The average number of integral points in orbits

Wade Hindes

CUNY Graduate Center

Joint Mathematics Meeting 2016 Seattle, WA. February 8th, 2016

• Let K be a global field,

- Let K be a global field,
- \mathcal{O}_K be the ring of integers of K,

- Let K be a global field,
- \mathcal{O}_K be the ring of integers of K,
- $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $d \ge 2$,

- Let K be a global field,
- \mathcal{O}_K be the ring of integers of K,
- $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $d \ge 2$,

•
$$\phi^n := \underbrace{\phi \circ \phi \circ \cdots \circ \phi}_{n}$$
 be the n^{th} iterate of ϕ ,

- Let K be a global field,
- \mathcal{O}_K be the ring of integers of K,
- $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $d \ge 2$,

•
$$\phi^n := \underbrace{\phi \circ \phi \circ \cdots \circ \phi}_{n}$$
 be the n^{th} iterate of ϕ ,

•
$$\mathcal{O}_{\phi}^{+}(P) := \left\{ P, \phi(P), \phi^{2}(P) \dots \right\}$$
 be the orbit of $P \in \mathbb{P}^{1}(\overline{K})$.

- Let K be a global field,
- \mathcal{O}_K be the ring of integers of K,

•
$$\phi: \mathbb{P}^1 \to \mathbb{P}^1$$
 be a rational map of degree $d \geq 2$,

•
$$\phi^n := \underbrace{\phi \circ \phi \circ \cdots \circ \phi}_{n}$$
 be the n^{th} iterate of ϕ ,

•
$$\mathcal{O}_{\phi}^{+}(P) := \left\{ P, \phi(P), \phi^{2}(P) \dots \right\}$$
 be the orbit of $P \in \mathbb{P}^{1}(\overline{K})$.

Goal: Given $P \in \mathbb{P}^1(K)$, we want to understand $\mathcal{O}^+_{\phi}(P) \cap \mathcal{O}_K$.

- Let K be a global field,
- \mathcal{O}_K be the ring of integers of K,

•
$$\phi: \mathbb{P}^1 \to \mathbb{P}^1$$
 be a rational map of degree $d \geq 2$,

•
$$\phi^n := \underbrace{\phi \circ \phi \circ \cdots \circ \phi}_{n}$$
 be the n^{th} iterate of ϕ ,

•
$$\mathcal{O}^+_{\phi}(P) := \left\{ P, \phi(P), \phi^2(P) \dots \right\}$$
 be the orbit of $P \in \mathbb{P}^1(\overline{K})$.

Goal: Given $P \in \mathbb{P}^1(K)$, we want to understand $\mathcal{O}^+_{\phi}(P) \cap \mathcal{O}_K$.

Basic questions:

• For which ϕ is $\mathcal{O}_{\phi}^+(P) \cap \mathcal{O}_K$ finite for all $P \in \mathbb{P}^1(K)$?

- Let K be a global field,
- \mathcal{O}_K be the ring of integers of K,

•
$$\phi: \mathbb{P}^1 \to \mathbb{P}^1$$
 be a rational map of degree $d \geq 2$,

•
$$\phi^n := \underbrace{\phi \circ \phi \circ \cdots \circ \phi}_{n}$$
 be the n^{th} iterate of ϕ ,

•
$$\mathcal{O}^+_{\phi}(P) := \left\{ P, \phi(P), \phi^2(P) \dots \right\}$$
 be the orbit of $P \in \mathbb{P}^1(\overline{K})$.

Goal: Given $P \in \mathbb{P}^1(K)$, we want to understand $\mathcal{O}^+_{\phi}(P) \cap \mathcal{O}_K$.

Basic questions:

- For which ϕ is $\mathcal{O}^+_{\phi}(P) \cap \mathcal{O}_K$ finite for all $P \in \mathbb{P}^1(K)$?
- **2** When finite, how large is $\mathcal{O}^+_{\phi}(P) \cap \mathcal{O}_{\mathcal{K}}$?

