Some applications of the Arithmetic euqidistribution theorem in Complex Dynamics

Hexi Ye University of British Columbia Seattle, Jan 9, 2016

Baker and Rumely, Favre and Rivera-Letelier established the arithmetic equidistribution of points with small height on \mathbb{P}^1 .

Baker and Rumely, Favre and Rivera-Letelier established the arithmetic equidistribution of points with small height on \mathbb{P}^1 .

Chambert-Loir showed the equidistribution of points with small height on curves, while for general varieties the equidistribution theorem was given by Yuan.

For example:

Let K be a number field and $f: \mathbb{P}^1(K) \to \mathbb{P}^1(K)$ be a rational function of degree greater than one.

For example:

Let K be a number field and $f: \mathbb{P}^1(K) \to \mathbb{P}^1(K)$ be a rational function of degree greater than one. The canonical height $\hat{h}_f(x) = 0$ for preperiodic points x of f.

For example:

Let K be a number field and $f: \mathbb{P}^1(K) \to \mathbb{P}^1(K)$ be a rational function of degree greater than one. The canonical height $\hat{h}_f(x) = 0$ for preperiodic points x of f. Then Galois orbits of preperiodic points of f equidistribute on \mathbb{P}^1 w.r.t. the measure of maximal entropy μ_f .

For example:

- Let K be a number field and $f: \mathbb{P}^1(K) \to \mathbb{P}^1(K)$ be a rational function of degree greater than one. The canonical height $\hat{h}_f(x) = 0$ for preperiodic points x of f. Then Galois orbits of preperiodic points of f equidistribute on \mathbb{P}^1 w. r. t. the measure of maximal entropy μ_f .
- More generally, the preperiodic points of $f: \mathbb{P}^n(K) \to \mathbb{P}^n(K)$ equidistribute on \mathbb{P}^n w. r. t. the canonical measure μ_f .

More examples:

On the complex plane \mathbb{C} , parameters $c \in \mathbb{C}$ with $f(z) = z^2 + c$ postcritcially finite (PCF, i.e. the critical point 0 is preperiodic), equidistribute w. r. t. the harmonic (bifurcation) measure of the Mandelbrot set.

More examples:

On the complex plane \mathbb{C} , parameters $c \in \mathbb{C}$ with $f(z) = z^2 + c$ postcritically finite (PCF, i.e. the critical point 0 is preperiodic), equidistribute w. r. t. the harmonic (bifurcation) measure of the Mandelbrot set.

More examples:

On the complex plane \mathbb{C} , parameters $c \in \mathbb{C}$ with $f(z) = z^2 + c$ postcritcially finite (PCF, i.e. the critical point 0 is preperiodic), equidistribute w. r. t. the harmonic (bifurcation) measure of the Mandelbrot set.

Parameters c with z^2+c being PCF

Picture by DeMarco

Arithmetic eugidistribution and application

More examples (Baker-DeMarco):

Fixed an $a \in K$, parameters $c \in \mathbb{C}$ with a being preperiodic under $f(z) = z^d + c$, equidistribute w.r.t. the bifurcation measure on \mathbb{C} for the marked point a.

Arithmetic euglidistribution and application More examples (Baker-DeMarco):

Fixed an $a \in K$, parameters $c \in \mathbb{C}$ with a being preperiodic under $f(z) = z^d + c$, equidistribute w.r.t. the bifurcation measure on \mathbb{C} for the marked point a.

They use this to show that if $a^d \neq b^d$, then only finitely many c with both a and b preperiodic under $f(z) = z^d + c$.

Arithmetic eugidistribution and application More examples (DeMarco-Wang-Y.): Fix λ , for family

the set of parameter t with critical points ± 1 preperiodic, equidistributes on \mathbb{C} w.r.t. the corresponding bifurcation measures.

- $f_t(z) = \frac{\lambda z}{z^2 + tz + 1}$

Arithmetic eugidistribution and application More examples (DeMarco-Wang-Y.): Fix λ , for family $f_t(z) = \frac{\lambda z}{z^2 + tz + 1}$

the set of parameter t with critical points ± 1 preperiodic, equidistributes on \mathbb{C} w.r.t. the corresponding bifurcation measures.

We use this to show that when $\lambda \neq 0$, there are only finitely many PCF points in $\operatorname{Per}_1(\lambda) \subset M_2$ (moduli space of quadratic maps).

Arithmetic euglidistribution and application

More examples (DeMarco-Wang-Y.):

Legendre family $E_t : \{y^2 = x(x-1)(x-t)\}$. Take a constant section $P_a(t) =$ $(a, \sqrt{a(a-1)(a-t)})$ $(a \in K \text{ a constant}).$

The parameters $t \in \mathbb{C}$, with $P_a(t)$ being torsion in E_t , equidistribute w.r.t. to some bifurcation measure.

Pictures by DeMarco

Arithmetic euglidistribution and application

More examples (DeMarco-Wang-Y.):

Legendre family $E_t : \{y^2 = x(x-1)(x-t)\}$. Take a constant section $P_a(t) =$ $(a, \sqrt{a(a-1)(a-t)})$ $(a \in K \text{ a constant}).$

Use this, we get (Originally proved by Masser and Zannier) For $a \neq b \in K$, there are only finitely many t with both $P_a(t)$ and $P_b(t)$ torsion in E_t .

Arithmetic eugldistribution and application

A question asked by Baker and DeMarco: In the moduli space of rational functions, which kind of variety contains Zariski dense PCF points?

Arithmetic euglidistribution and application

A question asked by Baker and DeMarco: In the moduli space of rational functions, which kind of variety contains Zariski dense PCF points?

An analogous result (Ghioca-Krieger-Nguyen-Y.):

If non-vertical, non-horizontal curve $C \subset \mathbb{C}^2$ contains Zariski dense (a, b) with both $z^d + a$ and $z^d + b$ PCF, then C is given by $y - \eta x = 0$ with $\eta^{d-1} = 1$.

Ideas: (1) Equidistribution of small points

(2) Combinatorial properties of the Mandelbrot set

Arithmetic euqidistribution and application

Dynamical Manin-Mumford Conjecture (by Shouwu Zhang):

The relation of preperiodic subvariety and subvariety with Zariski dense preperiodic points for a dynamic system.

Arithmetic eugidistribution and application

Dynamical Manin-Mumford Conjecture (by Shouwu Zhang):

The relation of preperiodic subvariety and subvariety with Zariski dense preperiodic points for a dynamic system.

We (Ghioca-Nguyen-Y.) proved this conjecture for the case when the underline dynamic space is $\ \mathbb{P}^1 imes \mathbb{P}^1$

(1) Equidistribution of small points Ideas:

- (2) Symmetries of Julia set by Levin
- (3) Some other techniques

Thank you!