The dynamical André-Oort conjecture...

Holly Krieger

January 9, 2016

Holly Krieger The dynamical André-Oort conjecture...

< ∃→

Setting: a point $(a, b) \in \mathbb{C}^2$ is **special** if each coordinate is the *j*-invariant of an elliptic curve with complex multiplication.

Theorem (André 1998)

Let C be an irreducible algebraic curve in the affine plane \mathbb{C}^2 . C has infinitely many special points if and only if C is either a projection fiber over a CM *j*-invariant, or C is a classical modular curve $\Phi_N(x, y) = 0$.

Setting: a point $(a, b) \in \mathbb{C}^2$ is **special** if each coordinate is the *j*-invariant of an elliptic curve with complex multiplication.

Theorem (André 1998)

Let C be an irreducible algebraic curve in the affine plane \mathbb{C}^2 . C has infinitely many special points if and only if C is either a projection fiber over a CM *j*-invariant, or C is a classical modular curve $\Phi_N(x, y) = 0$.

This is a result about (the lack of) *unlikely intersections*: though infinite, the special points are sparse in \mathbb{C}^2 , and so a plane curve only has Zariski dense special points if there's a good reason for it.

- (dynamical) André-Oort
- (dynamical) Manin-Mumford
- (dynamical) Mordell-Lang

- ∢ ≣ →

Dynamical setting: view \mathbb{C}^2 as parametrizing pairs of quadratic polynomials via $(a, b) \leftrightarrow (z^2 + a, z^2 + b)$.

Definition

A rational map is **post-critically finite (PCF)** if all critical orbits have finite forward orbit. A point $(a, b) \in \mathbb{C}^2$ is **special** if both $z^2 + a$ and $z^2 + b$ are PCF maps.

< ∃→

Everything in its right place

 $M := \{ c \in \mathbb{C} : \text{ the critical orbit of } z^2 + c \text{ is bounded in modulus} \}$

Theorem (Ghioca-K.-Nguyen 2014, Ghioca-K.-Nguyen-Ye 2015)

Let C be an irreducible algebraic curve in \mathbb{C}^2 . C has infinitely many special points if and only if C is either a projection fiber over a PCF parameter, or the diagonal.

Theorem (Ghioca-K.-Nguyen 2014, Ghioca-K.-Nguyen-Ye 2015)

Let C be an irreducible algebraic curve in \mathbb{C}^2 . C has infinitely many special points if and only if C is either a projection fiber over a PCF parameter, or the diagonal.

- If C has infinitely many special points, then for all $(a, b) \in C$, $z^2 + a$ is PCF iff $z^2 + b$ is PCF
- an appropriately chosen local holomorphic branch of $\pi_1^{-1} \circ \pi^2$ induces a linear action on an interval of external angles of the Mandelbrot set
- such an action must be trivial, so C is the diagonal.

-∢ ≣ ▶

Independently, Kühne and Bilu-Masser-Zannier proved effective versions of the theorem of André:

Theorem (Kühne 2012, Bilu-Masser-Zannier 2013)

For any irreducible algebraic curve C over a number field K with finitely many (CM)-special points, the set of special points is effectively computable.

Method: effectively bound the maximum of the modulus of the two discriminants for special points of *C* which lie on no modular curve (height bound via linear forms in logs), and effectively bound the max *N* so that a special point lies in the intersection of *C* and $\Phi_N(x, y) = 0$.

Independently, Kühne and Bilu-Masser-Zannier proved effective versions of the theorem of André:

Theorem (Kühne 2012, Bilu-Masser-Zannier 2013)

For any irreducible algebraic curve C over a number field K with finitely many (CM)-special points, the set of special points is effectively computable.

Method: effectively bound the maximum of the modulus of the two discriminants for special points of *C* which lie on no modular curve (height bound via linear forms in logs), and effectively bound the max *N* so that a special point lies in the intersection of *C* and $\Phi_N(x, y) = 0$.

Question

Effective computation of the (dynamically) special points of irreducible algebraic curves in \mathbb{C}^2 ?

-∢ ≣ ▶

Key point of classical effective André-Oort: discriminants of CM elliptic curves get large. Easy exercise: for quadratic polynomials, PCF points have height bounded by 2.

< ∃⇒

Key point of classical effective André-Oort: discriminants of CM elliptic curves get large. Easy exercise: for quadratic polynomials, PCF points have height bounded by 2.

Idea: replace the modulus of the discriminant with the size of period or preperiod.

Example: (dynamically) special points on xy = 1. Suppose that *a* and 1/a are both PCF parameters. There should exist a Galois conjugate a^{σ} of *a* which is very close to (for example) -2. However, the reciprocal -1/2 lies well inside the main cardioid of the Mandelbrot set and away from the hyperbolic center, so $1/a^{\sigma}$ cannot be PCF.

