Eventually stable rational functions

Rafe Jones

Carleton College

January 8, 2016

・ロト ・回ト ・ヨト

- ∢ ⊒ →

Introduction

Joint work with Alon Levy

・ロン ・回と ・ヨン・

æ

Introduction

Joint work with Alon Levy

Let K be a field, $f \in K[x]$ have degree d, and

$$f^n := \underbrace{f \circ f \circ \cdots \circ f}_n.$$

イロン イヨン イヨン イヨン

æ

Introduction

Joint work with Alon Levy

Let K be a field, $f \in K[x]$ have degree d, and

$$f^n := \underbrace{f \circ f \circ \cdots \circ f}_n.$$

Call f stable over K if f^n is irreducible over K for all $n \ge 1$.

イロン イヨン イヨン イヨン

3

Introduction

Joint work with Alon Levy

Let K be a field, $f \in K[x]$ have degree d, and

$$f^n := \underbrace{f \circ f \circ \cdots \circ f}_n.$$

Call f stable over K if f^n is irreducible over K for all $n \ge 1$.

Sample Theorem (Fein-Danielson 2001)

If $d \ge 2$ and $f(x) = x^d + c \in \mathbb{Z}[x]$ is irreducible, then f is stable over \mathbb{Q} .

イロン イヨン イヨン イヨン

Terrible Conjecture

If K is a number field and $f \in K[x]$ is irreducible, then f is stable over K.

イロン イヨン イヨン イヨン

æ

Terrible Conjecture

If K is a number field and $f \in K[x]$ is irreducible, then f is stable over K.

Counterexamples:

•
$$f(x) = x^2 - x - 1$$
 has f and f^2 irreducible over \mathbb{Q} , but $f^3(x) = (x^4 - 3x^3 + 4x - 1)(x^4 - x^3 - 3x^2 + x + 1).$

- < ≣ →

æ

Terrible Conjecture

If K is a number field and $f \in K[x]$ is irreducible, then f is stable over K.

Counterexamples:

- $f(x) = x^2 x 1$ has f and f^2 irreducible over \mathbb{Q} , but $f^3(x) = (x^4 3x^3 + 4x 1)(x^4 x^3 3x^2 + x + 1).$
- $f(x) = x^2 4/3$ is irreducible over \mathbb{Q} , but $f^2(x) = (x^2 2x + 2/3)(x^2 2x 2/3).$

・ロン ・回 と ・ ヨ と ・ ヨ と

Terrible Conjecture

If K is a number field and $f \in K[x]$ is irreducible, then f is stable over K.

Counterexamples:

• $f(x) = x^2 - x - 1$ has f and f^2 irreducible over \mathbb{Q} , but $f^3(x) = (x^4 - 3x^3 + 4x - 1)(x^4 - x^3 - 3x^2 + x + 1).$

•
$$f(x) = x^2 - 4/3$$
 is irreducible over \mathbb{Q} , but $f^2(x) = (x^2 - 2x + 2/3)(x^2 - 2x - 2/3).$

Even worse: Let $f(x) = x^2 + 1$. It follows from work of Odoni and Stoll that given $m, r \ge 1$ there exists a number field K such that f^m is irreducible over K but a sufficiently large iterate of f has r distinct irreducible factors over K.

・ロン ・回 と ・ ヨ と ・ ヨ と

Open Question: Let $f(x) = x^2 + c \in \mathbb{Q}[x]$ have f^2 irreducible over \mathbb{Q} . Must f be stable?

・ロン ・回と ・ヨン ・ヨン

æ

Open Question: Let $f(x) = x^2 + c \in \mathbb{Q}[x]$ have f^2 irreducible over \mathbb{Q} . Must f be stable?

Let K be a field and $f \in K[x]$. We say that f is *eventually stable* over K if the number of irreducible factors of f^n is bounded as n grows.

イロト イヨト イヨト イヨト

Let K be a field and $f \in K[x]$. We say that f is *eventually stable* over K if the number of irreducible factors of f^n is bounded as n grows.

This is really a property of iterated preimages of 0. Ripe for generalization.

