Generalized Dynamical systems: Preliminary Report

ChongGyu Lee

Soongsil University

Joint Mathematical Meeting, Jan. 9, 2016

Dynamical Systems

Definition

We say a pair (S, f) is a (discrete) dynamical system when $f : S \to S$ is a self map.

$$P \xrightarrow{f} f(P) \xrightarrow{f} f(f(P))$$

Definition

We define the orbit of P under f to be

$$\mathcal{O}_f(P) := \{P, f(P), f^2(P), \cdots, f^m(P), \cdots\}$$

where f^m is m-th iterate of f.

Definition (Dynamical Classification)

We say a point $P \in S$ is fixed if $\mathcal{O}_f(P) = \{P\}$, periodic if $f^m(P) = P$ for some $m \ge 1$ and preperiodic if $\mathcal{O}_f(P)$ is finite.

20

Dynamical Systems

Definition

We say a pair (S, f) is a (discrete) dynamical system when $f : S \to S$ is a self map.

$$P \xrightarrow{f} f(P) \xrightarrow{f} f(f(P))$$

Definition (Dynamical Classification)

We say a point $P \in S$ is fixed if $\mathcal{O}_f(P) = \{P\}$, periodic if $f^m(P) = P$ for some $m \ge 1$ and preperiodic if $\mathcal{O}_f(P)$ is finite.

20

Dynamical Systems

Definition

We say a pair (S, f) is a (discrete) dynamical system when $f : S \to S$ is a self map.

$$P \xrightarrow{f} f(P) \xrightarrow{f} f(f(P))$$

Remark

We can study properties of preperiodic points by comparing information of P and f(P). For example, is

$$\deg f \cdot h(P) - h(f(P))$$

bounded?

Definition (Dynamical Classification)

We say a point $P \in S$ is fixed if $\mathcal{O}_f(P) = \{P\}$, periodic if $f^m(P) = P$ for some $m \ge 1$ and preperiodic if $\mathcal{O}_f(P)$ is finite.

Theorem (Northcott)

Let $\phi : \mathbb{P}^n(\overline{\mathbb{Q}}) \to \mathbb{P}^n(\overline{\mathbb{Q}})$ be a morphism of degree d. Then,

 $h(\phi(P)) > d \cdot h(P) + O(1).$

Theorem (Northcott)

Let $\phi : \mathbb{P}^n(\overline{\mathbb{Q}}) \to \mathbb{P}^n(\overline{\mathbb{Q}})$ be a morphism of degree d. Then,

 $h(\phi(P)) > d \cdot h(P) + O(1).$

Theorem (L.)

Northcott's theorem works only for polarizable endomorphisms, like endomorphisms on projective spaces.

Theorem (Northcott)

Let $\phi : \mathbb{P}^n(\overline{\mathbb{Q}}) \to \mathbb{P}^n(\overline{\mathbb{Q}})$ be a morphism of degree d. Then,

 $h(\phi(P)) > d \cdot h(P) + O(1).$

Corollary

If $f: \mathbb{P}^n \to \mathbb{P}^n$ is a rational map with at least ont indeterminacy point, then $\frac{1+\epsilon}{\det f}h(f(P))$ cannot be an upper bound of h(P).

Theorem (L.)

Northcott's theorem works only for polarizable endomorphisms, like endomorphisms on projective spaces.

Theorem (L.)

Northcott's theorem works only for polarizable endomorphisms, like endomorphisms on projective spaces.

Theorem (Weak Version)

Let $\phi : \mathbb{A}^n(\overline{\mathbb{Q}}) \to \mathbb{A}^n(\overline{\mathbb{Q}})$ be a polynomial map. If

 $h(\phi(P)) > (1+\epsilon) \cdot h(P) + O(1)$

holds for all $P \in \mathbb{A}^n(\overline{\mathbb{Q}})$, then the set of preperiodic points is of bounded height.

Theorem (L.)

Northcott's theorem works only for polarizable endomorphisms, like endomorphisms on projective spaces.

Theorem (Silverman, L.)

Let $f_1, \dots, f_k : \mathbb{A}^n \to \mathbb{A}^n$ be jointly regular family of polynomial maps (whose meromorphic extensions on \mathbb{P}^n share no indeterminacy point.) Then

$$\sum_{i=1}^{k} \frac{1}{\deg f_i} h(f_i(P)) > (1+r) h(P) + O(1).$$

Theorem (Silverman, L.)

