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Introduction

Joint work with Alon Levy

Let K be a field, f ∈ K [x ] have degree d , and

f n := f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n

.

Call f stable over K if f n is irreducible over K for all n ≥ 1.

Sample Theorem (Fein-Danielson 2001)

If d ≥ 2 and f (x) = xd + c ∈ Z[x ] is irreducible, then f is stable
over Q.
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Terrible Conjecture

If K is a number field and f ∈ K [x ] is irreducible, then f is stable
over K .

Counterexamples:

f (x) = x2 − x − 1 has f and f 2 irreducible over Q, but
f 3(x) = (x4 − 3x3 + 4x − 1)(x4 − x3 − 3x2 + x + 1).

f (x) = x2 − 4/3 is irreducible over Q, but
f 2(x) = (x2 − 2x + 2/3)(x2 − 2x − 2/3).

Even worse: Let f (x) = x2 + 1. It follows from work of Odoni
and Stoll that given m, r ≥ 1 there exists a number field K such
that f m is irreducible over K but a sufficiently large iterate of f
has r distinct irreducible factors over K .
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Open Question: Let f (x) = x2 + c ∈ Q[x ] have f 2 irreducible
over Q. Must f be stable?

Let K be a field and f ∈ K [x ]. We say that f is eventually stable
over K if the number of irreducible factors of f n is bounded as n
grows.

This is really a property of iterated preimages of 0. Ripe for
generalization. Given φ(x) ∈ K (x), choose coprime fn, gn ∈ K [x ]
with φn(x) = fn(x)/gn(x). For α ∈ P1(K ), we say that the pair
(φ, α) is eventually stable if

the number of irreducible factors of fn(x)− αgn(x) in K [x ] is
bounded as n grows (α 6=∞)

the number of irreducible factors of gn(x) in K [x ] is bounded
as n grows (α =∞)
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Characterizations of eventual stability

(φ, α) eventually stable over K is equivalent to:

(φ, α) eventually stable over L, for any finite extension L of K .

There exists n ≥ 1 such that (φn, α) is eventually stable.

For every sequence {βn} in P1(K ) satisfying φ(β1) = α and
φ(βn) = βn−1 for n ≥ 2, we have [K (βn) : K (βn−1)] = d for
all n sufficiently large.

Let K sep be a separable closure of K , GK = Gal (K sep/K ),
φ−n(α) = {β ∈ K : φn(β) = α}, and suppose φ−n(α) ⊂ K sep for
every n ≥ 1.

The number of GK -orbits on φ−n(α) is bounded as n grows.

There exists m ≥ 0 such that for all β ∈ φ−m(α), GK acts
transitively on φ−n(β) for all n ≥ 1.
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Main conjecture

Conjecture (Everywhere eventual stability conjecture)

Let φ ∈ K (z), and suppose that α ∈ P1(K ) is not periodic for φ.

1 If K is a number field, then (φ, α) is eventually stable.

2 If K is a function field (over any field) and φ is not isotrivial,
then (φ, α) is eventually stable.

Example 1: K = Q, f (x) = x2 − 1. Then x | f 2(x), so
f n(x) | f n+2(x) for all n ≥ 1, so x | f 2(x) | f 4(x) | · · · . Thus (f , 0)
not eventually stable.
Example 2: K = F5, f (x) = x2 + 2. Using a theorem of
Stickelberger, can show that (f , 0) is not eventually stable even
though 0 is not periodic for f .
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Some past results

(Sookdeo) K a global field, φ(x) = xd , d ≥ 2. If α ∈ K ∗ is not a
root of unity, then (xd , α) is eventually stable over K .

(Ingram) K a number field, φ(x) ∈ K [x ] monic of degree d ≥ 2.
Suppose there is a prime p of K with p - d and vp(φn(α))→ −∞
as n→∞. Then (φ, α) is eventually stable over K .

(Hamblen-J-Madhu) K a field of characteristic - d ,
φ(x) = xd + c ∈ K [x ], d ≥ 2. If there is a discrete valuation v on
K with v(c) > 0, then (φ, 0) is eventually stable over K .

Open Question: Is f (x) = x2 + (1/c) eventually stable for all
c ∈ Z \ {0,−1}?
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An observation

It’s a fun exercise to show that if f ∈ Z[x ] is Eisenstein, then so is
every iterate of f , and hence f is stable.

Observation: In some sense, the proof of Eisenstein’s criterion
gives too much away.

v a discrete valuation on a field K , normalized so that v(K ∗) = Z.
R = {z ∈ K : v(z) ≥ 0}
p = {z ∈ K : v(z) > 0} (unique maximal ideal of R)
k = R/p (residue field)
f̃ = polynomial obtained from f ∈ R[x ] by reducing each
coefficient modulo p.
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Proposition (Eisentein’s criterion)

Let v be a discrete valuation on a field K , let
f (x) = adx

d + · · ·+ a0 ∈ R[x ] for d ≥ 1, and suppose v(ad) = 0,
v(ai ) > 0 for all i = 1, . . . , d − 1, and v(a0) = 1. Then f (x) has at
most 1 irreducible factor over K .

