A Very Elementary Proof of a Conjecture of B. and M. Shapiro for Cubic Rational Functions

Xander Faber and Bianca Thompson*

Smith College

January 2016
- K = field with characteristic 0
- \overline{K} = algebraic closure of K
- $f, g \in \overline{K}(z)$ are equivalent if there exists a linear fractional transformation $\sigma \in \overline{K}$ such that $f = \sigma \circ g$.
A Case of the B. and M. Shapiro Conjecture

Theorem (Eremenko-Gabrielov)

If $f \in \mathbb{C}(z)$ is a rational function with only real critical points, then f is equivalent to a rational function with real coefficients.
Goldberg: There are at most

\[\rho(d) := \frac{1}{d} \binom{2d - 2}{d - 1} \]

equivalence classes of degree \(d \) rational functions with a given set of critical points.
Goldberg: There are at most

$$\rho(d') := \frac{1}{d} \binom{2d - 2}{d - 1}$$

equivalence classes of degree d rational functions with a given set of critical points.

Eremenko and Gabrielov: Using topological, combinatorial, and complex analytic techniques construct exactly $\rho(d)$ real rational functions with a given set of real critical points.
Goldberg: There are at most

\[\rho(d') := \frac{1}{d} \binom{2d - 2}{d - 1} \]

equivalence classes of degree \(d \) rational functions with a given set of critical points.

Eremenko and Gabrielov: Using topological, combinatorial, and complex analytic techniques construct exactly \(\rho(d) \) real rational functions with a given set of real critical points.

But! The relationship between a rational function and its critical points is purely algebraic, via the roots of the derivative.
• **Goldberg**: There are at most

\[\rho(d') := \frac{1}{d} \binom{2d - 2}{d - 1} \]

equivalence classes of degree \(d \) rational functions with a given set of critical points.

• **Eremenko and Gabrielov**: Using topological, combinatorial, and complex analytic techniques construct exactly \(\rho(d) \) real rational functions with a given set of real critical points.

• **But!** The relationship between a rational function and its critical points is purely algebraic, via the roots of the derivative.

• This leads to the following question:
Question:
Is there a truly elementary proof of the Eremenko and Gabrielov’s result?
Corollary (Faber, T.)

Using only algebraic techniques we can show, if \(f \in \mathbb{C}(z) \) is a degree 3 rational function with only real critical points, then \(f \) is equivalent to a rational function with real coefficients.
Corollary (Faber, T.)

Using only algebraic techniques we can show, if \(f \in \mathbb{C}(z) \) is a degree 3 rational function with only real critical points, then \(f \) is equivalent to a rational function with real coefficients.

Note:
- The quadratic case is trivial over any field.
Corollary (Faber, T.)

Using only algebraic techniques we can show, if \(f \in \mathbb{C}(z) \) is a degree 3 rational function with only real critical points, then \(f \) is equivalent to a rational function with real coefficients.

Note:

- The quadratic case is trivial over any field.
- If \(f \in \overline{K}(z) \) has critical points \(c_1, c_2 \in \mathbb{P}^1(K), \ c_1 \neq \infty \), then either \(f = \left(\frac{z-c_1}{z-c_2} \right)^2 \) or \(f = (z - c_1)^2 \).
Riemann Hurwitz $\Rightarrow f$ has at most $2d - 2 = 4$ critical points.
• Riemann Hurwitz $\Rightarrow f$ has at most $2d - 2 = 4$ critical points.

• f can not be unicritical (Faber).
Riemann Hurwitz $\Rightarrow f$ has at most $2d - 2 = 4$ critical points.

f can not be unicritical (Faber).

f has 2 or 3 distinct critical points \Rightarrow at least one critical point is totally ramified.
Riemann Hurwitz $\Rightarrow f$ has at most $2d - 2 = 4$ critical points.

f can not be unicritical (Faber).

f has 2 or 3 distinct critical points \Rightarrow at least one critical point is totally ramified.

f has 4 distinct critical points.
Normal form for cubic

- We begin with a normal form for cubic functions. For $u \in \overline{K} \setminus \{-1, -2\}$, define

 \[f_u(z) = \frac{z^2(z + u)}{(2u + 3)z - (u + 2)}. \]

- This function has the property that it fixes 0, 1, and ∞, and each of these three points is critical.
Normal form for cubic

- We begin with a normal form for cubic functions. For $u \in \overline{K \setminus \{-1, -2\}}$, define
 \[
 f_u(z) = \frac{z^2(z + u)}{(2u + 3)z - (u + 2)}. \tag{1}
 \]

- This function has the property that it fixes 0, 1, and \(\infty\), and each of these three points is critical.

