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An Example (Favre; Bedford; Diller, Dujardin, Guedj)

For 6 € [0,1], we define a birational self-map on P? by
filx:y:z]lm [y?:2cos(mb)y? + 2> — xy : yz]

(so F 1 :[x:y:z] s [2cos(ml)x® + 22 — xy : x° : xz]).
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For 6 € [0,1], we define a birational self-map on P? by
filx:y:z]lm [y?:2cos(mb)y? + 2> — xy : yz]

(so F 1 :[x:y:z] s [2cos(ml)x® + 22 — xy : x° : xz]).

We have indeterminacy sets

I(F)={[1:0:0]} & I(f 1) ={[0:1:0]}.
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An Example (Favre; Bedford; Diller, Dujardin, Guedj)

For 6 € [0,1], we define a birational self-map on P? by
filx:y:z]lm [y?:2cos(mb)y? + 2> — xy : yz]

(so F 1 :[x:y:z] s [2cos(ml)x® + 22 — xy : x° : xz]).

We have indeterminacy sets

I(F)={[1:0:0]} & I(f 1) ={[0:1:0]}.

We can conjugate f|,—o to
poflmo0d™t:[x:y]— [e?™x:y],

with ¢([1:0]) = [1: 1] & #([0 : 1]) = [¢*™ : 1].
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Example Continued - Stability/Energy Conditions

The condition for algebraic stability

Unzo FrU(E) N I(F) =0 (AS)
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Example Continued - Stability/Energy Conditions

The condition for algebraic stability
n -1 _
Unzof () RlGEL (AS)

is satisfied <= 0 ¢ Q (i.e., ™ is not a root of unity).
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Example Continued - Stability/Energy Conditions

The condition for algebraic stability
n -1 _
Unzof () NI =0 (AS)
is satisfied <= 0 ¢ Q (i.e., ™ is not a root of unity).

We assume (AS). Then f has first dynamical degree \(f) = 2.
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Example Continued - Stability/Energy Conditions

The condition for algebraic stability
Unzo UG I GEY (AS)
is satisfied <= 6 ¢ Q (i.e., ™ is not a root of unity).
We assume (AS). Then f has first dynamical degree \(f) = 2.
A stronger energy condition (Bedford, Diller)
anox(f)—" log dist(F"(I(f1)), I(f)) > —o0 (BD)

guarantees that f has a natural measure of maximal entropy with nice
dynamical properties. (Bedford, Smillie, Lyubich, Cantat, . . .)
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Example Continued - Stability/Energy Conditions

The condition for algebraic stability
Unzo UG I GEY (AS)
is satisfied <= 6 ¢ Q (i.e., ™ is not a root of unity).
We assume (AS). Then f has first dynamical degree \(f) = 2.
A stronger energy condition (Bedford, Diller)
anox(f)—" log dist(F"(I(f1)), I(f)) > —o0 (BD)

guarantees that f has a natural measure of maximal entropy with nice
dynamical properties. (Bedford, Smillie, Lyubich, Cantat, . . .)

Buff: 360 ¢ Q for which the nice dynamical properties fail to hold.
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Example Continued - Working over a Number Field

Take f to be defined over a number field (i.e., cos(7w6) to be algebraic).
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Example Continued - Working over a Number Field

Take f to be defined over a number field (i.e., cos(7w6) to be algebraic).

The conjugation of f|,— to a rotation gives

dist(F7([0:1:0]),[1:0:0]) ~ |2 — 1|
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Example Continued - Working over a Number Field

Take f to be defined over a number field (i.e., cos(7w6) to be algebraic).

The conjugation of f|,— to a rotation gives
dist(F7([0:1:0]),[1:0:0]) ~ 2™ — 1| > Ce "

(Gelfond; see also Feldman).
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Example Continued - Working over a Number Field

Take f to be defined over a number field (i.e., cos(7w6) to be algebraic).

The conjugation of f|,— to a rotation gives
dist(F7([0:1:0]),[1:0:0]) ~ 2™ — 1| > Ce "

(Gelfond; see also Feldman).

So the sum in (BD) is no worse than

D g2 "log(C) = re),

which converges.
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A General Result

Theorem (Jonsson, R.)

Let f be a birational self-map on a smooth complex projective surface X,
and suppose A\(f) > 1. If X and f are defined over a number field, then
there is a smooth birational model of X on which f satisfies (BD).
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A General Result

Theorem (Jonsson, R.)

Let f be a birational self-map on a smooth complex projective surface X,
and suppose A\(f) > 1. If X and f are defined over a number field, then
there is a smooth birational model of X on which f satisfies (BD).

(We must allow passing to a birational model to obtain (AS) as well as an
additional technical condition; see the work of Diller, Favre, Bedford.

On the other hand, the natural measure of maximal entropy and its nice
dynamical properties are birationally invariant once (BD) is obtained.)
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A General Result

Theorem (Jonsson, R.)

Let f be a birational self-map on a smooth complex projective surface X,
and suppose A\(f) > 1. If X and f are defined over a number field, then
there is a smooth birational model of X on which f satisfies (BD).

(We must allow passing to a birational model to obtain (AS) as well as an
additional technical condition; see the work of Diller, Favre, Bedford.

On the other hand, the natural measure of maximal entropy and its nice

dynamical properties are birationally invariant once (BD) is obtained.)