イロト イポト イヨト イヨト

Let K be a field and $f \in K[x]$. We say that f is *eventually stable* over K if the number of irreducible factors of f^n is bounded as n grows.

This is really a property of iterated preimages of 0. Ripe for generalization. Given $\phi(x) \in K(x)$, choose coprime $f_n, g_n \in K[x]$ with $\phi^n(x) = f_n(x)/g_n(x)$.

イロト イポト イヨト イヨト

Let K be a field and $f \in K[x]$. We say that f is *eventually stable* over K if the number of irreducible factors of f^n is bounded as n grows.

This is really a property of iterated preimages of 0. Ripe for generalization. Given $\phi(x) \in K(x)$, choose coprime $f_n, g_n \in K[x]$ with $\phi^n(x) = f_n(x)/g_n(x)$. For $\alpha \in \mathbb{P}^1(K)$, we say that the pair (ϕ, α) is *eventually stable* if

イロン イヨン イヨン イヨン

Let K be a field and $f \in K[x]$. We say that f is *eventually stable* over K if the number of irreducible factors of f^n is bounded as n grows.

This is really a property of iterated preimages of 0. Ripe for generalization. Given $\phi(x) \in K(x)$, choose coprime $f_n, g_n \in K[x]$ with $\phi^n(x) = f_n(x)/g_n(x)$. For $\alpha \in \mathbb{P}^1(K)$, we say that the pair (ϕ, α) is eventually stable if

 the number of irreducible factors of f_n(x) − αg_n(x) in K[x] is bounded as n grows (α ≠ ∞)

・ロン ・回と ・ヨン ・ヨン

Let K be a field and $f \in K[x]$. We say that f is *eventually stable* over K if the number of irreducible factors of f^n is bounded as n grows.

This is really a property of iterated preimages of 0. Ripe for generalization. Given $\phi(x) \in K(x)$, choose coprime $f_n, g_n \in K[x]$ with $\phi^n(x) = f_n(x)/g_n(x)$. For $\alpha \in \mathbb{P}^1(K)$, we say that the pair (ϕ, α) is eventually stable if

- the number of irreducible factors of f_n(x) − αg_n(x) in K[x] is bounded as n grows (α ≠ ∞)
- the number of irreducible factors of g_n(x) in K[x] is bounded as n grows (α = ∞)

・ロン ・回 と ・ 回 と ・ 回 と

Characterizations of eventual stability

 (ϕ, α) eventually stable over K is equivalent to:

・ロト ・回ト ・ヨト ・ヨト

Characterizations of eventual stability

 (ϕ,α) eventually stable over ${\it K}$ is equivalent to:

• (ϕ, α) eventually stable over L, for any finite extension L of K.

・ロト ・回ト ・ヨト

Characterizations of eventual stability

 (ϕ, α) eventually stable over K is equivalent to:

- (ϕ, α) eventually stable over L, for any finite extension L of K.
- There exists $n \ge 1$ such that (ϕ^n, α) is eventually stable.

イロト イヨト イヨト イヨト

Characterizations of eventual stability

 (ϕ, α) eventually stable over K is equivalent to:

- (ϕ, α) eventually stable over L, for any finite extension L of K.
- There exists $n \ge 1$ such that (ϕ^n, α) is eventually stable.
- For every sequence $\{\beta_n\}$ in $\mathbb{P}^1(\overline{K})$ satisfying $\phi(\beta_1) = \alpha$ and $\phi(\beta_n) = \beta_{n-1}$ for $n \ge 2$, we have $[K(\beta_n) : K(\beta_{n-1})] = d$ for all *n* sufficiently large.

イロト イポト イヨト イヨト

Characterizations of eventual stability

 (ϕ, α) eventually stable over K is equivalent to:

- (ϕ, α) eventually stable over L, for any finite extension L of K.
- There exists $n \ge 1$ such that (ϕ^n, α) is eventually stable.
- For every sequence $\{\beta_n\}$ in $\mathbb{P}^1(\overline{K})$ satisfying $\phi(\beta_1) = \alpha$ and $\phi(\beta_n) = \beta_{n-1}$ for $n \ge 2$, we have $[K(\beta_n) : K(\beta_{n-1})] = d$ for all *n* sufficiently large.