Lemma

A cubic rational function that is critical at 0, 1, and \(\infty\) is equivalent to a unique f_u, and the fourth critical point is

$$
\phi(u) = -u \frac{u+2}{2u+3}.
$$
Proposition

If $f_u \in \overline{K}(z)$ is equivalent to a rational function with K-coefficients, then $u \in K$.
Algebraic Condition

Definition

For a field K and rational function $\phi \in K(z)$, we say K is ϕ-perfect if the map $\phi : \mathbb{P}^1(K) \to \mathbb{P}^1(K)$ is surjective.
Theorem (Faber, T.)

Let K be a field of characteristic zero with algebraic closure \overline{K}. The following statements are equivalent:

1. Any cubic rational function $f \in \overline{K}(z)$ with K-rational critical points is equivalent to a rational function in $K(z)$.

2. K is ϕ-perfect, where $\phi(z) = -z \frac{z^2+2}{2z+3}$.
\[\phi(z) = -z \frac{z+2}{2z+3} \]

(1) \(\Rightarrow\) (2).

- Take \(y \in K\). Solve the equation \(\phi(u) = y\) with \(u \in K\).
 If \(y = \infty\), then we may take \(u = -3/2\).
\(\phi(z) = -z \frac{z+2}{2z+3} \)

(1) \(\Rightarrow \) (2).

- Take \(y \in K \). Solve the equation \(\phi(u) = y \) with \(u \in K \).
 - If \(y = \infty \), then we may take \(u = -3/2 \)
- Otherwise, choose \(u \in \bar{K} \) such that \(\phi(u) = y \).
$\phi(z) = -z \frac{z+2}{2z+3}$

(1) \Rightarrow (2).

- Take $y \in K$. Solve the equation $\phi(u) = y$ with $u \in K$. If $y = \infty$, then we may take $u = -3/2$.
- Otherwise, choose $u \in \bar{K}$ such that $\phi(u) = y$.
- Then the function f_u has K-rational critical points $\{0, 1, \infty, y\}$.
\[\phi(z) = -z \frac{z+2}{2z+3} \]

(1) \(\Rightarrow\) (2).

- Take \(y \in K\). Solve the equation \(\phi(u) = y\) with \(u \in K\). If \(y = \infty\), then we may take \(u = -3/2\).
- Otherwise, choose \(u \in \bar{K}\) such that \(\phi(u) = y\).
- Then the function \(f_u\) has \(K\)-rational critical points \(\{0, 1, \infty, y\}\).
- Since \(f_u\) is equivalent to a rational function with \(K\)-coefficients, the proposition implies that \(u \in K\).
Suppose that f has at least three critical points. WLOG, assume that 0, 1, and ∞ are among them. By the lemma, f is equivalent to f_u for some $u \in \bar{K}$. The remaining critical point is $\phi(u)$. By assumption, both solutions of $\phi(z) = \phi(u)$ lie in $P_1(K)$, so that $u \in K$. That is, f is equivalent to a rational function with K-coefficients.

$(2) \Rightarrow (1)$.

(2) \Rightarrow (1).

Suppose that f has at least three critical points. WLOG, assume that $0, 1, \text{ and } \infty$ are among them.
(2) \Rightarrow (1).

- Suppose that f has at least three critical points. WLOG, assume that 0, 1, and ∞ are among them.
- By the lemma, f is equivalent to f_u for some $u \in \bar{K}$.
(2) \Rightarrow (1).

- Suppose that f has at least three critical points. WLOG, assume that 0, 1, and ∞ are among them.
- By the lemma, f is equivalent to f_u for some $u \in \bar{K}$.
- The remaining critical point is $\phi(u)$. By assumption, both solutions of $\phi(z) = \phi(u)$ lie in $\mathbb{P}^1(K)$, so that $u \in K$. That is, f is equivalent to a rational function with K-coefficients.
\[\phi(z) = -z \frac{z+2}{2z+3} \]

Corollary (Faber, T.)

Using only algebraic techniques, we can show if \(f \in \mathbb{C}(z) \) is a cubic rational function with only real critical points, then \(f \) is equivalent to a real rational function.
\[\phi(z) = -z \frac{z+2}{2z+3} \]

Corollary (Faber, T.)

