Automorphism Groups and Invariant Theory on PN

Benjamin Hutz

Department of Mathematics and Computer Science Saint Louis University

January 9, 2016 JMM: Special Session on Arithmetic Dynamics

joint work with João Alberto de Faria, Florida Institute of Technology supported by NSF grant DMS-1415294

Benjamin Hutz

Automorphism Groups and Invariant Theory on PN

Basic Definitions Bound on the Order Computational Problems

Action by Conjugation

Definition

Let $f : \mathbb{P}^N \to \mathbb{P}^N$ be a morphism. For $\alpha \in \mathsf{PGL}_{N+1}$ define the conjugate of f as

$$f^{\alpha} = \alpha^{-1} \circ f \circ \alpha.$$

Definition

For $f : \mathbb{P}^N \to \mathbb{P}^N$ define the automorphism group of f as

$$\mathsf{Aut}(f) = \{ \alpha \in \mathsf{PGL}_{N+1} \mid f^{\alpha} = f \}.$$

Basic Definitions Bound on the Order Computational Problems

Example

Example

The map

$$f(z)=\frac{z^2-2z}{-2z+1}$$

has automorphism group

$$\{z, \frac{1}{z}, \frac{z-1}{z}, \frac{1}{1-z}, \frac{z}{z-1}, 1-z\} \cong S_3.$$

Verifying $\alpha(z) = \frac{1}{z}$ is an automorphism of *f* we compute

$$f^{\alpha}(z) = \frac{1}{f(1/z)} = \frac{-2/z+1}{1/z^2-2/z} = \frac{-2z+z^2}{1-2z} = f(z).$$

Basic Definitions Bound on the Order Computational Problems

Why maps with Automorphisms?

- Related to the question of field of definition versus field of moduli.
- Related to the existence of non-trivial twists (conjugate over K but not over K).
- Provides a class of morphisms with additional structure.

Basic Definitions Bound on the Order Computational Problems

Theorem (Petsche, Szpiro, Tepper)

Aut(f) \subset PGL_{N+1} is a finite group.

Theorem (Levy)

The set of morphisms of projective space (up to conjugation) which have a nontrivial automorphism is a finite union of proper subvarieties.

Basic Definitions Bound on the Order Computational Problems

Bound on Order

Theorem (Levy)

There is a bound on the size of Aut(f) that depends only on deg(f) and N.

Example

For $f : \mathbb{P}^1 \to \mathbb{P}^1$ a morphism of degree $d \ge 2$

 $\# \operatorname{Aut}(f) \le \max(2d+2,60).$

Theorem (H.,de Faria)

For $f : \mathbb{P}^2 \to \mathbb{P}^2$ a morphism of degree $d \ge 2$

 $\#\operatorname{Aut}(f) \le 6(d+1)^2.$

Benjamin Hutz

Automorphism Groups and Invariant Theory on PN

Introduction 6 / 25

Basic Definitions Bound on the Order Computational Problems

Bound on Order

Theorem (Levy)

There is a bound on the size of Aut(f) that depends only on deg(f) and N.

Example

For
$$f : \mathbb{P}^1 \to \mathbb{P}^1$$
 a morphism of degree $d \ge 2$

 $\# \operatorname{Aut}(f) \le \max(2d+2,60).$

Theorem (H.,de Faria)

For $f: \mathbb{P}^2 \to \mathbb{P}^2$ a morphism of degree $d \ge 2$

 $\# \operatorname{Aut}(f) \leq 6(d+1)^2.$

Benjamin Hutz

Basic Definitions Bound on the Order Computational Problems

Computational Problems

- Given a finite subgroup of Γ of PGL_{N+1} is there a morphism *f* with Γ ⊆ Aut(*f*)?
- **2** Given a morphism f, compute Aut(f).

Basic Definitions Bound on the Order Computational Problems

Theorem (H., de Faria)

Let Γ be a finite subgroup of PGL_{N+1}. Then there are infinitely many endomorphisms $f : \mathbb{P}^N \to \mathbb{P}^N$ such that $\Gamma \subseteq \operatorname{Aut}(f)$.

Determining Aut(*f*)

- $f: \mathbb{P}^1 \to \mathbb{P}^1$: Faber-Manes-Viray 2014
- $f : \mathbb{P}^2 \to \mathbb{P}^2$: de Faria 2015 (MS thesis)

Basic Definitions Bound on the Order Computational Problems

Theorem (H., de Faria)

Let Γ be a finite subgroup of PGL_{N+1}. Then there are infinitely many endomorphisms $f : \mathbb{P}^N \to \mathbb{P}^N$ such that $\Gamma \subseteq \operatorname{Aut}(f)$.