- Let K be a global field,
- \mathcal{O}_K be the ring of integers of K,

•
$$\phi: \mathbb{P}^1 \to \mathbb{P}^1$$
 be a rational map of degree $d \geq 2$,

•
$$\phi^n := \underbrace{\phi \circ \phi \circ \cdots \circ \phi}_{n}$$
 be the n^{th} iterate of ϕ ,

•
$$\mathcal{O}^+_{\phi}(P) := \left\{ P, \phi(P), \phi^2(P) \dots \right\}$$
 be the orbit of $P \in \mathbb{P}^1(\overline{K})$.

Goal: Given $P \in \mathbb{P}^1(K)$, we want to understand $\mathcal{O}^+_{\phi}(P) \cap \mathcal{O}_K$.

Basic questions:

- For which ϕ is $\mathcal{O}^+_{\phi}(P) \cap \mathcal{O}_K$ finite for all $P \in \mathbb{P}^1(K)$?
- **2** When finite, how large is $\mathcal{O}^+_{\phi}(P) \cap \mathcal{O}_{\mathcal{K}}$? Explicit bounds?

$$\phi(x) = \frac{899x^2 - 2002x + 275}{33x^2 - 584x + 275}$$

$$\phi(x) = \frac{899x^2 - 2002x + 275}{33x^2 - 584x + 275}$$

and check that

$$\mathcal{O}^+_\phi(0) = \Big\{0, 1, 3, -2, 5, -7, rac{2917}{299}, rac{-296398306}{10198813}\dots\Big\}.$$

$$\phi(x) = \frac{899x^2 - 2002x + 275}{33x^2 - 584x + 275}$$

and check that

$$\mathcal{O}^+_\phi(0) = \Big\{0, 1, 3, -2, 5, -7, \frac{2917}{299}, \frac{-296398306}{10198813}\dots\Big\}.$$

When finiteness fails:

Polynomials: If φ ∈ O_K[x] and P ∈ O_K has infinite orbit, then O⁺_φ(P) ∩ O_K is infinite.

$$\phi(x) = \frac{899x^2 - 2002x + 275}{33x^2 - 584x + 275}$$

and check that

$$\mathcal{O}^+_\phi(0) = \Big\{0, 1, 3, -2, 5, -7, \frac{2917}{299}, \frac{-296398306}{10198813}\dots\Big\}.$$

When finiteness fails:

- Polynomials: If φ ∈ O_K[x] and P ∈ O_K has infinite orbit, then O⁺_φ(P) ∩ O_K is infinite.
- **2** Polynomial Iterates: Let $\phi(x) = 1/x^2$ and P = 2. Then

$$\mathcal{O}_{\phi}^{+}(P) \cap \mathbb{Z} = \{2, 2^{4}, 2^{16}, \dots\}.$$

Example: Let $\mathcal{K} = \mathbb{Q}$ and $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}$. Then we set

$$\phi(x) = \frac{899x^2 - 2002x + 275}{33x^2 - 584x + 275}$$

and check that

$$\mathcal{O}^+_\phi(0) = \Big\{0, 1, 3, -2, 5, -7, rac{2917}{299}, rac{-296398306}{10198813}\dots\Big\}.$$

When finiteness fails:

- Polynomials: If φ ∈ O_K[x] and P ∈ O_K has infinite orbit, then O⁺_φ(P) ∩ O_K is infinite.
- **2** Polynomial Iterates: Let $\phi(x) = 1/x^2$ and P = 2. Then

$$\mathcal{O}_{\phi}^{+}(P) \cap \mathbb{Z} = \{2, 2^{4}, 2^{16}, \dots\}.$$

In this case, $\phi^2 = x^4 \in \mathbb{Z}[x]$.

Fact: If $\phi^n \in \overline{K}[x]$, then $\phi^2 \in \overline{K}[x]$.

Fact: If $\phi^n \in \overline{K}[x]$, then $\phi^2 \in \overline{K}[x]$. (Riemann-Hurwitz formula)

Fact: If $\phi^n \in \overline{K}[x]$, then $\phi^2 \in \overline{K}[x]$. (Riemann-Hurwitz formula)

Theorem (Silverman): Let K be a number field. If $\phi^2 \notin \overline{K}[x]$, then:

• $\mathcal{O}_{\phi}^+(P) \cap \mathcal{O}_{\mathcal{K}}$ is finite for all $P \in \mathbb{P}^1(\mathcal{K})$.