Let K^{sep} be a separable closure of K, $G_K = \text{Gal}(K^{\text{sep}}/K)$, $\phi^{-n}(\alpha) = \{\beta \in \overline{K} : \phi^n(\beta) = \alpha\}$, and suppose $\phi^{-n}(\alpha) \subset K^{\text{sep}}$ for every $n \ge 1$.

- The number of G_K -orbits on $\phi^{-n}(\alpha)$ is bounded as *n* grows.
- There exists $m \ge 0$ such that for all $\beta \in \phi^{-m}(\alpha)$, G_K acts transitively on $\phi^{-n}(\beta)$ for all $n \ge 1$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Main conjecture

Conjecture (Everywhere eventual stability conjecture)

- Let $\phi \in K(z)$, and suppose that $\alpha \in \mathbb{P}^1(K)$ is not periodic for ϕ .
 - If K is a number field, then (ϕ, α) is eventually stable.
 - 2 If K is a function field (over any field) and ϕ is not isotrivial, then (ϕ, α) is eventually stable.

・ロト ・日本 ・モート ・モート

Main conjecture

Conjecture (Everywhere eventual stability conjecture)

Let $\phi \in \mathcal{K}(z)$, and suppose that $\alpha \in \mathbb{P}^1(\mathcal{K})$ is not periodic for ϕ .

- If K is a number field, then (ϕ, α) is eventually stable.
- 2 If K is a function field (over any field) and ϕ is not isotrivial, then (ϕ, α) is eventually stable.

Example 1: $K = \mathbb{Q}, f(x) = x^2 - 1$. Then $x \mid f^2(x)$, so $f^n(x) \mid f^{n+2}(x)$ for all $n \ge 1$, so $x \mid f^2(x) \mid f^4(x) \mid \cdots$. Thus (f, 0) not eventually stable.

イロト イヨト イヨト イヨト

Main conjecture

Conjecture (Everywhere eventual stability conjecture)

Let $\phi \in K(z)$, and suppose that $\alpha \in \mathbb{P}^1(K)$ is not periodic for ϕ .

- If K is a number field, then (ϕ, α) is eventually stable.
- 2 If K is a function field (over any field) and ϕ is not isotrivial, then (ϕ, α) is eventually stable.

Example 1: $K = \mathbb{Q}, f(x) = x^2 - 1$. Then $x \mid f^2(x)$, so $f^n(x) \mid f^{n+2}(x)$ for all $n \ge 1$, so $x \mid f^2(x) \mid f^4(x) \mid \cdots$. Thus (f, 0) not eventually stable. **Example 2:** $K = \mathbb{F}_5, f(x) = x^2 + 2$. Using a theorem of Stickelberger, can show that (f, 0) is not eventually stable even though 0 is not periodic for f.

(日) (部) (注) (注) (言)

Some past results

(Sookdeo) K a global field, $\phi(x) = x^d$, $d \ge 2$. If $\alpha \in K^*$ is not a root of unity, then (x^d, α) is eventually stable over K.

イロト イポト イヨト イヨト

Some past results

(Sookdeo) K a global field, $\phi(x) = x^d$, $d \ge 2$. If $\alpha \in K^*$ is not a root of unity, then (x^d, α) is eventually stable over K.

(Ingram) K a number field, $\phi(x) \in K[x]$ monic of degree $d \ge 2$. Suppose there is a prime \mathfrak{p} of K with $\mathfrak{p} \nmid d$ and $v_{\mathfrak{p}}(\phi^n(\alpha)) \to -\infty$ as $n \to \infty$. Then (ϕ, α) is eventually stable over K.

イロト イポト イヨト イヨト

Some past results

(Sookdeo) K a global field, $\phi(x) = x^d$, $d \ge 2$. If $\alpha \in K^*$ is not a root of unity, then (x^d, α) is eventually stable over K.