Diller, Favre:
assuming (AS), 3 nef LT € Pic(X)g such that £*L*t = X\(f)LT; if f is not
conjugate to an automorphism, then (LT - L") > 0 (i.e., LT is big).
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Argument in the Case X = P?, part 1

Here, L™ = O(1) and A(f) > 2 is an integer.
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Argument in the Case X = P?, part 1
Here, LT = O(1) and A\(f) > 2 is an integer.

For all v € Mk, we have the local heights

hyv i [x:y:z] = logmax{l,l|y/x|v,|z/x|,} & hy, & h,,.
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Argument in the Case X = P?, part 1
Here, LT = O(1) and A\(f) > 2 is an integer.

For all v € Mk, we have the local heights
Pyt Ix v 2 2] > logmax{L, ly /x|, 12/x1, } & by & hey.

And then we have the Weil height
hiv :[x:y:z]— ZVGMK hav([x:y:2z])

(which is independent of the choice of « € {x, y, z}).
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Argument in the Case X = P?, part 1
Here, LT = O(1) and A\(f) > 2 is an integer.
For all v € Mk, we have the local heights
ey s [x oy 2] = logmax{l, |y/x|v, |z/x]v} & hyv & hz .
And then we have the Weil height
b by a e YD hellx v 2))

(which is independent of the choice of a € {x,y, z}).

Let oo € Mk denote the archimedean place from the implicitly given
embedding K — C, and set

Yaoo([X 1y 1 2]) i= haoo(f([x 1y 2])) = hpraco([x 1y : 2]).
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Argument in the Case X = P?, part 2

Writing f([x : y : z]) = [, f,, f], where £, f,, and f, are homogeneous
polynomials of degree \(f) in x, y, and z, we have

maX{|fX|007|fy|OO7|fZ|OO}
Yoo 1 [X 1y 1 2z] = log ,
Q,00 [ ] max{|x2|oo,|y2|oo,|22|oo}

which (independent of «) is well-defined and bounded above on P2\ /(f)
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Argument in the Case X = P?, part 2

Writing f([x : y : z]) = [, f,, f], where £, f,, and f, are homogeneous
polynomials of degree \(f) in x, y, and z, we have

max{|f|so, |fy|oo, |fz]o0 }

Yoo i [X 1y 1 2] = log ,
o max{|x?|co, [y?[oo, [2%|oc }

which (independent of «) is well-defined and bounded above on P2\ /(f).
Also, 3 D such that
Ya,co([x 1y 2]) <logdist([x : y : 2], I(f)) + D

for all v and [x : y : z] € P2\ {f*a = 0}. (Note that /(f) C {f*a = 0}.)
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Argument in the Case X = P?, part 2

Writing f([x : y : z]) = [, f,, f], where £, f,, and f, are homogeneous
polynomials of degree \(f) in x, y, and z, we have

max{|fX|OO7 |fy|007 |fz|oo}
max{|x?[oo, y?[oos |2%|oc}’

Yoo i [X 1y 1 2] = log
which (independent of «) is well-defined and bounded above on P2\ /(f).

Also, 3 D such that

Yaco([x 1y i 2]) <logdist([x :y: z],I(f))+ D

for all v and [x : y : z] € P2\ {f*a = 0}. (Note that /(f) C {f*a = 0}.)

For each v € Mk, 3C, > 0 such that 1, is bounded above by C, on
P2\ I(f); moreover, we can take C, = 0 for all but finitely many v.
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Argument in the Case X = P?, part 3
For p=[x:y:z] € I(f~1), consider
A(F)""he (F7(p)) = b+ (p) =

S S )+ D00 R (F4(p)) — AP (P4(p)).
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Argument in the Case X = P?, part 3
For p=[x:y:z] € I(f~1), consider

A(F)""he+(F7(p)) — he+(p) =

S S )+ D00 R (F4(p)) — AP (P4(p)).

The left side is bounded below, and the right side is bounded above. (I
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Argument in the Case X = P2, part 3
For p=[x:y:z] € I(f~1), consider

AMF)"h+(F"(p)) — h+(p) =

ZZizveM G P+ " (F(P)) = A(F)bis (F4(p).

The left side is bounded below, and the right side is bounded above. [

The argument is essentially the same in all cases where L™ is ample.

We get as a corollary that

lim A(f)""h+(f"(p))

n—oo

exists and is non-negative for every point whose forward orbit misses /(f).
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Key Steps in the Case Where L™ Is Big but Not Ample

Kawaguchi: LT = A+ " §;[Cj], with A Kahler, each §; > 0, and each C; a
prime divisor satisfying (L* - [Cj]) = 0.
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Key Steps in the Case Where L™ Is Big but Not Ample

Kawaguchi: LT = A+ " §;[Cj], with A Kahler, each §; > 0, and each C; a
prime divisor satisfying (L* - [Cj]) = 0.

We show that each [C;] is either periodic for f* or has the property that
(Ffm)*[C;] is nef for n >> 0. So

LY =>"9G+N+P,

with N nef, P periodic for f*, each «; > 0, and each G; globally generated.
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Key Steps in the Case Where L™ Is Big but Not Ample

Kawaguchi: LT = A+ " §;[Cj], with A Kahler, each §; > 0, and each C; a
prime divisor satisfying (L* - [Cj]) = 0.

We show that each [C;] is either periodic for f* or has the property that
(f")*[Gj] is nef for n >> 0. So

LY =>"9G+N+P,

with N nef, P periodic for f*, each «; > 0, and each G; globally generated.

Then we again consider

A(F) ™ he+(£7(p)) — i+ (p)-
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thank you
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