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Introduction

Dynamical Systems

Definition

We say a pair (S , f ) is a (discrete) dynamical system when f : S → S is a self
map.

P
f // f (P)

f // f (f (P))

Definition

We define the orbit of P under f to be

Of (P) := {P, f (P), f 2(P), · · · , f m(P), · · · }

where f m is m-th iterate of f .

Definition (Dynamical Classification)

We say a point P ∈ S is fixed if Of (P) = {P}, periodic if f m(P) = P for some
m ≥ 1 and preperiodic if Of (P) is finite.
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We say a pair (S , f ) is a (discrete) dynamical system when f : S → S is a self
map.

P
f // f (P)

f // f (f (P))

Remark

We can study properties of preperiodic points by comparing information of P and
f (P). For example, is

deg f · h(P)− h(f (P))

bounded?

Definition (Dynamical Classification)
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Introduction

Arithmetic Dynamics

Theorem (Northcott)

Let φ : Pn(Q)→ Pn(Q) be a morphism of degree d. Then,

h(φ(P)) > d · h(P) + O(1).

Corollary

If f : Pn 99K Pn is a rational map with at least ont indeterminacy point, then
1 + ε

deg f
h(f (P)) cannot be an upper bound of h(P).

Theorem (L.)

Northcott’s theorem works only for polarizable endomorphisms, like
endomorphisms on projective spaces.
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Introduction

Arithmetic Dynamics

Theorem (Weak Version)

Let φ : An(Q)→ An(Q) be a polynomial map. If

h(φ(P)) > (1 + ε) · h(P) + O(1)

holds for all P ∈ An(Q), then the set of preperiodic points is of bounded height.

Theorem (L.)

Northcott’s theorem works only for polarizable endomorphisms, like
endomorphisms on projective spaces.
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Introduction

Arithmetic Dynamics

Theorem (Silverman, L.)

Let f1, · · · , fk : An → An be jointly regular family of polynomial maps (whose
meromorphic extensions on Pn share no indeterminacy point.) Then

k∑
i=1

1

deg fi
h
(
fi (P)

)
> (1 + r) h(P) + O(1).

Corollary

Let M = 〈f1, · · · , fk〉 be a monoid generated by f1, · · · , fk . Then

Preper(M) :=
{

P ∈ An(Q) | {f (P) | f ∈ M}
}

is of bounded height
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Introduction

Comparison of two dynamical systems

Remark

Let M = 〈f , g〉 be a monoid generated by f , g. Then ‘M-periodic’
(P ∈ Preper(M)) is quite strong condition.

Example

Let S be a K 3-surface with two noncommuting involutions, ι1, ι2. Then,
Preper(ιj) = S while Preper(〈ι1, ι2〉) is of bounde height.

Question

Let f , g : An → An be polynomial maps whose meromorphic extensions share no
indeterminacy point. Is there any way to study

Preper(f ) ∩ Preper(g)?
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Introduction

Comparison of two dynamical systems

Theorem (Baker-DeMarco, Yuan-Zhang)

Let φ, ψ : Pn → Pn be endomorphisms of degree at least 2. Then
|Preper(φ) ∩ Preper(ψ)| =∞ if and only if Preper(φ) = Preper(ψ).

Theorem (L.-Ye)

Let f , g be polynomial maps. If f ◦ g = g ◦ f and Preper(f ) is of bounded height,
then Preper(f ) ⊂ Preper(g).

Question

Is there any f , g such that Preper(f ) ∩ Preper(g) is of bounded height while
Preper(f ),Preper(g) are unbounded?
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Introduction

Dynamics Revisited

Definition

Let (S , f ) be a dynamical system. We consider the monoid generated by f ,

Mf := 〈f 〉 = {Id , f , f 2 · · · }.

Then we can say (S ,Mf ) is a dynamical system.

Definition

We define the orbit of P under Mf -action to be

OMf
(P) := {f (P) | f ∈ Mf }.

Definition

We say a point P ∈ S is preperiodic if Of (P) is finite.
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Introduction

Action of Monoid

Definition

Let M be a monoid consisting of self maps on S:

M := 〈f1, · · · , fk〉.

Then we say (S ,M) is a dynamical system with several maps.

Definition

We define the orbit of P to be

OM(P) := {f (P) | f ∈ M}.