(Ingram) K a number field, $\phi(x) \in K[x]$ monic of degree $d \ge 2$. Suppose there is a prime \mathfrak{p} of K with $\mathfrak{p} \nmid d$ and $v_{\mathfrak{p}}(\phi^n(\alpha)) \to -\infty$ as $n \to \infty$. Then (ϕ, α) is eventually stable over K.

(Hamblen-J-Madhu) K a field of characteristic $\nmid d$, $\phi(x) = x^d + c \in K[x], d \ge 2$. If there is a discrete valuation v on K with v(c) > 0, then $(\phi, 0)$ is eventually stable over K.

・ロン ・回と ・ヨン ・ヨン

Some past results

(Sookdeo) K a global field, $\phi(x) = x^d$, $d \ge 2$. If $\alpha \in K^*$ is not a root of unity, then (x^d, α) is eventually stable over K.

(Ingram) K a number field, $\phi(x) \in K[x]$ monic of degree $d \ge 2$. Suppose there is a prime \mathfrak{p} of K with $\mathfrak{p} \nmid d$ and $v_{\mathfrak{p}}(\phi^n(\alpha)) \to -\infty$ as $n \to \infty$. Then (ϕ, α) is eventually stable over K.

(Hamblen-J-Madhu) K a field of characteristic $\nmid d$, $\phi(x) = x^d + c \in K[x], d \ge 2$. If there is a discrete valuation v on K with v(c) > 0, then $(\phi, 0)$ is eventually stable over K.

Open Question: Is $f(x) = x^2 + (1/c)$ eventually stable for all $c \in \mathbb{Z} \setminus \{0, -1\}$?

(日) (同) (E) (E) (E)

An observation

It's a fun exercise to show that if $f \in \mathbb{Z}[x]$ is Eisenstein, then so is every iterate of f, and hence f is stable.

イロト イヨト イヨト イヨト

æ

An observation

It's a fun exercise to show that if $f \in \mathbb{Z}[x]$ is Eisenstein, then so is every iterate of f, and hence f is stable.

Observation: In some sense, the proof of Eisenstein's criterion gives too much away.

An observation

It's a fun exercise to show that if $f \in \mathbb{Z}[x]$ is Eisenstein, then so is every iterate of f, and hence f is stable.

Observation: In some sense, the proof of Eisenstein's criterion gives too much away.

v a discrete valuation on a field K, normalized so that $v(K^*) = \mathbb{Z}$. $R = \{z \in K : v(z) \ge 0\}$ $\mathfrak{p} = \{z \in K : v(z) > 0\}$ (unique maximal ideal of R) $k = R/\mathfrak{p}$ (residue field) $\tilde{f} =$ polynomial obtained from $f \in R[x]$ by reducing each coefficient modulo \mathfrak{p} .

イロン イヨン イヨン イヨン

Proposition (Eisentein's criterion)

Let v be a discrete valuation on a field K, let $f(x) = a_d x^d + \cdots + a_0 \in R[x]$ for $d \ge 1$, and suppose $v(a_d) = 0$, $v(a_i) > 0$ for all $i = 1, \ldots, d-1$, and $v(a_0) = 1$. Then f(x) has at most 1 irreducible factor over K.

・ロト ・日本 ・モート ・モート

Proposition (Eisentein's criterion)

Let v be a discrete valuation on a field K, let $f(x) = a_d x^d + \cdots + a_0 \in R[x]$ for $d \ge 1$, and suppose $v(a_d) = 0$, $v(a_i) > 0$ for all $i = 1, \ldots, d-1$, and $v(a_0) = 1$. Then f(x) has at most 1 irreducible factor over K.

Proof: Write $f(x) = a_d f_0(x)$ with $f_0(x) \in R[x]$ monic, and note $v(f_0(0)) = v(a_0) = 1$. Suppose that $f_0(x) = g_1(x)g_2(x)$ is a factorization of f_0 into monics in K[x] with deg $g_i = e_i \ge 1$ and $\sum e_i = d$. By Gauss' Lemma, we may assume $g_i \in R[x]$ for all *i*. Then \tilde{g}_i is monic of degree e_i , and we have $x^d = \tilde{g}_1(x)\tilde{g}_2(x)$ in k[x]. Because k[x] is a UFD, we must have $\tilde{g}_i(x) = x^{e_i}$ for all *i*, and hence $v(g_i(0)) > 0$ for all *i*. This implies $v(f_0(0)) = \sum v(g_i(0)) > 1$, a contradiction.

