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Kummer Theory

If µn ⊂ K , then there is a simple description of the exponent n
abelian extensions of K .

abelian extensions of K of exponent n

l

subgroups of K ∗/(K ∗)n
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Morton: Cyclic cubic fields

For any field K of characteristic 6= 2, we have

abelian extensions of K of exponent 3

l

certain groups of linear fractional transformations



Motivation Cyclic Quartic Fields One-parameter families

Setup

Let F/K be a cycle cubic extension and Gal(F/K ) = 〈σ〉. Idea:
F = K (θ) for some primitive element.
There is some polynomial f (x) ∈ K [x ] of degree < 3 such
that σ(θ) = f (θ).
If ζ3 6∈ K , then can take f (x) = x2 + c with θ a point of
primitive period 3 for f .
[F : K ] = 3 and cyclic means that θ is a root of an
irreducible cubic factor of Φ∗3(x , c).

Then f (x) = x2 − 1
4(s2 + 7). and

Φ∗3 = g(x , s)g(x ,−s), where

g(x , s) = x3+ 1
2(1−s)x2− 1

4(s2+2s+9)x+ 1
8(s3+s2+7s−1).
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Cyclic cubic fields

Theorem (Morton, 1992)

Let F/K be an abelian extension of exponent 3 and rank r , and
suppose char K 6= 2. Then

F = K (θ1, θ2, . . . , θr )

where θi is any root of the irreducible polynomial g(x , si) for
suitable values si ∈ K .
Conversely, if the si ∈ K are independent, then the polynomials
g(x , si) are all irreducible over K and the extension

F = K (θ1, θ2, . . . , θr )/K

has degree 3r and exponent 3.
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Morton’s comment

“It would be interesting to generalize the results
given here to cyclic extensions of any degree. . . ”
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Setup

Let F/K be a cyclic quartic extension. Assume i 6∈ K and
char K 6= 2,3. Let Gal(F/K ) = 〈σ〉.

There is a unique quadratic subfield F2 such that
F2 = F 〈σ

2〉.
F = K (θ) with θ2 ∈ F2.

Proposition

With this notation, σ(θ) = f (θ) where f ∈ K [x ] has the form
f (x) = ax3 + bx.
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Proof.
Let p(x) be the minimal polynomial of θ. Note deg(p) = 4.

f 2(x) ≡ −x (mod p)

f 3(x) = f 2(f (x)) ≡ −f (x) (mod p)

= f (f 2(x)) ≡ f (−x) (mod p)

−f (x) ≡ f (−x) (mod p)

Since deg(f ) < deg(p), this is equality. So f (x) = ax3 + bx .

Note: i 6∈ K =⇒ a 6= 0.
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Upshot

We have f = ax3 + bx and θ a point of primitive period 4 for f .
So θ is a root of an irreducible quartic factor of Φ∗4.

But even more is true:
f has a nontrivial automorphism h(x) = −x .
Since f 2(θ) = −θ, in fact θ is a root of an irreducible quartic
factor of the “h-tuned dynatomic polynomial”

Ψ∗4 =
f 2(x) + x

x
= a4x8 + 3a3bx6 + 3a2b2x4 + (ab3 + ab)x2 + (b2 + 1).
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Proposition
The h-tuned dynatomic polynomial Ψ∗4 factors as a product of
two quartics if and only if b = −3m2+2m−3

m2−1 for some
m ∈ K r {±1}. The two quartics are irreducible provided that m
is not of the form

t2 + 1
t2 − 1

or
s2 + 8s + 11

5− s2

for any s, t ∈ K .
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Proof sketch

Let θ be a root of Ψ∗4. Define the norm of a cycle:

n =
3∏

j=0

f j(θ).

A necessary condition for Ψ to split into two quartic factors is
that the two four-cycles have K -rational norm.

Define a quadratic polynomial

η(x) = (x − n1)(x − n2) = x2 + Ax + B

whose roots are these two norms.

Use the fact that η(x) ≡ 0 (mod Ψ∗4) to find A and B in terms of
a and b.
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Proof sketch

η(x) has rational roots when the discriminant is a square in K ,
which happens when b2 − 8 is a square.