Proof: Write f (x) = ad f0(x) with f0(x) ∈ R[x ] monic, and note
v(f0(0)) = v(a0) = 1. Suppose that f0(x) = g1(x)g2(x) is a
factorization of f0 into monics in K [x ] with deg gi = ei ≥ 1 and∑

ei = d . By Gauss’ Lemma, we may assume gi ∈ R[x ] for all i .
Then g̃i is monic of degree ei , and we have xd = g̃1(x)g̃2(x) in
k[x ]. Because k[x ] is a UFD, we must have g̃i (x) = xei for all i ,
and hence v(gi (0)) > 0 for all i . This implies
v(f0(0)) =

∑
v(gi (0)) > 1, a contradiction.
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v(f0(0)) =

∑
v(gi (0)) > 1, a contradiction.
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f (x) = adx

d + · · ·+ a0 ∈ R[x ] for d ≥ 1, and suppose v(ad) = 0,
v(ai ) > 0 for all i = 1, . . . , d − 1, and v(a0) = m ≥ 1. Then f (x)
has at most m irreducible factors over K .
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factorization of f0 into monics in K [x ] with deg gi = ei ≥ 1 and∑
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Then g̃i is monic of degree ei , and we have xd = g̃1(x) · · · g̃m+1(x)
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Proposition

Let v be a discrete valuation on a field K , let α ∈ K , and let
f , g ∈ R[x ] satisfy v(f (0) = v(g(0) = r > 0 (r 6=∞) and
v(f ′(0)) > 0. Then v(f (g(0))) = r .

Proof: Let f (x) = adx
d + · · ·+ a0, g(x) = bex

e + · · ·+ b0. By
assumption v(a0) = v(b0) = r , and v(a1) > 0.

But f (g(0)) = f (b0) = adb
d
0 + · · ·+ a2b

2
0 + a1b0 + a0. The strong

triangle inequality then gives v(f (g(0))) = v(a0).
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Corollary

Let v be a discrete valuation on a field K , let α ∈ K , and let
f ∈ R[x ] satisfy v(f (0)) = r > 0 (r 6=∞) and v(f ′(0)) > 0. Then
v(f n(0)) = r for all n ≥ 1.

Proposition (Generalized Eisenstein’s criterion)

Let v be a discrete valuation on a field K , let f (x) ∈ R[x ] have
degree d ≥ 2, and suppose f̃ (x) = cxd for c ∈ k∗. Then f (x) has
at most v(f (0)) irreducible factors over K .
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Theorem

Let v be a discrete valuation on a field K, let f ∈ R[x ] have degree
d ≥ 2, and let α ∈ R with f (α) 6= α. Suppose that
f̃ (x)− α̃ = c(x − α̃)d for c ∈ k∗. Then for all n ≥ 1, f n(x)− α
has at most v(f (α)− α) irreducible factors over K. In particular,
(f , α) is eventually stable over K.

Proof: Apply the previous two results to f (x + α)− α.

Remark: The condition on f̃ is equivalent to the map f̃ : k → k
having f̃ −1(α̃) = {α̃}.

Remark: With minor modifications, the theorem can be made to
work for α ∈ K \ R. That case is already covered by Ingram’s
result.
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Theorem

Let v be a discrete valuation on a field K, let k be a finite field of
characteristic p, and let f ∈ R[x ] have degree d = pk for k ≥ 1.

Suppose that f̃ (x) = cxp
k

+ b for c ∈ k∗ and b ∈ k. Then (f , α) is
eventually stable over K for all α ∈ R not periodic under f .

Remark: the number of irreducible factors of f n(x)−α is bounded
by v(f m(α)− α), where m = min{i ≥ 1 : v(f i (α))− α) > 0}.

Proof: Let α ∈ K be non-periodic for f . Observe that f̃ acts on k
as a permutation, so there exists m ≥ 1 with f̃ m(α̃) = α̃, and

(f̃ m)−1(α̃) = {α̃} as a map of k . But f m(α) 6= α, so we may
apply the previous result.
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An application

Let f (x) = x2 + 1, K be a number field, and vp the p-adic
valuation associated to any prime of p lying above (2). Then (f , α)
is eventually stable over K for any α ∈ R not periodic under f .

Let K = Q and v = v2, so that k = F2. Then f̃ acts on k as
2-cycle. Thus the number of irreducible factors of f n(x)− α is
bounded by v2(f 2(α)− α), which is not uniform across α ∈ Q(2).
Does there exist a uniform bound?
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Rational Functions

These results can all be extended to rational functions.

Theorem

Let v be a discrete valuation on a field K, let k be a finite field of
characteristic p, and let φ ∈ K (x) have degree d = pk for k ≥ 1.
Suppose that φ has good reduction at v and
φ̃(x) = (axp

k
+ b)/(cxp

k
+ d) for a, b, c, d ∈ k. Then (φ, α) is

eventually stable over K for all α ∈ P1(K ) not periodic under φ.
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