Let $f_1, \dots, f_k : \mathbb{A}^n \to \mathbb{A}^n$ be jointly regular family of polynomial maps (whose meromorphic extensions on \mathbb{P}^n share no indeterminacy point.) Then

$$\sum_{i=1}^{k} \frac{1}{\deg f_i} h(f_i(P)) > (1+r) h(P) + O(1).$$

Corollary

Let $M = \langle f_1, \cdots, f_k \rangle$ be a monoid generated by f_1, \cdots, f_k . Then $\mathsf{Preper}(M) := \left\{ P \in \mathbb{A}^n(\overline{\mathbb{Q}}) \mid \{f(P) \mid f \in M\} \right\}$

is of bounded height

Theorem (Silverman, L.)

Let $f_1, \dots, f_k : \mathbb{A}^n \to \mathbb{A}^n$ be jointly regular family of polynomial maps (whose meromorphic extensions on \mathbb{P}^n share no indeterminacy point.) Then

$$\sum_{i=1}^{k} \frac{1}{\deg f_i} h(f_i(P)) > (1+r) h(P) + O(1).$$

Theorem (Silverman, L.)

Let $f_1, \dots, f_k : \mathbb{A}^n \to \mathbb{A}^n$ be jointly regular family of polynomial maps (whose meromorphic extensions on \mathbb{P}^n share no indeterminacy point.) Then

$$\sum_{i=1}^{k} \frac{1}{\deg f_i} h(f_i(P)) > (1+r) h(P) + O(1).$$

Proposition

Let $M = \langle f_1, \cdots, f_k \rangle$ be a monoid generated by f_1, \cdots, f_k . Then

$$\mathsf{Preper}(M) \subset \bigcap_{i=1}^k \mathsf{Preper}(f_i)$$

is of bounded height

Remark

Let $M = \langle f, g \rangle$ be a monoid generated by f, g. Then 'M-periodic' $(P \in \operatorname{Preper}(M))$ is quite strong condition.

Example

Let S be a K3-surface with two noncommuting involutions, ι_1, ι_2 . Then, Preper $(\iota_j) = S$ while Preper $(\langle \iota_1, \iota_2 \rangle)$ is of bounde height.

Remark

Let $M = \langle f, g \rangle$ be a monoid generated by f, g. Then 'M-periodic' $(P \in \operatorname{Preper}(M))$ is quite strong condition.

Example

Let S be a K3-surface with two noncommuting involutions, ι_1, ι_2 . Then, Preper $(\iota_j) = S$ while Preper $(\langle \iota_1, \iota_2 \rangle)$ is of bounde height.

Question

Let $f, g : \mathbb{A}^n \to \mathbb{A}^n$ be polynomial maps whose meromorphic extensions share no indeterminacy point. Is there any way to study

 $\operatorname{Preper}(f) \cap \operatorname{Preper}(g)$?

Theorem (Baker-DeMarco, Yuan-Zhang)

Let $\phi, \psi : \mathbb{P}^n \to \mathbb{P}^n$ be endomorphisms of degree at least 2. Then $|\operatorname{Preper}(\phi) \cap \operatorname{Preper}(\psi)| = \infty$ if and only if $\operatorname{Preper}(\phi) = \operatorname{Preper}(\psi)$.

Theorem (Baker-DeMarco, Yuan-Zhang)

Let $\phi, \psi : \mathbb{P}^n \to \mathbb{P}^n$ be endomorphisms of degree at least 2. Then $|\operatorname{Preper}(\phi) \cap \operatorname{Preper}(\psi)| = \infty$ if and only if $\operatorname{Preper}(\phi) = \operatorname{Preper}(\psi)$.

Theorem (L.-Ye)

Let f, g be polynomial maps. If $f \circ g = g \circ f$ and Preper(f) is of bounded height, then $Preper(f) \subset Preper(g)$.

Theorem (Baker-DeMarco, Yuan-Zhang)

Let $\phi, \psi : \mathbb{P}^n \to \mathbb{P}^n$ be endomorphisms of degree at least 2. Then $|\mathsf{Preper}(\phi) \cap \mathsf{Preper}(\psi)| = \infty$ if and only if $\mathsf{Preper}(\phi) = \mathsf{Preper}(\psi)$.

Theorem (L.-Ye)

Let f, g be polynomial maps. If $f \circ g = g \circ f$ and Preper(f) is of bounded height, then $Preper(f) \subset Preper(g)$.

Question

Is there any f, g such that $Preper(f) \cap Preper(g)$ is of bounded height while Preper(f), Preper(g) are unbounded?