Fact: If $\phi^n \in \overline{K}[x]$, then $\phi^2 \in \overline{K}[x]$. (Riemann-Hurwitz formula)

Theorem (Silverman): Let K be a number field. If $\phi^2 \notin \overline{K}[x]$, then:

2 Let
$$K = \mathbb{Q}$$
 and $\phi^n(P) = a_n/b_n$.

Fact: If $\phi^n \in \overline{K}[x]$, then $\phi^2 \in \overline{K}[x]$. (Riemann-Hurwitz formula)

Theorem (Silverman): Let K be a number field. If $\phi^2 \notin \overline{K}[x]$, then:

3 Let $K = \mathbb{Q}$ and $\phi^n(P) = a_n/b_n$. If $\mathcal{O}^+_{\phi}(P)$ is infinite, then

$$\lim_{n\to\infty} \frac{\log|a_n|}{\log|b_n|} = 1$$

• How large can $\#(\mathcal{O}_{\phi}^+(P) \cap \mathcal{O}_{\mathcal{K}})$ be?

- How large can $\#(\mathcal{O}_{\phi}^+(P) \cap \mathcal{O}_{\mathcal{K}})$ be?
- 2 Are there bounds that depend only on d and K?

- How large can $\#(\mathcal{O}^+_{\phi}(P) \cap \mathcal{O}_{\mathcal{K}})$ be?
- 2 Are there bounds that depend only on d and K?

Proposition: For all $N \ge 0$ and $d \ge 2$, there exists $\phi \in \mathbb{Q}(x)$ of degree *d* satisfying:

- $\phi^2 \notin \overline{\mathbb{Q}}(x),$
- **2** $\mathcal{O}^+_\phi(0)$ is infinite,

- How large can $\#(\mathcal{O}^+_{\phi}(P) \cap \mathcal{O}_{\mathcal{K}})$ be?
- 2 Are there bounds that depend only on d and K?

Proposition: For all $N \ge 0$ and $d \ge 2$, there exists $\phi \in \mathbb{Q}(x)$ of degree *d* satisfying:

- $\phi^2 \notin \overline{\mathbb{Q}}(x),$
- 2 $\mathcal{O}^+_{\phi}(0)$ is infinite,

Refined conjecture: There is a bound on $\#(\mathcal{O}_{\phi}^+(P) \cap \mathcal{O}_{\mathcal{K}})$ that depends only on d, K, and $\Re\phi$ (the minimal resultant).

- How large can $\#(\mathcal{O}_{\phi}^+(P) \cap \mathcal{O}_K)$ be?
- 2 Are there bounds that depend only on d and K?

Proposition: For all $N \ge 0$ and $d \ge 2$, there exists $\phi \in \mathbb{Q}(x)$ of degree *d* satisfying:

- $\Phi^2 \not\in \overline{\mathbb{Q}}(x),$
- 2 $\mathcal{O}^+_{\phi}(0)$ is infinite,

Refined conjecture: There is a bound on $\#(\mathcal{O}_{\phi}^+(P) \cap \mathcal{O}_{\mathcal{K}})$ that depends only on d, K, and $\Re\phi$ (the minimal resultant).

This is analogous to a conjecture of Lang on integral points on elliptic curves.

Easier Question: How large to we expect $\#(\mathcal{O}_{\phi}^+(P) \cap \mathcal{O}_K)$ to be if we choose P at "<u>random</u>"?

Easier Question: How large to we expect $\#(\mathcal{O}_{\phi}^+(P) \cap \mathcal{O}_K)$ to be if we choose *P* at "*random*"?

A reasonable interpretation of this question can be stated in terms of averages.

Easier Question: How large to we expect $\#(\mathcal{O}_{\phi}^+(P) \cap \mathcal{O}_{\mathcal{K}})$ to be if we choose *P* at "*random*"?