Using only algebraic techniques, we can show if \(f \in \mathbb{C}(z) \) is a cubic rational function with only real critical points, then \(f \) is equivalent to a real rational function.

Proof.

\(\mathbb{R} \) is \(\phi \)-perfect for \(\phi \) as in the theorem.
\[\phi(z) = -z \frac{z+2}{2z+3} \]

Corollary (Faber, T.)

Using only algebraic techniques, we can show if \(f \in \mathbb{C}(z) \) is a cubic rational function with only real critical points, then \(f \) is equivalent to a real rational function.

Proof.

\(\mathbb{R} \) is \(\phi \)-perfect for \(\phi \) as in the theorem.

- \(\phi(-3/2) = \infty \), and if \(y \in \mathbb{R} \), then the equation \(\phi(z) = y \) is equivalent to a quadratic equation with discriminant \(4(y^2 - y + 1) = (2y - 1)^2 + 3 > 0 \).
\[\phi(z) = -z \frac{z+2}{2z+3} \]

Corollary (Faber, T.)

Using only algebraic techniques, we can show if \(f \in \mathbb{C}(z) \) is a cubic rational function with only real critical points, then \(f \) is equivalent to a real rational function.

Proof.

\(\mathbb{R} \) is \(\phi \)-perfect for \(\phi \) as in the theorem.

- \(\phi(-3/2) = \infty \), and if \(y \in \mathbb{R} \), then the equation \(\phi(z) = y \) is equivalent to a quadratic equation with discriminant \(4(y^2 - y + 1) = (2y - 1)^2 + 3 > 0 \).
- Hence \(\phi(z) = y \) has a real solution.
Question:
Are there other fields K for which our corollary will hold?
Question:
Are there other fields K for which our corollary will hold? That is can we show there are other fields K which are ϕ-perfect, where $\phi(z) = -z \frac{z+2}{2z+3}$?
Number fields are not \(\phi \)-perfect for any \(\phi \) with \(\deg(\phi) \geq 2 \). We can show this using a canonical height argument.

If \(\phi(z) = -z \frac{z+2}{2z+3} \), the field \(\mathbb{Q}_p \) is \(\phi \)-perfect iff \(p = 3 \).
Proof for $p > 3$.

- The resultant of $\phi(z) = -z \frac{z+2}{2z+3}$ is 3 \Rightarrow reduced modulo p to yield a quadratic function $\tilde{\phi} \in \mathbb{F}_p(z)$.
Proof for $p > 3$.

- The resultant of $\phi(z) = -z\frac{z+2}{2z+3}$ is 3 \Rightarrow reduced modulo p to yield a quadratic function $\tilde{\phi} \in \mathbb{F}_p(z)$.
- Note that $\tilde{\phi}(0) = \tilde{\phi}(-2)$, so that $\tilde{\phi}$ is not injective on $\mathbb{P}^1(\mathbb{F}_p)$.
Proof for $p > 3$.

- The resultant of $\phi(z) = -z \frac{z+2}{2z+3}$ is $3 \Rightarrow$ reduced modulo p to yield a quadratic function $\tilde{\phi} \in \mathbb{F}_p(z)$.

- Note that $\tilde{\phi}(0) = \tilde{\phi}(-2)$, so that $\tilde{\phi}$ is not injective on $\mathbb{P}^1(\mathbb{F}_p)$.

- Since this is a finite set, $\tilde{\phi}$ also fails to be surjective. Choose $\tilde{y} \in \mathbb{F}_p$ such that $\tilde{\phi}(z) = \tilde{y}$ has no solution in \mathbb{F}_p.

By Hensel's lemma, it follows that $\phi(z) = y$ has no solution in \mathbb{Z}_p for any $y \in \mathbb{Z}_p$ such that $y \equiv \tilde{y} \pmod{p}$.

Proof for $p > 3$.

- The resultant of $\phi(z) = -z \frac{z+2}{2z+3}$ is 3 \Rightarrow reduced modulo p to yield a quadratic function $\tilde{\phi} \in \mathbb{F}_p(z)$.
- Note that $\tilde{\phi}(0) = \tilde{\phi}(-2)$, so that $\tilde{\phi}$ is not injective on $\mathbb{P}^1(\mathbb{F}_p)$.
- Since this is a finite set, $\tilde{\phi}$ also fails to be surjective. Choose $\tilde{y} \in \mathbb{F}_p$ such that $\tilde{\phi}(z) = \tilde{y}$ has no solution in \mathbb{F}_p.
- By Hensel’s lemma, it follows that $\phi(z) = y$ has no solution in \mathbb{Z}_p for any $y \in \mathbb{Z}_p$ such that $y \equiv \tilde{y} \pmod{p}$.
Proof continued.