Determining Aut(*f*)

- $f : \mathbb{P}^1 \to \mathbb{P}^1$: Faber-Manes-Viray 2014
- $f: \mathbb{P}^2 \to \mathbb{P}^2$: de Faria 2015 (MS thesis)

Existence of Morphisms Invariant Theory Connect to Automorphisms Proof of Theorem

Finite subgroups of PGL₂

For $f : \mathbb{P}^1 \to \mathbb{P}^1$ the conjugation action is by PGL₂. The finite subgroups of PGL₂ are

- C_n : Cyclic group of order *n* for $n \ge 1$.
- D_{2n} : Dihedral group of order 2n for $n \ge 2$.
- A₄: Tetrahedral group of order 12.
- S₄: Octahedral group of order 24.
- A₅: Icosahedral group of order 60.

Existence of Morphisms Invariant Theory Connect to Automorphisms Proof of Theorem

All are possible for \mathbb{P}^1

Each of the following *f* have $Aut(f) = \Gamma$ for each Γ .

$$C_{n}:f(x,y) = (x^{n+1} + xy^{n} : y^{n+1})$$

$$D_{2n}:f(x,y) = (y^{n-1} : x^{n-1})$$

$$A_{4}:f(x,y) = (\sqrt{-3}x^{2}y - y^{3} : x^{3} + \sqrt{-3}xy^{2})$$

$$S_{4}:f(x,y) = (-x^{5} + 5xy^{4} : 5x^{4}y - y^{5})$$

$$A_{5}:f(x,y) = (-x^{11} - 66x^{6}y^{5} + 11xy^{10} : 11x^{10}y + 66x^{5}y^{6} - y^{11})$$

Theorem (H., de Faria)

There is no morphism $f : \mathbb{P}^1 \to \mathbb{P}^1$ defined over \mathbb{Q} which has tetrahedral group as automorphism group.

Benjamin Hutz

Automorphism Groups and Invariant Theory on PN

10/25

Existence of Morphisms Invariant Theory Connect to Automorphisms Proof of Theorem

All are possible for \mathbb{P}^1

Each of the following *f* have $Aut(f) = \Gamma$ for each Γ .

$$C_{n}:f(x,y) = (x^{n+1} + xy^{n} : y^{n+1})$$

$$D_{2n}:f(x,y) = (y^{n-1} : x^{n-1})$$

$$A_{4}:f(x,y) = (\sqrt{-3}x^{2}y - y^{3} : x^{3} + \sqrt{-3}xy^{2})$$

$$S_{4}:f(x,y) = (-x^{5} + 5xy^{4} : 5x^{4}y - y^{5})$$

$$A_{5}:f(x,y) = (-x^{11} - 66x^{6}y^{5} + 11xy^{10} : 11x^{10}y + 66x^{5}y^{6} - y^{11})$$

Theorem (H., de Faria)

There is no morphism $f : \mathbb{P}^1 \to \mathbb{P}^1$ defined over \mathbb{Q} which has tetrahedral group as automorphism group.

Benjamin Hutz

Automorphism Groups and Invariant Theory on PN

Existence of Morphisms Invariant Theory Connect to Automorphisms Proof of Theorem

Definition

We say that *F* is a (relative) invariant of Γ if for all $\gamma \in \Gamma$, $\gamma F = \chi(\gamma)F$ for some linear group character χ . The set of all invariants is a ring denoted $K[\bar{x}]^{\Gamma}$. We will denote $K[\bar{x}]^{\Gamma}_{\chi}$ the ring of relative invariants associated to the character χ .

Eagon and Hochester proved that if the order of the group is relatively prime to Char K, then $K[\overline{x}]^{\Gamma}$ is Cohen-Macaulay.

Example

For $\Gamma = S_n$, then $K[\bar{x}]^{\Gamma} = \langle \sigma_1, \dots, \sigma_n \rangle$ where σ_k is the *k*-th elementary symmetric polynomial.

Existence of Morphisms Invariant Theory Connect to Automorphisms Proof of Theorem

Connection to Automorphisms:Dimension 1

Proposition (Klein 1922)

If
$$F \in K[x, y]^{\Gamma}$$
 then for $f_F = (F_y, -F_x)$ we have $\Gamma \subset Aut(f)$.