・ロン ・回 と ・ ヨ と ・ ヨ と

Proposition (Generalized Eisenstein's criterion)

Let v be a discrete valuation on a field K, let $f(x) = a_d x^d + \cdots + a_0 \in R[x]$ for $d \ge 1$, and suppose $v(a_d) = 0$, $v(a_i) > 0$ for all $i = 1, \ldots, d - 1$, and $v(a_0) = m \ge 1$. Then f(x) has at most m irreducible factors over K.

Proof: Write $f(x) = a_d f_0(x)$ with $f_0(x) \in R[x]$ monic, and note $v(f_0(0)) = v(a_0) = m$. Suppose that $f_0(x) = g_1(x) \cdots g_{m+1}(x)$ is a factorization of f_0 into monics in K[x] with deg $g_i = e_i \ge 1$ and $\sum e_i = d$. By Gauss' Lemma, we may assume $g_i \in R[x]$ for all *i*. Then \tilde{g}_i is monic of degree e_i , and we have $x^d = \tilde{g}_1(x) \cdots \tilde{g}_{m+1}(x)$ in k[x]. Because k[x] is a UFD, we must have $\tilde{g}_i(x) = x^{e_i}$ for all *i*, and hence $v(g_i(0)) > 0$ for all *i*. This implies $v(f_0(0)) = \sum v(g_i(0)) > m$, a contradiction.

・ロン ・回 と ・ ヨ と ・ ヨ と

Proposition

Let v be a discrete valuation on a field K, let $\alpha \in K$, and let $f, g \in R[x]$ satisfy $v(f(0) = v(g(0) = r > 0 \ (r \neq \infty))$ and v(f'(0)) > 0. Then v(f(g(0))) = r.

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Proposition

Let v be a discrete valuation on a field K, let $\alpha \in K$, and let $f, g \in R[x]$ satisfy $v(f(0) = v(g(0) = r > 0 \ (r \neq \infty))$ and v(f'(0)) > 0. Then v(f(g(0))) = r.

Proof: Let $f(x) = a_d x^d + \dots + a_0$, $g(x) = b_e x^e + \dots + b_0$. By assumption $v(a_0) = v(b_0) = r$, and $v(a_1) > 0$.

(日) (同) (E) (E) (E)

Proposition

Let v be a discrete valuation on a field K, let $\alpha \in K$, and let $f, g \in R[x]$ satisfy $v(f(0) = v(g(0) = r > 0 \ (r \neq \infty))$ and v(f'(0)) > 0. Then v(f(g(0))) = r.

Proof: Let $f(x) = a_d x^d + \dots + a_0$, $g(x) = b_e x^e + \dots + b_0$. By assumption $v(a_0) = v(b_0) = r$, and $v(a_1) > 0$.

But $f(g(0)) = f(b_0) = a_d b_0^d + \cdots + a_2 b_0^2 + a_1 b_0 + a_0$. The strong triangle inequality then gives $v(f(g(0))) = v(a_0)$.

(ロ) (同) (E) (E) (E)

Corollary

Let v be a discrete valuation on a field K, let $\alpha \in K$, and let $f \in R[x]$ satisfy v(f(0)) = r > 0 $(r \neq \infty)$ and v(f'(0)) > 0. Then $v(f^n(0)) = r$ for all $n \ge 1$.

・ロト ・回ト ・ヨト ・ヨト

Corollary

Let v be a discrete valuation on a field K, let $\alpha \in K$, and let $f \in R[x]$ satisfy v(f(0)) = r > 0 $(r \neq \infty)$ and v(f'(0)) > 0. Then $v(f^n(0)) = r$ for all $n \ge 1$.