Definition

We say a point P ∈ S is preperiodic if OM(P) is finite.
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Introduction

Action of a Set of self maps

Definition

Let M be a set of self maps on S:

M := {fi : S → S | i ∈ I}.

Then we say (S ,M) is a dynamical system.

Definition

We define the orbit of P to be

OM(P) := {f (P) | f ∈M}.

Definition

We say a point P ∈ S is preperiodic if OM(P) is finite.
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Introduction

Action of a Set of maps

Definition

LetF be a set consisting of maps from T to S:

F := {f : T → S}.

Then we say (T ,S ,F) a dynamical system.

Definition

We define the orbit of P under F to be

OF (P) := {f (P) | f ∈ F} ⊂ S .

Definition

We say a point P ∈ T is preperiodic if OF (P) is finite.
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Introduction

Examples : Isogenies

Example

Let E1,E2 be elliptic curves defined over Q and let F = Hom(E1,E2) be the set of
isogenies between E1 and E2. Then

Preper(F) = (E1)tor .

Example

Let φ, ψ be isogeneous Drinfeld module and let F = Hom(φ, ψ) be the sets of
isogenies between φ and ψ. Then,

Preper(F) = (φ)tor .
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Introduction

Preper(f ) ∩ Preper(g) and Product map

Definition

Let f , g : An → An be polynomial maps. We define

f × g : An → A2n, P 7→ (f (P), g(P)).

Proposition

Preper(f ) ∩ Preper(g) = Preper(f × g).

Proposition

Let f , g have the same degree. Then f and g are jointly regular if f × g extends
continuously on Pn.
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Introduction

Application to Rational dynamical systems

Proposition

Let (Pn,P2n, {Fk := f k × gk}) be the generalized dynamical system, and let
G : P2n → P2n be the meromorphic extension of

f · g : A2n → A2n, (P,Q) 7→ (f (P), g(Q)).

Then
Pn

Fk−1

}}
Fk

��

Fk+1

!!
· · · PN

G
// PN

G
// PN · · ·
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Introduction

Application to Rational dynamical systems

Theorem

Let f : An → An be a regular polynomial automorphism and let f −1 be its inverse.
Then there is an integer 1 ≤ l ≤ n − 1 such that

deg f l = deg(f −1)n−l .

Theorem (Kawaguchi)

Let F := {Fi = f li × f −(n−l)i | i = 1, 2, · · · }. Then

ĥ(P) := lim
i→∞

1

deg Fi
h(Fi (P))

converges.

Proposition

Preper(f ) = Preper(f l) ∩ Preper(f −1) = Preper(F)
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ĥ(P) := lim
i→∞

1

deg Fi
h(Fi (P))

converges.

Proposition

Preper(f ) = Preper(f l) ∩ Preper(f −1) = Preper(F)

ChongGyu Lee (Soongsil University) Generalized Dynamical systems: Preliminary Report
Joint Mathematical Meeting, Jan. 9, 2016 17 /

20



Introduction

Generalization

Theorem (L., In progress)

Let f , g : An → An be polynomial maps such that

1 deg f = deg g = d,

2 algebraically stable,

3 jointly regular,

4 h(f 2(P)) > deg(g ◦ f )h(P)− O(1) and

5 h(g2(P)) > deg(f ◦ g)h(P)− O(1).

Then the canonical height of F := {f i × g i | i = 1, 2, 3, · · · },

ĥF (P) := lim
i→∞

d−ih((f i × g i )(P))

is well-defined: it is equivalent to the Weil height on Pn and ĥF (P) = 0 if and
only if P ∈ Preper(f ) ∩ Preper(g).
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Introduction

General Theorem

Theorem (L., In progress)

Let F be a countable set of morphisms between projective spaces defined over a
number field K :

F := {fi : Pn → PN}.

Suppose ∣∣d−1i h(fi (P))− d−1i+1h(fi+1(P))
∣∣ , di = deg fi

converge uniformly. Then we can define the canonical height

ĥF (P) := lim
i→∞

1

di
h
(
fi (P)

)
which is equivalent to the Weil height on Pn.

Corollary

The set of preperiodic point is of bounded height.
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Introduction

Appreciation

Thanks for your hearing!
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