In particular, there is a one-to-one correspondence between invariant 1-forms and maps with automorphisms given by

$$f_0 dx + f_1 dy \longleftrightarrow (f_1, -f_0) : \mathbb{P}^1 \to \mathbb{P}^1.$$

Theorem (Doyle-McMullen 1989)

A homogeneous 1-form θ is invariant if and only if

$$\theta = F\lambda + dG$$

where $\lambda = (xdy - ydx)/2$ and F, G are invariant homogeneous polynomials with the same character and deg G = deg F + 2.

Benjamin Hutz

Existence of Morphisms Invariant Theory Connect to Automorphisms Proof of Theorem

No Tetrahedral over $\ensuremath{\mathbb{Q}}$

By Blichfeldt every invariant F of the tetrahedral group can be written as a product of powers of the following three invariants

$$t_1 = x^4 + 2\sqrt{-3}x^2y^2 + y^4$$

$$t_2 = x^4 - 2\sqrt{-3}x^2y^2 + y^4$$

$$t_3 = xy(x^4 - y^4).$$

Invariants for the octahedral group can be constructed from

$$s_1 = xy(x^4 - y^4) = t_3$$

$$s_2 = x^8 + 14x^4y^4 + y^8 = t_1t_2$$

$$s_3 = x^{12} - 33x^8y^4 - 33x^4y^8 + y^{12}$$

Existence of Morphisms Invariant Theory Connect to Automorphisms Proof of Theorem

- For a map of Klein's form to be tetrahedral and defined over \mathbb{Q} its invariant must be of the form $t_1^a t_2^a t_3^b$. However, this is the same as $s_2^a s_1^b$ so it will have octahedral symmetries.
- In general, if is constructed from invariants defined over Q, then it must have octahedral symmetries.
- We also need to consider maps which come from a non-trivial *F*, *G* pair for the Doyle-McMullen construction with at least one invariant not defined over Q.
- If one of F or G is not defined over Q, then to end up with a map defined over Q we must have both not defined over Q.

- Assume that *F* has a term of the form cx^ny^m with $c \notin \mathbb{Q}$.
- We are constructing the coordinates of the map as $xF/2 + G_y$ and $yF/2 G_x$.
 - In the first coordinate, we must have a monomial $\frac{cx^{n+1}y^m}{2}$ coming from xF/2, so *G* must have a term $-\frac{cx^{n+1}y^{m+1}}{2(m+1)}$ for the map to be defined over \mathbb{Q} .
 - Similarly, from the second coordinate we see that *G* has a term $\frac{cx^{n+1}y^{m+1}}{2(n+1)}$.

• Thus,

$$-\frac{c}{2(m+1)}=\frac{c}{2(n+1)}$$

and we conclude that c = 0, a contradiction.

Invariant Forms Module of Equivariants Existence of Automorphism Groups

Dimension > 1

Theorem (de Faria, H., Crass)

Define

$$dX^{I} = (-1)^{\sigma_{I}} dx_{i_{1}} \wedge \cdots \wedge dx_{i_{n}}$$

where I is the ordered set

 $\{i_1, \ldots, i_n\}, \qquad i_1 < \cdots < i_n$

and for \hat{i} the index not in I, σ_I is the sign of the permutation

$$\begin{pmatrix} 0 & 1 & \cdots & n \\ \hat{i} & i_1 & \cdots & i_n \end{pmatrix}$$

 Γ invariant n-forms

$$\phi = \sum_{\hat{i}=0}^{n} f_{\hat{i}} dX'$$

are in 1-1 correspondence with maps $f = (f_0, \ldots, f_n)$ with $\Gamma \subset Aut(f)$.

Invariant Forms Module of Equivariants Existence of Automorphism Groups

Simple Construction

- We know that there are at least N + 1 algebraically independent (primary) invariants for Γ , p_0, \ldots, p_N .
- The (N + 1)-form

$$dp_0 \wedge \cdots \wedge dp_N$$

is Γ-invariant.

Solution Applying the previous theorem, this (N + 1)-form corresponds to an *f* with $\Gamma \subseteq \operatorname{Aut}(f)$.

However, it is possible that f is the identity map as a projective map.

Invariant Forms Module of Equivariants Existence of Automorphism Groups

Equivariants

Definition

The polynomial mappings which commute with Γ are called equivariants (or sometimes covariants) and we denote them as

$$(\mathcal{K}[\mathcal{V}] \otimes \mathcal{W})^{\Gamma} = \{ g \in \mathcal{K}[\mathcal{V}] \otimes \mathcal{W} : g \circ \rho_{\mathcal{V}}(\gamma) = \rho_{\mathcal{W}}(\gamma)g \}.$$

In the language of this talk, if *f* is an equivariant for Γ , then $\Gamma \subseteq \operatorname{Aut}(f)$.