Proposition (Generalized Eisenstein's criterion)

Let v be a discrete valuation on a field K, let $f(x) \in R[x]$ have degree $d \ge 2$, and suppose $\tilde{f}(x) = cx^d$ for $c \in k^*$. Then f(x) has at most v(f(0)) irreducible factors over K.

<ロ> <同> <同> < 回> < 回> < 三> < 三> 三 三

Theorem

Let v be a discrete valuation on a field K, let $f \in R[x]$ have degree $d \ge 2$, and let $\alpha \in R$ with $f(\alpha) \ne \alpha$. Suppose that $\tilde{f}(x) - \tilde{\alpha} = c(x - \tilde{\alpha})^d$ for $c \in k^*$. Then for all $n \ge 1$, $f^n(x) - \alpha$ has at most $v(f(\alpha) - \alpha)$ irreducible factors over K. In particular, (f, α) is eventually stable over K.

Theorem

Let v be a discrete valuation on a field K, let $f \in R[x]$ have degree $d \ge 2$, and let $\alpha \in R$ with $f(\alpha) \ne \alpha$. Suppose that $\tilde{f}(x) - \tilde{\alpha} = c(x - \tilde{\alpha})^d$ for $c \in k^*$. Then for all $n \ge 1$, $f^n(x) - \alpha$ has at most $v(f(\alpha) - \alpha)$ irreducible factors over K. In particular, (f, α) is eventually stable over K.

Proof: Apply the previous two results to $f(x + \alpha) - \alpha$.

Theorem

Let v be a discrete valuation on a field K, let $f \in R[x]$ have degree $d \ge 2$, and let $\alpha \in R$ with $f(\alpha) \ne \alpha$. Suppose that $\tilde{f}(x) - \tilde{\alpha} = c(x - \tilde{\alpha})^d$ for $c \in k^*$. Then for all $n \ge 1$, $f^n(x) - \alpha$ has at most $v(f(\alpha) - \alpha)$ irreducible factors over K. In particular, (f, α) is eventually stable over K.

Proof: Apply the previous two results to $f(x + \alpha) - \alpha$.

Remark: The condition on \tilde{f} is equivalent to the map $\tilde{f} : \overline{k} \to \overline{k}$ having $\tilde{f}^{-1}(\tilde{\alpha}) = \{\tilde{\alpha}\}.$

イロト イポト イヨト イヨト

Theorem

Let v be a discrete valuation on a field K, let $f \in R[x]$ have degree $d \ge 2$, and let $\alpha \in R$ with $f(\alpha) \ne \alpha$. Suppose that $\tilde{f}(x) - \tilde{\alpha} = c(x - \tilde{\alpha})^d$ for $c \in k^*$. Then for all $n \ge 1$, $f^n(x) - \alpha$ has at most $v(f(\alpha) - \alpha)$ irreducible factors over K. In particular, (f, α) is eventually stable over K.

Proof: Apply the previous two results to $f(x + \alpha) - \alpha$.

Remark: The condition on \tilde{f} is equivalent to the map $\tilde{f}: \overline{k} \to \overline{k}$ having $\tilde{f}^{-1}(\tilde{\alpha}) = {\tilde{\alpha}}.$

Remark: With minor modifications, the theorem can be made to work for $\alpha \in K \setminus R$. That case is already covered by Ingram's result.

・ロト ・回ト ・ヨト ・ヨト

Theorem

Let v be a discrete valuation on a field K, let k be a finite field of characteristic p, and let $f \in R[x]$ have degree $d = p^k$ for $k \ge 1$. Suppose that $\tilde{f}(x) = cx^{p^k} + b$ for $c \in k^*$ and $b \in k$. Then (f, α) is eventually stable over K for all $\alpha \in R$ not periodic under f.

Theorem

Let v be a discrete valuation on a field K, let k be a finite field of characteristic p, and let $f \in R[x]$ have degree $d = p^k$ for $k \ge 1$. Suppose that $\tilde{f}(x) = cx^{p^k} + b$ for $c \in k^*$ and $b \in k$. Then (f, α) is eventually stable over K for all $\alpha \in R$ not periodic under f.