Dynamics Revisited

Definition

Let (S, f) be a dynamical system. We consider the monoid generated by f,

$$M_f := \langle f \rangle = \{ Id, f, f^2 \cdots \}.$$

Then we can say (S, M_f) is a dynamical system.

Dynamics Revisited

Definition

Let (S, f) be a dynamical system. We consider the monoid generated by f,

$$M_f := \langle f \rangle = \{ Id, f, f^2 \cdots \}.$$

Then we can say (S, M_f) is a dynamical system.

Definition

We define the orbit of P under M_f -action to be

$$\mathcal{O}_{M_f}(P) := \{f(P) \mid f \in M_f\}.$$

Definition

We say a point $P \in S$ is preperiodic if $\mathcal{O}_f(P)$ is finite.

Action of Monoid

Definition

Let M be a monoid consisting of self maps on S:

$$M:=\langle f_1,\cdots,f_k\rangle.$$

Then we say (S, M) is a dynamical system with several maps.

Definition

We define the orbit of P to be

$$\mathcal{O}_M(P) := \{f(P) \mid f \in M\}.$$

Definition

We say a point $P \in S$ is preperiodic if $\mathcal{O}_M(P)$ is finite.

Action of a Set of self maps

Definition

Let \mathcal{M} be a set of self maps on S:

$$\mathcal{M} := \{f_i : S \to S \mid i \in I\}.$$

Then we say (S, \mathcal{M}) is a dynamical system.

Definition

We define the orbit of P to be

$$\mathcal{O}_{\mathcal{M}}(P) := \{ f(P) \mid f \in \mathcal{M} \}.$$

Definition

We say a point $P \in S$ is preperiodic if $\mathcal{O}_{\mathcal{M}}(P)$ is finite.

Action of a Set of maps

Definition

Let \mathcal{F} be a set consisting of maps from T to S:

$$\mathcal{F}:=\{f:T\to S\}.$$

Then we say (T, S, \mathcal{F}) a dynamical system.

Definition

We define the orbit of P under \mathcal{F} to be

$$\mathcal{O}_{\mathcal{F}}(P) := \{f(P) \mid f \in \mathcal{F}\} \subset S.$$

Definition

We say a point $P \in T$ is preperiodic if $\mathcal{O}_{\mathcal{F}}(P)$ is finite.

Examples : Isogenies

Example

Let E_1, E_2 be elliptic curves defined over $\overline{\mathbb{Q}}$ and let $\mathcal{F} = \text{Hom}(E_1, E_2)$ be the set of isogenies between E_1 and E_2 . Then

 $\mathsf{Preper}(\mathcal{F}) = (E_1)_{tor}.$

Examples : Isogenies

Example

Let E_1, E_2 be elliptic curves defined over $\overline{\mathbb{Q}}$ and let $\mathcal{F} = \text{Hom}(E_1, E_2)$ be the set of isogenies between E_1 and E_2 . Then

 $\mathsf{Preper}(\mathcal{F}) = (E_1)_{tor}.$

Example

Let ϕ, ψ be isogeneous Drinfeld module and let $\mathcal{F} = \text{Hom}(\phi, \psi)$ be the sets of isogenies between ϕ and ψ . Then,

$$\mathsf{Preper}(\mathcal{F}) = (\phi)_{tor}.$$

Joint Mathematical Meeting, Jan. 9, 2016

$Preper(f) \cap Preper(g)$ and Product map

Definition

Let $f, g : \mathbb{A}^n \to \mathbb{A}^n$ be polynomial maps. We define

 $f \times g : \mathbb{A}^n \to \mathbb{A}^{2n}, \quad P \mapsto (f(P), g(P)).$

$Preper(f) \cap Preper(g)$ and Product map

Definition

Let $f, g: \mathbb{A}^n \to \mathbb{A}^n$ be polynomial maps. We define

 $f \times g : \mathbb{A}^n \to \mathbb{A}^{2n}, \quad P \mapsto (f(P), g(P)).$

Proposition

$$\operatorname{Preper}(f) \cap \operatorname{Preper}(g) = \operatorname{Preper}(f \times g).$$

$Preper(f) \cap Preper(g)$ and Product map

Definition

Let $f, g : \mathbb{A}^n \to \mathbb{A}^n$ be polynomial maps. We define

 $f \times g : \mathbb{A}^n \to \mathbb{A}^{2n}, \quad P \mapsto (f(P), g(P)).$

Proposition

$$\operatorname{Preper}(f) \cap \operatorname{Preper}(g) = \operatorname{Preper}(f \times g).$$

Proposition

Let f, g have the same degree. Then f and g are jointly regular if $f \times g$ extends continuously on \mathbb{P}^n .