Image: Second second

(don't get any) Big Ideas

Holly Krieger The dynamical André-Oort conjecture...

(don't get any) Big Ideas

< ≣ >

э

- find an element $c \in \partial M$ for which all solutions of P(c, y) = 0 lie inside and away from the center of hyperbolic components of the Mandelbrot set
- Obund their period above (and so their diameter below) by the inherent field of definition bound depending on P and c
- If C has PCF special points whose first coordinate is PCF parameter a with sufficiently large period or preperiod, then there should be a Galois conjugate a^o of that point sufficiently close to c to guarantee that all solutions of P(a^{sigma}, y) = 0 are non-PCF

< ∃ >

• find an element $c \in \partial M$ for which all solutions of P(c, y) = 0 lie inside and away from the center of hyperbolic components of the Mandelbrot set lf this doesn't exist, then P provides an algebraic correspondence which fixes ∂M , which is impossible.

∢ ≣ ▶

- find an element $c \in \partial M$ for which all solutions of P(c, y) = 0 lie inside and away from the center of hyperbolic components of the Mandelbrot set If this doesn't exist, then P provides an algebraic correspondence which fixes ∂M , which is impossible.
- Obund their period above (and so their diameter below) by the inherent field of definition bound depending on P and c Bounds on the sizes of hyperbolic components is hard but not completely intractable.

< ∃ →

- find an element $c \in \partial M$ for which all solutions of P(c, y) = 0 lie inside and away from the center of hyperbolic components of the Mandelbrot set If this doesn't exist, then P provides an algebraic correspondence which fixes ∂M , which is impossible.
- Obund their period above (and so their diameter below) by the inherent field of definition bound depending on P and c Bounds on the sizes of hyperbolic components is hard but not completely intractable.
- If C has PCF special points whose first coordinate is PCF parameter a with sufficiently large period or preperiod, then there should be a Galois conjugate a^o of that point sufficiently close to c to guarantee that all solutions of P(a^{sigma}, y) = 0 are non-PCF
 Effective equidistribution might do this, or analysis of external rays.

→ Ξ →

General dynamical André-Oort question?

Definition

Let V be an irreducible quasi-projective complex variety and $d \ge 2$. $f: V \times \mathbb{P}^1 \to \mathbb{P}^1$ is an **algebraic family of rational maps** of degree d if f is a morphism so that $f_t := f(t, \cdot) : \mathbb{P}^1 \to \mathbb{P}^1$ is a degree d morphism for each $t \in V$.

Any algebraic family of rational maps induces a projection $V \to \mathcal{M}_d$; call the dimension of the image of this projection the **dimension in moduli** of V.

Definition

A marked point of a family $f: V \times \mathbb{P}^1 \to \mathbb{P}^1$ is a morphism $a: V \to \mathbb{P}^1$.

医下 长度下口

General dynamical André-Oort question?

Definition

Let V be an irreducible quasi-projective complex variety and $d \ge 2$. $f: V \times \mathbb{P}^1 \to \mathbb{P}^1$ is an **algebraic family of rational maps** of degree d if f is a morphism so that $f_t := f(t, \cdot) : \mathbb{P}^1 \to \mathbb{P}^1$ is a degree d morphism for each $t \in V$.

Any algebraic family of rational maps induces a projection $V \to \mathcal{M}_d$; call the dimension of the image of this projection the **dimension in moduli** of *V*.

Definition

A marked point of a family $f: V \times \mathbb{P}^1 \to \mathbb{P}^1$ is a morphism $a: V \to \mathbb{P}^1$.

Example: $V = \mathbb{C}$, $f(c, [z : w]) = [z^2 + cw^2 : w^2]$, $a(c) \equiv [0 : 1]$.

Question

Let V be an algebraic family of rational maps with marked points $a_i(t)$. For which irreducible subvarieties Y of V is $Y \cap S_0(V)$ Zariski dense?

- 本部 と 本語 と 本語 と 二語

No surprises

Conjecture (General dynamical André-Oort conjecture, DeMarco)

Let $f: V \times \mathbb{P}^1 \to \mathbb{P}^1$ be an algebraic family of rational maps of degree $d \ge 2$, of dimension N > 0 in moduli. Let $a_0, ..., a_N$ be any collection of marked points. Define

$$S(V, a) := \bigcap_{i=0}^{N} \{t \in V : a_i(t) \text{ is preperiodic for } f_t\}.$$

Then S is Zariski dense in V if and only if the marked points are dynamically related along V.