Parameterize the curve d2 = b2 − 8 to get that b must be of the
form −3m2+2m−3

m2−1 .

In this case, the two quartic factors of Ψ∗4 are both even. Use
the same idea to show that they factor further iff m is of the form

t2 + 1
t2 − 1

or
s2 + 8s + 11

5− s2 .
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Comparison

Morton:
For f (x) = x2 − 1

4(s2 + 7), we have

Φ∗3 = g(x , s)g(x ,−s), where

g(x , s) = x3 + 1
2(1−s)x2− 1

4(s2 +2s +9)x + 1
8(s3 +s2 +7s−1).

For suitable choices of s ∈ K , roots of g generate cyclic cubic
extensions.

Moreover, every cyclic cubic extension of K arises in this way
when ζ3 6∈ K .
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Comparison

M-Stange:
For f (x) = ax3 + −3m2+2m−3

m2−1 x , we have

Ψ∗4 = g(x ,a,m)g
(

x ,a,
3m− 1
m− 3

)
, where

g(x ,a,m) = x4 − 4a(m2+1)
(m−1)(m+1)x

2 +
2(m2+1)
(m−1)2 .

For suitable choices of m ∈ K , roots of g generate cyclic quartic
extensions.

Moreover, every cyclic quartic extension of K arises in this way
when i 6∈ K .
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Independence condition

To get something like the one-to-one correspondence, we need
to know when two parameters give the same extension.

Kummer theory: K ( n
√
α) = K

(
n
√
β
)

iff α/β ∈ (K ∗)n

Morton: The roots of g(x , s) and g(x , v) — that is, the
period-3 points of x2 − 1

4(s2 + 7) and x2 − 1
4(v2 + 7) —

generate the same cyclic cubic extension iff s and v are in
the same K -orbit of a certain group of linear fractional
transformations.

M.-Stange: The roots of g(x ,1,m) and g(x ,1,n) — that is,
the period-4 points of x3 + −3m2+2m−3

m2−1 x and

x3 + −3n2+2n−3
n2−1 x — generate the same cyclic quartic

extension iff m and n are in the same K -orbit of a certain
group of linear fractional transformations.
Pay no attention to the twist parameter a. . .
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Maps generating the same extension

We know: If φ ∼/K ψ then the period n points of ψ and φ
generate the same extension of K for every n.

What can we say if the period-n points for φ and ψ generate the
same extension for some fixed n? (Probably nothing.)

But what if we narrow it down even further?
cyclic extension?
φ and ψ in one-parameter family?
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The fixed points of x2 + b and x2 + c generate the same
extension iff b and c are in the same K -orbit of a certain
group of linear fractional transformations.

The period-2 points of x2 + b and x2 + c generate the
same extension iff b and c are in the same K -orbit of a
certain group of linear fractional transformations.

Morton’s result for cyclic cubic extensions generated by
period-3 points of x2 − 1

4(s2 + 7).
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Over Q: If the period-4 points of x2 + c generate a cyclic quartic
extension, then c = −(t3 + 3t + 4)/4t . Different choices for the
parameter t yield non-isomorphic fields.

Morton: The period-4 points of x2 + c generate a cyclic quartic
extension iff c has this form and the polynomial

x4 − t2x3 − (t3 + 2t2 + 4t + 2)x2 − t2x + 1

is irreducible.

Washington: The discriminant of the cyclic quartic field is
t2(t + 2)2(t2 + 4)3.
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For n ≥ 5. . .
Only finitely many choices of c such that period n points of
x2 + c generate a cyclic extension.
For n sufficiently large, probably (?) only c = 0,−2.
Probably (?) all such c generate distinct fields.
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The fixed points of x3 + ax and x3 + bx generate the same
extension iff a and b are in the same K -orbit of a certain
group of linear fractional transformations.

The period-2 points of x3 + ax and x3 + bx generate the
same extension iff b and c are in the same K -orbit of a
certain group of linear fractional transformations.

M-Stange result for cyclic quartic extensions generated by
period-4 points of x3 + −3m2+2m−3

m2−1 x .
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