Application to Rational dynamical systems

Proposition

Let $(\mathbb{P}^n, \mathbb{P}^{2n}, \{F_k := f^k \times g^k\})$ be the generalized dynamical system, and let $G : \mathbb{P}^{2n} \to \mathbb{P}^{2n}$ be the meromorphic extension of

$$f \cdot g : \mathbb{A}^{2n} \to \mathbb{A}^{2n}, \quad (P,Q) \mapsto (f(P),g(Q)).$$

Then

Joint Mathematical Meeting, Jan. 9, 2016

Application to Rational dynamical systems

Theorem

Let $f : \mathbb{A}^n \to \mathbb{A}^n$ be a regular polynomial automorphism and let f^{-1} be its inverse. Then there is an integer $1 \le l \le n-1$ such that

$$\deg f' = \deg(f^{-1})^{n-l}.$$

Application to Rational dynamical systems

Theorem

Let $f : \mathbb{A}^n \to \mathbb{A}^n$ be a regular polynomial automorphism and let f^{-1} be its inverse. Then there is an integer $1 \le l \le n-1$ such that

$$\deg f' = \deg(f^{-1})^{n-l}$$

Theorem (Kawaguchi)

Let
$$\mathcal{F} := \{F_i = f^{li} \times f^{-(n-l)i} \mid i = 1, 2, \cdots\}$$
. Then

$$\widehat{h}(P) := \lim_{i \to \infty} \frac{1}{\deg F_i} h(F_i(P))$$

converges.

Proposition

$$\mathsf{Preper}(f) = \mathsf{Preper}(f') \cap \mathsf{Preper}(f^{-1}) = \mathsf{Preper}(\mathcal{F})$$

ChongGyu Lee (Soongsil University) Generalized Dynamical systems: Preliminary Report

17

Introduction

Generalization

Theorem (L., In progress)

Let $f, g : \mathbb{A}^n \to \mathbb{A}^n$ be polynomial maps such that

- algebraically stable,
- jointly regular,
- $h(f^2(P)) > \deg(g \circ f)h(P) O(1)$ and
- $h(g^2(P)) > deg(f \circ g)h(P) O(1).$

Then the canonical height of $\mathcal{F} := \{f^i \times g^i \mid i = 1, 2, 3, \cdots\},\$

$$\widehat{h}_{\mathcal{F}}(P) := \lim_{i \to \infty} d^{-i} h((f^i \times g^i)(P))$$

is well-defined: it is equivalent to the Weil height on \mathbb{P}^n and $\hat{h}_{\mathcal{F}}(P) = 0$ if and only if $P \in \operatorname{Preper}(f) \cap \operatorname{Preper}(g)$.

Joint Mathematical Meeting, Jan. 9, 2016

General Theorem

Theorem (L., In progress)

Let F be a countable set of morphisms between projective spaces defined over a number field K:

$$\mathcal{F}:=\{f_i:\mathbb{P}^n\to\mathbb{P}^N\}.$$

Suppose

$$\left| d_i^{-1} h(f_i(P)) - d_{i+1}^{-1} h(f_{i+1}(P)) \right|, \quad d_i = \deg f_i$$

converge uniformly. Then we can define the canonical height

$$\widehat{h}_{\mathcal{F}}(P) := \lim_{i \to \infty} \frac{1}{d_i} h(f_i(P))$$

which is equivalent to the Weil height on \mathbb{P}^n .

Joint Mathematical Meeting, Jan. 9, 2016

General Theorem

Theorem (L., In progress)

Let F be a countable set of morphisms between projective spaces defined over a number field K:

$$\mathcal{F}:=\{f_i:\mathbb{P}^n\to\mathbb{P}^N\}.$$

Suppose

$$|d_i^{-1}h(f_i(P)) - d_{i+1}^{-1}h(f_{i+1}(P))|, \quad d_i = \deg f_i$$

converge uniformly. Then we can define the canonical height

$$\widehat{h}_{\mathcal{F}}(P) := \lim_{i \to \infty} \frac{1}{d_i} h(f_i(P))$$

Joint Mathematical Meeting, Jan. 9, 2016

which is equivalent to the Weil height on \mathbb{P}^n .

Corollary

The set of preperiodic point is of bounded height.

ChongGyu Lee (Soongsil University) Generalized Dynamical systems: Preliminary Report

Introduction

Appreciation

Thanks for your hearing!

20