A reasonable interpretation of this question can be stated in terms of averages.

Definition: For all B > 0, let $\mathbb{P}^1(B, K)$ be the set of points in $\mathbb{P}^1(K)$ of height at most B (finite by Northcott)

Easier Question: How large to we expect $\#(\mathcal{O}_{\phi}^+(P) \cap \mathcal{O}_{\mathcal{K}})$ to be if we choose *P* at "*random*"?

A reasonable interpretation of this question can be stated in terms of averages.

Definition: For all B > 0, let $\mathbb{P}^1(B, K)$ be the set of points in $\mathbb{P}^1(K)$ of height at most B (finite by Northcott) and define

$$\overline{\operatorname{Avg}}(\phi, S) := \limsup_{B \to \infty} \frac{\sum_{P \in \mathbb{P}^1(B, K)} \# (\mathcal{O}_{\phi}^+(P) \cap \mathcal{O}_{K, S})}{\# \mathbb{P}^1(B, K)}$$

for any finite set of places S of K.

Easier Question: How large to we expect $\#(\mathcal{O}_{\phi}^+(P) \cap \mathcal{O}_{\mathcal{K}})$ to be if we choose *P* at "*random*"?

A reasonable interpretation of this question can be stated in terms of averages.

Definition: For all B > 0, let $\mathbb{P}^1(B, K)$ be the set of points in $\mathbb{P}^1(K)$ of height at most B (finite by Northcott) and define

$$\overline{\operatorname{Avg}}(\phi, S) := \limsup_{B \to \infty} \frac{\sum_{P \in \mathbb{P}^1(B, K)} \# (\mathcal{O}_{\phi}^+(P) \cap \mathcal{O}_{K, S})}{\# \mathbb{P}^1(B, K)}$$

for any finite set of places S of K.

Goal: Bound $\overline{\text{Avg}}(\phi, S)$ independently of ϕ (even d and S)

Theorem (WH 2015)

If K is a number field, $\phi^2 \notin \overline{K}[x]$ and deg $(\phi) \ge 2$, then

$$\overline{\operatorname{Avg}}(\phi, S) := \limsup_{B \to \infty} \frac{\sum_{P \in \mathbb{P}^1(B, K)} \# (\mathcal{O}^+_{\phi}(P) \cap \mathcal{O}_{K, S})}{\# \mathbb{P}^1(B, K)} = 0$$

for all S.

Theorem (WH 2015)

If K is a number field, $\phi^2 \notin \overline{K}[x]$ and deg $(\phi) \ge 2$, then

$$\overline{\operatorname{Avg}}(\phi, S) := \limsup_{B \to \infty} \frac{\sum_{P \in \mathbb{P}^1(B, K)} \# (\mathcal{O}_{\phi}^+(P) \cap \mathcal{O}_{K, S})}{\# \mathbb{P}^1(B, K)} = 0$$

for all S. If in addition, ϕ is separable and $\infty \in \text{Per}(\phi)$, then $\overline{\text{Avg}}(\phi, S) = 0$ when $K/\mathbb{F}_q(t)$.

Theorem (WH 2015)

If K is a number field, $\phi^2 \notin \overline{K}[x]$ and deg $(\phi) \ge 2$, then

$$\overline{\operatorname{Avg}}(\phi, S) := \limsup_{B \to \infty} \frac{\sum_{P \in \mathbb{P}^1(B, K)} \# (\mathcal{O}_{\phi}^+(P) \cap \mathcal{O}_{K, S})}{\# \mathbb{P}^1(B, K)} = 0$$

for all S. If in addition, ϕ is separable and $\infty \in \text{Per}(\phi)$, then $\overline{\text{Avg}}(\phi, S) = 0$ when $K/\mathbb{F}_q(t)$.

Generalization: We can generalize this result to 1-dimensional families of orbits, assuming a height uniformity conjecture in arithmetic geometry.