Remark: the number of irreducible factors of $f^n(x) - \alpha$ is bounded by $v(f^m(\alpha) - \alpha)$, where $m = \min\{i \ge 1 : v(f^i(\alpha)) - \alpha) > 0\}$.

イロト イポト イヨト イヨト

Theorem

Let v be a discrete valuation on a field K, let k be a finite field of characteristic p, and let $f \in R[x]$ have degree $d = p^k$ for $k \ge 1$. Suppose that $\tilde{f}(x) = cx^{p^k} + b$ for $c \in k^*$ and $b \in k$. Then (f, α) is eventually stable over K for all $\alpha \in R$ not periodic under f.

Remark: the number of irreducible factors of $f^n(x) - \alpha$ is bounded by $v(f^m(\alpha) - \alpha)$, where $m = \min\{i \ge 1 : v(f^i(\alpha)) - \alpha) > 0\}$.

Proof: Let $\alpha \in K$ be non-periodic for f. Observe that \tilde{f} acts on \overline{k} as a permutation, so there exists $m \ge 1$ with $\tilde{f}^m(\tilde{\alpha}) = \tilde{\alpha}$, and $(\tilde{f}^m)^{-1}(\tilde{\alpha}) = \{\tilde{\alpha}\}$ as a map of \overline{k} . But $f^m(\alpha) \ne \alpha$, so we may apply the previous result.

イロン イヨン イヨン イヨン

An application

Let $f(x) = x^2 + 1$, K be a number field, and v_p the p-adic valuation associated to any prime of p lying above (2). Then (f, α) is eventually stable over K for any $\alpha \in R$ not periodic under f.

イロト イポト イヨト イヨト

An application

Let $f(x) = x^2 + 1$, K be a number field, and v_p the p-adic valuation associated to any prime of p lying above (2). Then (f, α) is eventually stable over K for any $\alpha \in R$ not periodic under f.

Let $K = \mathbb{Q}$ and $v = v_2$, so that $k = \mathbb{F}_2$. Then \tilde{f} acts on k as 2-cycle.

イロン イヨン イヨン イヨン

An application

Let $f(x) = x^2 + 1$, K be a number field, and v_p the p-adic valuation associated to any prime of p lying above (2). Then (f, α) is eventually stable over K for any $\alpha \in R$ not periodic under f.

Let $K = \mathbb{Q}$ and $v = v_2$, so that $k = \mathbb{F}_2$. Then \tilde{f} acts on k as 2-cycle. Thus the number of irreducible factors of $f^n(x) - \alpha$ is bounded by $v_2(f^2(\alpha) - \alpha)$, which is not uniform across $\alpha \in \mathbb{Q}_{(2)}$.

・ロン ・回と ・ヨン・

An application

Let $f(x) = x^2 + 1$, K be a number field, and v_p the p-adic valuation associated to any prime of p lying above (2). Then (f, α) is eventually stable over K for any $\alpha \in R$ not periodic under f.

Let $K = \mathbb{Q}$ and $v = v_2$, so that $k = \mathbb{F}_2$. Then \tilde{f} acts on k as 2-cycle. Thus the number of irreducible factors of $f^n(x) - \alpha$ is bounded by $v_2(f^2(\alpha) - \alpha)$, which is not uniform across $\alpha \in \mathbb{Q}_{(2)}$. Does there exist a uniform bound?

・ロン ・回と ・ヨン・

Rational Functions

These results can all be extended to rational functions.

・ロン ・回と ・ヨン ・ヨン

æ

Rational Functions

These results can all be extended to rational functions.

Theorem

Let v be a discrete valuation on a field K, let k be a finite field of characteristic p, and let $\phi \in K(x)$ have degree $d = p^k$ for $k \ge 1$. Suppose that ϕ has good reduction at v and $\tilde{\phi}(x) = (ax^{p^k} + b)/(cx^{p^k} + d)$ for $a, b, c, d \in k$. Then (ϕ, α) is eventually stable over K for all $\alpha \in \mathbb{P}^1(K)$ not periodic under ϕ .