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Action by Conjugation

Definition

Let f : PN → PN be a morphism. For α ∈ PGLN+1 define the
conjugate of f as

fα = α−1 ◦ f ◦ α.

Definition

For f : PN → PN define the automorphism group of f as

Aut(f ) = {α ∈ PGLN+1 | fα = f}.
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Example
The map

f (z) =
z2 − 2z
−2z + 1

has automorphism group

{z, 1
z
,
z − 1

z
,

1
1− z

,
z

z − 1
,1− z} ∼= S3.

Verifying α(z) = 1
z is an automorphism of f we compute

fα(z) =
1

f (1/z)
=
−2/z + 1

1/z2 − 2/z
=
−2z + z2

1− 2z
= f (z).
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Why maps with Automorphisms?

Related to the question of field of definition versus field of
moduli.
Related to the existence of non-trivial twists (conjugate
over K but not over K ).
Provides a class of morphisms with additional structure.

Benjamin Hutz Automorphism Groups and Invariant Theory on PN Introduction 4 / 25



Introduction
Dimension 1

Dimension > 1
Example

Basic Definitions
Bound on the Order
Computational Problems

Theorem (Petsche, Szpiro, Tepper)

Aut(f ) ⊂ PGLN+1 is a finite group.

Theorem (Levy)
The set of morphisms of projective space (up to conjugation)
which have a nontrivial automorphism is a finite union of proper
subvarieties.
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Bound on Order

Theorem (Levy)

There is a bound on the size of Aut(f ) that depends only on
deg(f ) and N.

Example

For f : P1 → P1 a morphism of degree d ≥ 2

# Aut(f ) ≤ max(2d + 2,60).

Theorem (H.,de Faria)

For f : P2 → P2 a morphism of degree d ≥ 2

# Aut(f ) ≤ 6(d + 1)2.
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Computational Problems

1 Given a finite subgroup of Γ of PGLN+1 is there a
morphism f with Γ ⊆ Aut(f )?

2 Given a morphism f , compute Aut(f ).
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Answers

Theorem (H., de Faria)
Let Γ be a finite subgroup of PGLN+1. Then there are infinitely
many endomorphisms f : PN → PN such that Γ ⊆ Aut(f ).

Determining Aut(f )

f : P1 → P1: Faber-Manes-Viray 2014
f : P2 → P2: de Faria 2015 (MS thesis)
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Finite subgroups of PGL2

For f : P1 → P1 the conjugation action is by PGL2. The finite
subgroups of PGL2 are

Cn: Cyclic group of order n for n ≥ 1.
D2n: Dihedral group of order 2n for n ≥ 2.
A4: Tetrahedral group of order 12.
S4: Octahedral group of order 24.
A5: Icosahedral group of order 60.
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All are possible for P1

Each of the following f have Aut(f ) = Γ for each Γ.

Cn :f (x , y) = (xn+1 + xyn : yn+1)

D2n :f (x , y) = (yn−1 : xn−1)

A4 :f (x , y) = (
√
−3x2y − y3 : x3 +

√
−3xy2)

S4 :f (x , y) = (−x5 + 5xy4 : 5x4y − y5)

A5 :f (x , y) = (−x11 − 66x6y5 + 11xy10 : 11x10y + 66x5y6 − y11)

Theorem (H., de Faria)

There is no morphism f : P1 → P1 defined over Q which has
tetrahedral group as automorphism group.
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Definition
We say that F is a (relative) invariant of Γ if for all γ ∈ Γ,
γF = χ(γ)F for some linear group character χ. The set of all
invariants is a ring denoted K [x ]Γ. We will denote K [x ]Γχ the ring
of relative invariants associated to the character χ.

Eagon and Hochester proved that if the order of the group is
relatively prime to Char K , then K [x ]Γ is Cohen-Macaulay .

Example

For Γ = Sn, then K [x ]Γ = 〈σ1, . . . , σn〉 where σk is the k -th
elementary symmetric polynomial.
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Connection to Automorphisms:Dimension 1

Proposition (Klein 1922)

If F ∈ K [x , y ]Γ then for fF = (Fy ,−Fx ) we have Γ ⊂ Aut(f ).

In particular, there is a one-to-one correspondence between
invariant 1-forms and maps with automorphisms given by

f0dx + f1dy ←→ (f1,−f0) : P1 → P1.

Theorem (Doyle-McMullen 1989)
A homogeneous 1-form θ is invariant if and only if

θ = Fλ+ dG

where λ = (xdy − ydx)/2 and F ,G are invariant homogeneous
polynomials with the same character and deg G = deg F + 2.
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No Tetrahedral over Q

By Blichfeldt every invariant F of the tetrahedral group can be
written as a product of powers of the following three invariants

t1 =x4 + 2
√
−3x2y2 + y4

t2 =x4 − 2
√
−3x2y2 + y4

t3 =xy(x4 − y4).

Invariants for the octahedral group can be constructed from

s1 =xy(x4 − y4) = t3
s2 =x8 + 14x4y4 + y8 = t1t2
s3 =x12 − 33x8y4 − 33x4y8 + y12.
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For a map of Klein’s form to be tetrahedral and defined over
Q its invariant must be of the form ta

1 ta
2 tb

3 . However, this is
the same as sa

2sb
1 so it will have octahedral symmetries.