Integral points in families of orbits:

• Let $X_{/K}$ be a variety,

- Let $X_{/K}$ be a variety,
- Let $h_X := h_{X,D} : X(\overline{K}) \to \mathbb{R}_{\geq 0}$ be an ample height function,

- Let $X_{/K}$ be a variety,
- Let $h_X := h_{X,D} : X(\overline{K}) \to \mathbb{R}_{\geq 0}$ be an ample height function,
- Let $\operatorname{Rat}_d \subseteq \mathbb{P}^{2d-1}$ be the space of rational maps of degree d,

- Let $X_{/K}$ be a variety,
- Let $h_X := h_{X,D} : X(\overline{K}) \to \mathbb{R}_{\geq 0}$ be an ample height function,
- Let $\operatorname{Rat}_d \subseteq \mathbb{P}^{2d-1}$ be the space of rational maps of degree d,
- Let $\phi: X \to \operatorname{Rat}_d$ and $\beta: X \to \mathbb{P}^1$ be rational maps (over K).

- Let $X_{/K}$ be a variety,
- Let $h_X := h_{X,D} : X(\overline{K}) \to \mathbb{R}_{\geq 0}$ be an ample height function,
- Let $\operatorname{Rat}_d \subseteq \mathbb{P}^{2d-1}$ be the space of rational maps of degree d,
- Let $\phi: X \to \operatorname{Rat}_d$ and $\beta: X \to \mathbb{P}^1$ be rational maps (over K).

For $P \in X(\overline{K})$, we let ϕ_P (resp. β_P) be the image of P under ϕ (and β resp.)

- Let $X_{/K}$ be a variety,
- Let $h_X := h_{X,D} : X(\overline{K}) \to \mathbb{R}_{\geq 0}$ be an ample height function,
- Let $\operatorname{Rat}_d \subseteq \mathbb{P}^{2d-1}$ be the space of rational maps of degree d,
- Let $\phi: X \to \operatorname{Rat}_d$ and $\beta: X \to \mathbb{P}^1$ be rational maps (over K).

For $P \in X(\overline{K})$, we let ϕ_P (resp. β_P) be the image of P under ϕ (and β resp.)

Goal: Study the distribution of $\#(\mathcal{O}^+_{\phi_P}(\beta_P) \cap \mathcal{O}_{K,S})$ as we vary *P*.

- Let $X_{/K}$ be a variety,
- Let $h_X := h_{X,D} : X(\overline{K}) \to \mathbb{R}_{\geq 0}$ be an ample height function,
- Let $\operatorname{Rat}_d \subseteq \mathbb{P}^{2d-1}$ be the space of rational maps of degree d,
- Let $\phi: X \to \operatorname{Rat}_d$ and $\beta: X \to \mathbb{P}^1$ be rational maps (over K).

For $P \in X(\overline{K})$, we let ϕ_P (resp. β_P) be the image of P under ϕ (and β resp.)

Goal: Study the distribution of $\#(\mathcal{O}_{\phi_P}^+(\beta_P) \cap \mathcal{O}_{K,S})$ as we vary *P*. To do this, let X(B, K) be the set of *K*-points of *X* of height at most *B*.

$$\overline{\mathsf{Avg}}(\phi,\beta,S) := \limsup_{B \to \infty} \frac{\sum_{P \in X(B,K)} \# \big(\mathcal{O}^+_{\phi_P}(\beta_P) \cap \mathcal{O}_{K,S} \big)}{\# X(B,K)}.$$

$$\overline{\operatorname{Avg}}(\phi,\beta,S) := \limsup_{B \to \infty} \frac{\sum_{P \in X(B,K)} \# (\mathcal{O}_{\phi_P}^+(\beta_P) \cap \mathcal{O}_{K,S})}{\# X(B,K)}$$

However, in order to prove an average-zero result, we need the following height uniformity conjecture.

$$\overline{\mathsf{Avg}}(\phi,\beta,S) := \limsup_{B \to \infty} \frac{\sum_{P \in X(B,K)} \# (\mathcal{O}_{\phi_P}^+(\beta_P) \cap \mathcal{O}_{K,S})}{\# X(B,K)}$$

However, in order to prove an average-zero result, we need the following height uniformity conjecture.