- It remains to show that \(\phi(z) = y \) has no solution in \(\mathbb{Q}_p \setminus \mathbb{Z}_p \).
- If \(\phi(x) = y \) with \(|x|_p > 1 \), then

\[
|\phi(x)|_p = |x|_p \cdot \left| \frac{1 + 2/x}{2 + 3/x} \right|_p = |x|_p > 1,
\]

which contradicts \(y \in \mathbb{Z}_p \). Hence \(\phi(z) = y \) has no solution in \(\mathbb{P}^1(\mathbb{Q}_p) \), and we have proved that \(\mathbb{Q}_p \) is not \(\phi \)-perfect.
Further Thoughts

- A general rational function of degree d has $2d + 1$ free parameters (coefficients) and $2d - 2$ critical points.
Further Thoughts

- A general rational function of degree \(d \) has \(2d + 1 \) free parameters (coefficients) and \(2d - 2 \) critical points.
- Imposing the condition that 0, 1, \(\infty \) are fixed and critical reduces to \(2d - 5 \) free parameters.
Further Thoughts

- A general rational function of degree d has $2d + 1$ free parameters (coefficients) and $2d - 2$ critical points.

- Imposing the condition that $0, 1, \infty$ are fixed and critical reduces to $2d - 5$ free parameters.

- Fix a set of critical points. The Wronskian gives $2d - 5$ free coefficients for the function satisfying $2d - 5$ quadratic equations in $2d - 5$ variables over K.
Further Thoughts

- A general rational function of degree d has $2d + 1$ free parameters (coefficients) and $2d - 2$ critical points.
- Imposing the condition that $0, 1, \infty$ are fixed and critical reduces to $2d - 5$ free parameters.
- Fix a set of critical points. The Wronskian gives $2d - 5$ free coefficients for the function satisfying $2d - 5$ quadratic equations in $2d - 5$ variables over K.
- $d = 3$: $2d - 5 = 1$. Express the remaining critical point as a function of the free parameter.
A general rational function of degree d has $2d + 1$ free parameters (coefficients) and $2d - 2$ critical points.

Imposing the condition that $0, 1, \infty$ are fixed and critical reduces to $2d - 5$ free parameters.

Fix a set of critical points. The Wronskian gives $2d - 5$ free coefficients for the function satisfying $2d - 5$ quadratic equations in $2d - 5$ variables over K.

$d = 3$: $2d - 5 = 1$. Express the remaining critical point as a function of the free parameter.

Is it possible to solve for the critical points as explicit functions of parameters for $d > 3$?
Further Thoughts continued

- Bézout’s Theorem gives an upper bound of 2^{2d-5} solutions for a general system of $2d - 5$ conics, while Goldberg bounds the number of distinct solutions by the smaller quantity

$$\frac{1}{d} \left(\frac{2d - 2}{d - 1} \right) \approx \frac{8}{\sqrt{\pi d^{3/2}}} 2^{2d-5}.$$
Further Thoughts continued

- Bézout’s Theorem gives an upper bound of 2^{2d-5} solutions for a general system of $2d - 5$ conics, while Goldberg bounds the number of distinct solutions by the smaller quantity

$$\frac{1}{d} \binom{2d - 2}{d - 1} \approx \frac{8}{\sqrt{\pi} d^{3/2}} 2^{2d-5}.$$

- This suggests a substantial amount of extra structure in our system of equations, which may make progress possible.
Quartic

Example

\[f(z) = \frac{(z^4 + az^3 + bz^2)}{cz^2 + dz + 1 + a + b - c - d} \]

where \(d = \frac{(3a^2 + 5ab + 2b^2 - 2ac - 2bc + 7a + 6b - 2c + 4)}{a + b + 1} \).

The critical points are:

\[t_1 = -\frac{(ac + 9a + 6b - 4c + 12)}{(2c)} \]
\[t_2 = \frac{(6a^2 + 4ab - 3ac + 9a + 2b)}{(2c)} \]
\[t_3 = -\frac{b(2a + b - c + 3)}{c} \]
THANK YOU!