa = \min(\log_{\nu} |m| : 1 \le m \le d)$, noting that $\kappa \le 0$. Let \mathcal{L}_{ϕ} be the Lipschitz constant for the action of $\mathbb{P}^1(K)$ in the spherical metric. Then

$$L(\phi) \ge \kappa - (d+1)\log_{\nu} \mathcal{L}_{\phi}$$
.

Theorem (J., 2015)

Let K be a complete, algebraically closed non-Archimedean field with char(K)=0. Let $\phi\in K(z)$ be a non-trivial rational map of degree d.

Let $\kappa = \min(\log_v |m| : 1 \le m \le d)$, noting that $\kappa \le 0$. Let \mathcal{L}_{ϕ} be the Lipschitz constant for the action of $\mathbb{P}^1(K)$ in the spherical metric. Then

$$L(\phi) \ge \kappa - (d+1)\log_{\nu} \mathcal{L}_{\phi}$$
.

Theorem (J., 2015)

Let K be a complete, algebraically closed non-Archimedean field, and suppose char(K)=0 Let $\phi\in K(T)$ be a rational map of degree $d\geq 2$ such that $\log_v\operatorname{diam}_\infty(\cdot)\in L^1(\mu_\phi)$ and $\mathcal{J}(\phi)\subseteq \mathbf{H}^1_K$. Then

$$L_{\nu}(\phi) \geq \kappa$$
.

Theorem (J., 2015)

Let K be a complete, algebraically closed non-Archimedean field, and suppose char(K)=0 Let $\phi\in K(T)$ be a rational map of degree $d\geq 2$ such that $\log_v \operatorname{diam}_\infty(\cdot)\in L^1(\mu_\phi)$ and $\mathcal{J}(\phi)\subseteq \mathbf{H}^1_K$. Then

$$L_{\nu}(\phi) \geq \kappa$$
.

Theorem (J., 2015)

Let K be a complete, algebraically closed non-Archimedean field, and suppose char(K)=0 Let $\phi\in K(T)$ be a rational map of degree $d\geq 2$ such that $\log_v \operatorname{diam}_\infty(\cdot)\in L^1(\mu_\phi)$ and $\mathcal{J}(\phi)\subseteq \mathbf{H}^1_K$. Then

$$L_{\nu}(\phi) \geq \kappa$$
.

Applies to:

- Maps of (potential) good reduction.
- Lattès Maps

For all
$$\zeta \in \mathbf{H}^1_{\mathrm{K}}$$
:

$$\log_{\nu}[\phi']_{\zeta} \geq \kappa + \log_{\nu} \operatorname{diam}_{\infty}(\phi(\zeta)) - \log_{\nu} \operatorname{diam}_{\infty}(\zeta) \ .$$

For all
$$\zeta \in \mathbf{H}^1_{\mathrm{K}}$$
:

$$\log_{\mathsf{v}}[\phi']_{\zeta} \geq \kappa + \log_{\mathsf{v}} \mathsf{diam}_{\infty}(\phi(\zeta)) - \log_{\mathsf{v}} \mathsf{diam}_{\infty}(\zeta) \; .$$

(This is essentially contained in work of Benedetto, Ingram, Jones and Levy.)

For all $\zeta \in \mathbf{H}^1_{\mathrm{K}}$:

$$\log_{\mathsf{v}}[\phi']_{\zeta} \geq \kappa + \log_{\mathsf{v}} \mathsf{diam}_{\infty}(\phi(\zeta)) - \log_{\mathsf{v}} \mathsf{diam}_{\infty}(\zeta) \; .$$

(This is essentially contained in work of Benedetto, Ingram, Jones and Levy.)

Let
$$\nu_n = \frac{1}{d^n} \phi^{n*} \delta_{\zeta_{\text{Gauss}}}$$
. Then

$$\int \log_{v} [\phi']_{\zeta} d
u_{n} \geq \kappa + \int \log_{v} \mathrm{diam}_{\infty}(\zeta) d(
u_{n-1} -
u_{n})$$

For all $\zeta \in \mathbf{H}^1_{\mathrm{K}}$:

$$\log_{\nu}[\phi']_{\zeta} \geq \kappa + \log_{\nu} \operatorname{diam}_{\infty}(\phi(\zeta)) - \log_{\nu} \operatorname{diam}_{\infty}(\zeta) \; .$$

(This is essentially contained in work of Benedetto, Ingram, Jones and Levy.)

Let
$$\nu_n = \frac{1}{d^n} \phi^{n*} \delta_{\zeta_{\text{Gauss}}}$$
. Then

$$\int \log_{v} [\phi']_{\zeta} d
u_{n} \geq \kappa + \int \log_{v} \operatorname{diam}_{\infty}(\zeta) d(
u_{n-1} -
u_{n})$$
 $\downarrow \qquad \downarrow \qquad \downarrow$
 $L_{v}(\phi) \geq \kappa - (d+1) \log_{v} \mathcal{L}_{\phi}$.