Conjecture: Let $\pi : C \to B$ be a family of curves of genus ≥ 2 . Then there exist constants κ_1 and κ_2 such that

$$h_C(Q) \leq \kappa_1 \cdot h_{\mathcal{B}}(P) + \kappa_2$$

for all points $Q \in C_P(K)$.

$$\overline{\mathsf{Avg}}(\phi,\beta,S) := \limsup_{B \to \infty} \frac{\sum_{P \in X(B,K)} \# (\mathcal{O}_{\phi_P}^+(\beta_P) \cap \mathcal{O}_{K,S})}{\# X(B,K)}$$

However, in order to prove an average-zero result, we need the following height uniformity conjecture.

Conjecture: Let $\pi : C \to B$ be a family of curves of genus ≥ 2 . Then there exist constants κ_1 and κ_2 such that

$$h_C(Q) \leq \kappa_1 \cdot h_{\mathcal{B}}(P) + \kappa_2$$

for all points $Q \in C_P(K)$.

(Here $h_{\mathcal{C}}$ is an arbitrary height function on \mathcal{C} and $h_{\mathcal{B}}$ is ample.)

$$\overline{\mathsf{Avg}}(\phi,\beta,\mathcal{S}) := \limsup_{B \to \infty} \frac{\sum_{P \in \mathcal{X}(B,\mathcal{K})} \# (\mathcal{O}^+_{\phi_P}(\beta_P) \cap \mathcal{O}_{\mathcal{K},\mathcal{S}})}{\# \mathcal{X}(B,\mathcal{K})}.$$

However, in order to prove an average-zero result, we need the following height uniformity conjecture.

Conjecture: Let $\pi : C \to B$ be a family of curves of genus ≥ 2 . Then there exist constants κ_1 and κ_2 such that

$$h_C(Q) \leq \kappa_1 \cdot h_{\mathcal{B}}(P) + \kappa_2$$

for all points $Q \in C_P(K)$.

(Here $h_{\mathcal{C}}$ is an arbitrary height function on \mathcal{C} and $h_{\mathcal{B}}$ is ample.)

This conjecture follows from the Vojta (main) conjecture.

Theorem (WH 2015)

Let $X_{/K}$ be a curve and suppose that $\phi : X \to \text{Rat}_d$ and $\beta : X \to \mathbb{P}^1$ satisfy

$$\mathsf{deg}(eta) > rac{2d-1}{d-1} \cdot \mathsf{deg}(\phi^* H)$$

for the hyperplane class $H \in Pic(\mathbb{P}^{2d+1})$. Then:

- $\#(\mathcal{O}^+_{\phi_P}(\beta_P) \cap \mathcal{O}_{K,S})$ is bounded over all $P \in X(K)$.
- **2** $\overline{\text{Avg}}(\phi, \beta, S)$ exists
- Solution Assuming the height uniformity conjecture, $\overline{Avg}(\phi, \beta, S) = 0$.

Theorem (WH 2015)

Let $X_{/K}$ be a curve and suppose that $\phi : X \to \text{Rat}_d$ and $\beta : X \to \mathbb{P}^1$ satisfy

$$\mathsf{deg}(eta) > rac{2d-1}{d-1} \cdot \mathsf{deg}(\phi^* H)$$

for the hyperplane class $H \in Pic(\mathbb{P}^{2d+1})$. Then:

- $\#(\mathcal{O}^+_{\phi_P}(\beta_P) \cap \mathcal{O}_{K,S})$ is bounded over all $P \in X(K)$.
- **2** $\overline{\text{Avg}}(\phi, \beta, S)$ exists

Solution Assuming the height uniformity conjecture, $\overline{Avg}(\phi, \beta, S) = 0$.

Remarks:

- **1** This theorem holds unconditionally over $K/\mathbb{F}_q(t)$.
- ② Let $X = \mathbb{P}^1$, $\phi : X \to \operatorname{Rat}_d$ be constant, and $\beta : \mathbb{P}^1 \to \mathbb{P}^1$ be the identity map. Then we recover our previous result.

• Let K/\mathbb{Q} be a number field.