Definition

We say that N marked points $a_1, ..., a_N$ are **dynamically related** along the algebraic family $f : V \times \mathbb{P}^1 \to \mathbb{P}^1$ if there exists an algebraic subvariety $X \subset (\mathbb{P}^1)^N$ defined over $\mathbb{C}(V)$ such that

- **(** $a_1, ..., a_N$ **)** $\in X$
- 2 $(f, ..., f)(X) \subset X$
- there exists *i* so that the projection from X to the *i*th coordinate hyperplane of (P¹)^N is finite

Other dynamical André-Oort results:

Theorem (Baker-DeMarco 2013)

Let P_3 be the space of cubic polynomials. Given $\lambda \in \mathbb{C}$, define

 $Per_1(\lambda) := \{ f \in P_3 : f \text{ has a fixed point of multiplier } \lambda \}.$

Then $Per_1(\lambda)$ contains infinitely many PCF points if and only if $\lambda = 0$.

< ∃→

Other dynamical André-Oort results:

Theorem (Baker-DeMarco 2013)

Let P_3 be the space of cubic polynomials. Given $\lambda \in \mathbb{C}$, define

 $Per_1(\lambda) := \{ f \in P_3 : f \text{ has a fixed point of multiplier } \lambda \}.$

Then $Per_1(\lambda)$ contains infinitely many PCF points if and only if $\lambda = 0$.

Theorem (DeMarco-Wang-Ye 2014)

Let M_2 denote the moduli space of rational maps of degree 2, modulo conjugation. Define $Per_1(\lambda)$ as above, accordingly. Then $Per_1(\lambda)$ contains infinitely many PCF maps if and only if $\lambda = 0$.

(E) < E)</p>

Other dynamical André-Oort results:

Theorem (Baker-DeMarco 2013)

Let P_3 be the space of cubic polynomials. Given $\lambda \in \mathbb{C}$, define

 $Per_1(\lambda) := \{ f \in P_3 : f \text{ has a fixed point of multiplier } \lambda \}.$

Then $Per_1(\lambda)$ contains infinitely many PCF points if and only if $\lambda = 0$.

Theorem (DeMarco-Wang-Ye 2014)

Let M_2 denote the moduli space of rational maps of degree 2, modulo conjugation. Define $Per_1(\lambda)$ as above, accordingly. Then $Per_1(\lambda)$ contains infinitely many PCF maps if and only if $\lambda = 0$.

Theorem (Ghioca-Hsia-Tucker 2015)

Let c_1, c_2, c_3 be distinct complex numbers, and $d \ge 3$ an integer. The set of $(a_0, a_1) \in \mathbb{C}^2$ such that each c_i is preperiodic for $f(z) = z^d + a_1 z + a_0$ is not Zariski dense in \mathbb{A}^2 .

(* E) * E)

Galois representation of a rational map: $\phi(z)$ defined over number field K, $\alpha \in K$ which lies in no forward critical orbit, and consider the preimage tree T of α . The absolute Galois group G_K acts on this tree, inducing a representation ρ of G_K to Aut(T). This rep'n is generically surjective.

Theorem (Jones-Pink)

If $\phi(z)$ is post-critically finite, then the image $\rho(G_K)$ has infinite index in Aut(T).

Galois representation of a rational map: $\phi(z)$ defined over number field K, $\alpha \in K$ which lies in no forward critical orbit, and consider the preimage tree T of α . The absolute Galois group G_K acts on this tree, inducing a representation ρ of G_K to Aut(T). This rep'n is generically surjective.

Theorem (Jones-Pink)

If $\phi(z)$ is post-critically finite, then the image $\rho(G_K)$ has infinite index in Aut(T).

Non-PCF with infinite index:

- $x^3 + 2$
- $\frac{x^2-a}{x^2+a}$
- $x^2 + x$ rooted at 0.
- $\frac{x^2+1}{x}$ rooted at 0.

Probably want an 'almost every root' or transcendental root statement.

< ∃ >

Definition

Let V be an algebraic family of degree d dynamical systems, and call $t \in V(\overline{\mathbb{Q}})$ **arboreally special** if the arboreal representation $\rho_{t,\alpha}$ associated to $f_t(z)$ has infinite index image for almost every root α .

< ∃⇒

Definition

Let V be an algebraic family of degree d dynamical systems, and call $t \in V(\bar{\mathbb{Q}})$ **arboreally special** if the arboreal representation $\rho_{t,\alpha}$ associated to $f_t(z)$ has infinite index image for almost every root α .

Question

Which subvarieties of V contain a Zariski dense subset of arboreally special points?

< ∃⇒

Thanks for your attention!

< ≣ >