Proof Idea - Logarithmic Equidistribution

(Uses machinery of Favre and Rivera-Letelier)

Theorem (J., 2015)

Let K be a complete, algebraically closed non-Archimedean valued field. Let $\phi \in K(z)$ have degree $d \geq 2$, and let ν be a probability measure on \mathbf{P}^1_K with bounded potentials. Then for any rational function $g \in K(z)$, we have

$$\int \log_{v}[g]_{z} \ d\left(rac{1}{d^{n}}\phi^{n*}
u
ight)(z)
ightarrow \int \log_{v}[g]_{z} \ d\mu_{\phi}(z) \ .$$

(Uses machinery of Favre and Rivera-Letelier)

```
\Gamma_n: Tree spanned by \phi^{-n}(\zeta_{\mathsf{Gauss}}) and \phi^{-(n-1)}(\zeta_{\mathsf{Gauss}}) \mu_{\mathrm{Br},\Gamma}: branching measure for \Gamma g_1(\cdot,\zeta_{\mathsf{Gauss}}): potential function for \frac{1}{d}\phi^*\delta_{\zeta_{\mathsf{Gauss}}}-\delta_{\zeta_{\mathsf{Gauss}}}
```

(Uses machinery of Favre and Rivera-Letelier)

```
\Gamma_n: Tree spanned by \phi^{-n}(\zeta_{\mathsf{Gauss}}) and \phi^{-(n-1)}(\zeta_{\mathsf{Gauss}}) \mu_{\mathrm{Br},\Gamma}: branching measure for \Gamma g_1(\cdot,\zeta_{\mathsf{Gauss}}): potential function for \frac{1}{d}\phi^*\delta_{\zeta_{\mathsf{Gauss}}}-\delta_{\zeta_{\mathsf{Gauss}}}
```

(Uses machinery of Favre and Rivera-Letelier)

```
\begin{split} &\Gamma_n \text{: Tree spanned by } \phi^{-n}(\zeta_{\mathsf{Gauss}}) \text{ and } \phi^{-(n-1)}(\zeta_{\mathsf{Gauss}}) \\ &\mu_{\mathrm{Br},\Gamma} \text{: branching measure for } \Gamma \\ &g_1(\cdot,\zeta_{\mathsf{Gauss}}) \text{: potential function for } \frac{1}{d}\phi^*\delta_{\zeta_{\mathsf{Gauss}}} - \delta_{\zeta_{\mathsf{Gauss}}} \\ &\int_{\mathbf{P}^1_{\mathrm{K}}} \log_v \mathrm{diam}_{\infty}(\cdot) d(\nu_{n-1} - \nu_n) \end{split}
```

(Uses machinery of Favre and Rivera-Letelier)

 Γ_n : Tree spanned by $\phi^{-n}(\zeta_{\mathsf{Gauss}})$ and $\phi^{-(n-1)}(\zeta_{\mathsf{Gauss}})$ $\mu_{\mathrm{Br},\Gamma}$: branching measure for Γ $g_1(\cdot,\zeta_{\mathsf{Gauss}})$: potential function for $\frac{1}{d}\phi^*\delta_{\zeta_{\mathsf{Gauss}}}-\delta_{\zeta_{\mathsf{Gauss}}}$ $\int_{\mathbf{P}^1} \log_v \mathrm{diam}_\infty(\cdot) d(\nu_{n-1}-\nu_n) = \int_{\Gamma} \frac{-g_1(\phi^{n-1}(\cdot),\zeta_{\mathsf{Gauss}})}{d^{n-1}} d\mu_{\mathrm{Br},\Gamma_n}$

(Uses machinery of Favre and Rivera-Letelier)

$$\begin{split} \mu_{\mathrm{Br},\Gamma} \colon & \text{branching measure for } \Gamma \\ g_1(\cdot,\zeta_{\mathsf{Gauss}}) \colon & \text{potential function for } \frac{1}{d}\phi^*\delta_{\zeta_{\mathsf{Gauss}}} - \delta_{\zeta_{\mathsf{Gauss}}} \\ & \int_{\mathbf{P}^1_{\mathrm{K}}} \log_{\nu} \mathrm{diam}_{\infty}(\cdot) d(\nu_{n-1} - \nu_n) = \int_{\Gamma_n} \frac{-g_1(\phi^{n-1}(\cdot),\zeta_{\mathsf{Gauss}})}{d^{n-1}} d\mu_{\mathrm{Br},\Gamma_n} \\ & \geq -C \cdot \frac{\# \; \mathrm{endpoints \; in } \; \Gamma_n}{d^{n-1}} \end{split}$$

 Γ_n : Tree spanned by $\phi^{-n}(\zeta_{\text{Gauss}})$ and $\phi^{-(n-1)}(\zeta_{\text{Gauss}})$