In general, if is constructed from invariants defined over Q,
then it must have octahedral symmetries.
We also need to consider maps which come from a
non-trivial F ,G pair for the Doyle-McMullen construction
with at least one invariant not defined over Q.
If one of F or G is not defined over Q, then to end up with a
map defined over Q we must have both not defined over Q.
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Assume that F has a term of the form cxnym with c 6∈ Q.
We are constructing the coordinates of the map as
xF/2 + Gy and yF/2−Gx .

In the first coordinate, we must have a monomial cxn+1ym

2

coming from xF/2, so G must have a term − cxn+1ym+1

2(m+1) for
the map to be defined over Q.
Similarly, from the second coordinate we see that G has a
term cxn+1ym+1

2(n+1) .

Thus,
− c

2(m + 1)
=

c
2(n + 1)

and we conclude that c = 0, a contradiction.
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Theorem (de Faria, H., Crass)
Define

dX I = (−1)σI dxi1 ∧ · · · ∧ dxin

where I is the ordered set

{i1, . . . , in}, i1 < · · · < in

and for î the index not in I, σI is the sign of the permutation(
0 1 · · · n
î i1 . . . in

)
.

Γ invariant n-forms

φ =
n∑

î=0

f̂idX I

are in 1-1 correspondence with maps f = (f0, . . . , fn) with
Γ ⊂ Aut(f ).
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Simple Construction
1 We know that there are at least N + 1 algebraically

independent (primary) invariants for Γ, p0, . . . ,pN .
2 The (N + 1)-form

dp0 ∧ · · · ∧ dpN

is Γ-invariant.
3 Applying the previous theorem, this (N + 1)-form

corresponds to an f with Γ ⊆ Aut(f ).

However, it is possible that f is the identity map as a projective
map.
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Equivariants

Definition
The polynomial mappings which commute with Γ are called
equivariants (or sometimes covariants) and we denote them as

(K [V ]⊗W )Γ = {g ∈ K [V ]⊗W : g ◦ ρV (γ) = ρW (γ)g}.

In the language of this talk, if f is an equivariant for Γ, then
Γ ⊆ Aut(f ).
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Module of Equivariants

(K [V ]⊗W )Γ is a Cohen-Macaulay module.

Proposition

For Γ finite and N = dim(V ), there exist homogeneous
polynomial invariants p1, . . . ,pN such that (K [V ]⊗W )Γ is
finitely generated as a free module over the ring K [p1, . . . ,pN ].

In particular, there exists homogeneous equivariants g1, . . . ,gs
such that

(K [V ]⊗W )Γ =
s⊕

i=1

giK [p1, . . . ,pN ].
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Theorem (H., de Faria)
Let Γ be a finite subgroup of PGLN+1. Then there are infinitely
many endomorphisms f : PN → PN such that Γ ⊆ Aut(f ).

Proof.
We can compute the number of fundamental equivariants
m ≥ N + 1 ≥ 2. In particular, we claim there is at least one
non-trivial equivariant f .

Assume that f is the identity map on projective space, i.e.,
f = (Fx0, . . . ,FxN) for some homogeneous polynomial F . This
is an element in the module of equivariants, so that F must be
an invariant of Γ. However, this equivariant is not independent
of the trivial equivariant contradicting the fact that m ≥ 2.
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Let p1, . . . ,pN be primary invariants for Γ.
Since the equivariants are a module over the ring
K [p1, . . . ,pN ] we can form new equivariants as

h =
∑

tigi

where ti ∈ K [p1, . . . ,pN ], the gi are equivariants, and the
degrees deg(tigi) are all the same.
Each such map can be thought of as a point in some affine
space Aτ . The identification is between the coefficients of
the pi in each ti with the affine coordinates.
We have τ ≥ 1 since we can find at least one pair of
equivariants g0,g1 whose degrees are such that we can
create a homogeneous map t0g0 + t1g1.
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Recall that the map F is a morphism if and only if the
Macaulay resultant is non-zero and that the Macaulay
resultant is a polynomial in the coefficients of the map (i.e.,
a closed condition). Thus, an open set in Aτ corresponds
to new equivariants.
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We consider the Octahedral group. Using the fundamental
equivariants

f5(x , y) =(−x5 + 5xy4 : 5x4y − y5)

f17(x , y) =(x17 − 60x13y4 + 110x9y8 + 212x5y12 − 7xy16

: −7x16y + 212x12y5 + 110x8y9 − 60x4y13 + y17)

and the invariants

p8 =x8 + 14x4y4 + y8

p12 =x10y2 − 2x6y6 + x2y10 = (x5y − xy5)2

we constructed a new equivariant

f17 + 2p12f5.
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f17 + 2p12f5 =

(x17 + 2x15y2 − 60x13y4 − 14x11y6 + 110x9y8

+ 22x7y10 + 212x5y12 − 10x3y14 − 7xy16

: −7x16y − 10x14y3 + 212x12y5 + 22x10y7 + 110x8y9

− 14x6y11 − 60x4y13 + 2x2y15 + y17)

Generalizing this to

gt = f17 + t · p12f5

we compute the Macaulay resultant as

Res(gt ) = C · (t − 1)6(t − 4/3)16

So for any choice of t except 1 and 4/3, we produce an
equivariant morphism for the Octahedral group.
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