Invariant Forms Module of Equivariants Existence of Automorphism Groups

Module of Equivariants

$(K[V] \otimes W)^{\Gamma}$ is a Cohen-Macaulay module.

Proposition

For Γ finite and $N = \dim(V)$, there exist homogeneous polynomial invariants p_1, \ldots, p_N such that $(K[V] \otimes W)^{\Gamma}$ is finitely generated as a free module over the ring $K[p_1, \ldots, p_N]$.

In particular, there exists homogeneous equivariants g_1, \ldots, g_s such that

$$(K[V] \otimes W)^{\Gamma} = \bigoplus_{i=1}^{s} g_i K[p_1, \ldots, p_N].$$

Invariant Forms Module of Equivariants Existence of Automorphism Groups

Theorem (H., de Faria)

Let Γ be a finite subgroup of PGL_{*N*+1}. Then there are infinitely many endomorphisms $f : \mathbb{P}^N \to \mathbb{P}^N$ such that $\Gamma \subseteq \operatorname{Aut}(f)$.

Proof.

We can compute the number of fundamental equivariants $m \ge N + 1 \ge 2$. In particular, we claim there is at least one non-trivial equivariant *f*.

Assume that *f* is the identity map on projective space, i.e., $f = (Fx_0, \ldots, Fx_N)$ for some homogeneous polynomial *F*. This is an element in the module of equivariants, so that *F* must be an invariant of Γ . However, this equivariant is not independent of the trivial equivariant contradicting the fact that $m \ge 2$.

Invariant Forms Module of Equivariants Existence of Automorphism Groups

Let p_1, \ldots, p_N be primary invariants for Γ .

 Since the equivariants are a module over the ring K[p₁,..., p_N] we can form new equivariants as

$$h = \sum t_i g_i$$

where $t_i \in K[p_1, ..., p_N]$, the g_i are equivariants, and the degrees deg(t_ig_i) are all the same.

- Each such map can be thought of as a point in some affine space A^τ. The identification is between the coefficients of the *p_i* in each *t_i* with the affine coordinates.
- We have τ ≥ 1 since we can find at least one pair of equivariants g₀, g₁ whose degrees are such that we can create a homogeneous map t₀g₀ + t₁g₁.

Invariant Forms Module of Equivariants Existence of Automorphism Groups

 Recall that the map *F* is a morphism if and only if the Macaulay resultant is non-zero and that the Macaulay resultant is a polynomial in the coefficients of the map (i.e., a closed condition). Thus, an open set in A^τ corresponds to new equivariants.

We consider the Octahedral group. Using the fundamental equivariants

$$f_{5}(x, y) = (-x^{5} + 5xy^{4} : 5x^{4}y - y^{5})$$

$$f_{17}(x, y) = (x^{17} - 60x^{13}y^{4} + 110x^{9}y^{8} + 212x^{5}y^{12} - 7xy^{16})$$

$$: -7x^{16}y + 212x^{12}y^{5} + 110x^{8}y^{9} - 60x^{4}y^{13} + y^{17})$$

and the invariants

$$p_8 = x^8 + 14x^4y^4 + y^8$$

$$p_{12} = x^{10}y^2 - 2x^6y^6 + x^2y^{10} = (x^5y - xy^5)^2$$

we constructed a new equivariant

$$f_{17} + 2p_{12}f_5$$
.

$$\begin{split} f_{17} + 2p_{12}f_5 &= \\ & (x^{17} + 2x^{15}y^2 - 60x^{13}y^4 - 14x^{11}y^6 + 110x^9y^8 \\ & + 22x^7y^{10} + 212x^5y^{12} - 10x^3y^{14} - 7xy^{16} \\ & : -7x^{16}y - 10x^{14}y^3 + 212x^{12}y^5 + 22x^{10}y^7 + 110x^8y^9 \\ & - 14x^6y^{11} - 60x^4y^{13} + 2x^2y^{15} + y^{17}) \end{split}$$

Generalizing this to

$$g_t = f_{17} + t \cdot p_{12}f_5$$

we compute the Macaulay resultant as

$$\operatorname{Res}(g_t) = C \cdot (t-1)^6 (t-4/3)^{16}$$

So for any choice of *t* except 1 and 4/3, we produce an equivariant morphism for the Octahedral group.

Benjamin Hutz

Automorphism Groups and Invariant Theory on PN

Questions?