- Let K/\mathbb{Q} be a number field.
- **2** Let $\overline{\mathcal{O}}_{\mathcal{K}} \subseteq \overline{\mathcal{K}}$ be the integral closure of $\mathcal{O}_{\mathcal{K}}$.

- Let K/\mathbb{Q} be a number field.
- **2** Let $\overline{\mathcal{O}}_{\mathcal{K}} \subseteq \overline{\mathcal{K}}$ be the integral closure of $\mathcal{O}_{\mathcal{K}}$.
- For D, B > 0 let

 $\mathbb{P}^{1}(D,B,K) := \big\{ P \in \mathbb{P}^{1}(\overline{K}) \mid [K(P):K] \leq D, \ h(P) \leq B \big\}.$

- Let K/\mathbb{Q} be a number field.
- **2** Let $\overline{\mathcal{O}}_{\mathcal{K}} \subseteq \overline{\mathcal{K}}$ be the integral closure of $\mathcal{O}_{\mathcal{K}}$.
- For D, B > 0 let

$$\mathbb{P}^1(D,B,K) := \big\{ P \in \mathbb{P}^1(\overline{K}) \mid [K(P):K] \le D, \ h(P) \le B \big\}.$$

Remark: If $\phi^2 \notin \overline{K}[x]$ and $P \in \mathbb{P}^1(\overline{K})$, then $\mathcal{O}^+_{\phi}(P) \cap \overline{\mathcal{O}}_K$ is finite;

(replace K with K(P) and use Silverman's original proof)

- Let K/\mathbb{Q} be a number field.
- **2** Let $\overline{\mathcal{O}}_{\mathcal{K}} \subseteq \overline{\mathcal{K}}$ be the integral closure of $\mathcal{O}_{\mathcal{K}}$.
- For D, B > 0 let

$$\mathbb{P}^{1}(D,B,K) := \big\{ P \in \mathbb{P}^{1}(\overline{K}) \mid [K(P):K] \leq D, \ h(P) \leq B \big\}.$$

Remark: If $\phi^2 \notin \overline{K}[x]$ and $P \in \mathbb{P}^1(\overline{K})$, then $\mathcal{O}^+_{\phi}(P) \cap \overline{\mathcal{O}}_K$ is finite;

(replace K with K(P) and use Silverman's original proof)

Therefore, since $\mathbb{P}^1(D, B, K)$ is finite, we can study the average value of $\#(\mathcal{O}_{\phi}^+(P) \cap \overline{\mathcal{O}}_K)$ for large *B* and fixed *D*.

Theorem (WH, Gunther-WH 2016)

Let $\phi \in K(x)$ satisfy $\phi^2 \notin \overline{K}[x]$ and deg $(\phi) \ge 2$. Then:

- There exists $N = N(\phi, K, D)$ such that for any non-preperiodic point Q, we have that $\phi^n(Q) \in \overline{\mathcal{O}}_K$ implies $n \leq N$.

$$\overline{\operatorname{Avg}}(\phi, D) := \limsup_{B \to \infty} \frac{\sum_{P \in \mathbb{P}^1(D, B, K)} \# (\mathcal{O}^+_{\phi}(P) \cap \overline{\mathcal{O}}_K)}{\# \mathbb{P}^1(D, B, K)} = 0.$$

Theorem (WH, Gunther-WH 2016)

Let $\phi \in K(x)$ satisfy $\phi^2 \notin \overline{K}[x]$ and deg $(\phi) \ge 2$. Then:

- There exists $N = N(\phi, K, D)$ such that for any non-preperiodic point Q, we have that $\phi^n(Q) \in \overline{\mathcal{O}}_K$ implies $n \leq N$.

$$\overline{\operatorname{Avg}}(\phi, D) := \limsup_{B \to \infty} \frac{\sum_{P \in \mathbb{P}^1(D, B, K)} \# (\mathcal{O}_{\phi}^+(P) \cap \overline{\mathcal{O}}_K)}{\# \mathbb{P}^1(D, B, K)} = 0.$$

Rough interpretation:

"A random algebraic number has no integral points in its orbit."

Thank you!