Uniform Bounds for Periods of Endomorphisms of Varieties

Keping Huang

University of Rochester

The Joint Mathematics Meetings 2020

KEPING HUANG (U OF ROCHESTER)

UNIFORM BOUNDEDNESS

JANUARY 2020 1

19

Outline

3 Some Ingredients of the Proof

KEPING HUANG (U OF ROCHESTER)

UNIFORM BOUNDEDNESS

JANUARY 2020 2 / 19

Morton and Silverman proposed the following

Conjecture (The Dynamical Uniform Boundedness Conjecture, [MS94])

Let K/\mathbb{Q} be a number field of degree D, let $\phi : \mathbb{P}^N \to \mathbb{P}^N$ be a morphism of degree $d \ge 2$ defined over K, and let $\operatorname{Prep}(\phi, K)$ be the set of K-rational points preperiodic under ϕ . There is a constant C(D, N, d) such that

 $\#\operatorname{Prep}(\phi, K) \le C(D, N, d).$

A Variant

If we replace \mathbb{P}^N by elliptic curves,

then the above conjecture becomes the Mazur-Merel Theorem.

Theorem (Mazur-Merel)

For all $D \in \mathbb{Z}$, $D \ge 1$ there exists a constant $B(D) \ge 0$ such that for all elliptic curves E over a number field K with [K : Q] = Dwe have $|E(K)_{\text{tors}}| \le B(D)$.

Previous Results on Period

- Pezda and Zieve proved bounds for the length of integral cycles of certain polynomial endomorphisms of affine spaces.
- Fakhurddin proved a boundedness result for endomorphisms of certain proper schemes.
- Hutz proved a bound for endomorphisms of smooth projective varieties with good reduction.
- Bell, Ghioca, and Tucker proved a bound for étale morphisms of smooth models of varieties.

Hutz's Result

Theorem ([Hut09])

Let X/\mathbb{Q} be a smooth irreducible projective variety of dimension d and $f: X \to X$ a morphism defined over \mathbb{Q} with good reduction at a prime p and denote by \tilde{X} its reduction. Let $P \in X(\mathbb{Q})$ be a periodic point with primitive period n. Then we have

$$n \leq |\tilde{X}(\mathbb{F}_p)| \cdot p(p^d - 1),$$
 for $p \neq 2$

Hutz's Result

Theorem ([Hut09])

Let X/\mathbb{Q} be a smooth irreducible projective variety of dimension d and $f: X \to X$ a morphism defined over \mathbb{Q} with good reduction at a prime p and denote by \tilde{X} its reduction. Let $P \in X(\mathbb{Q})$ be a periodic point with primitive period n. Then we have

$$n \leq |\tilde{X}(\mathbb{F}_p)| \cdot p(p^d - 1),$$
 for $p \neq 2$

In the case when K is a number field, there is another factor depending only on K and the prime.

Outline



3 Some Ingredients of the Proof

KEPING HUANG (U OF ROCHESTER)

UNIFORM BOUNDEDNESS

JANUARY 2020 7 / 19

Our Main Result

Theorem (H)

Let X/\mathbb{Q} be a variety. Suppose f admits a weak notion of good reduction at a prime p and denote by \tilde{X} its reduction at p. Let $P \in X(\mathbb{Q})$ be a periodic point under f.

Our Main Result

Theorem (H)

Let X/\mathbb{Q} be a variety. Suppose f admits a weak notion of good reduction at a prime p and denote by \tilde{X} its reduction at p. Let $P \in X(\mathbb{Q})$ be a periodic point under f. Then the primitive period n of P satisfies that

$$n \le |\tilde{X}(\mathbb{F}_p)| \cdot p\left(p^{d'} - 1\right)$$

for $p \neq 2$, where d' is the maximum dimension of the cotangent spaces at points in $\tilde{X}(\mathbb{F}_p)$.

Our Main Result

Theorem (H)

Let X/\mathbb{Q} be a variety. Suppose f admits a weak notion of good reduction at a prime p and denote by \tilde{X} its reduction at p. Let $P \in X(\mathbb{Q})$ be a periodic point under f. Then the primitive period n of P satisfies that

$$n \le |\tilde{X}(\mathbb{F}_p)| \cdot p\left(p^{d'} - 1\right)$$

for $p \neq 2$, where d' is the maximum dimension of the cotangent spaces at points in $\tilde{X}(\mathbb{F}_p)$.

In the case when K is a number field and the reduction is good, our result is weaker than the result of Hutz.

About the Weak Notion of Reduction

- There is a model \mathcal{X} of X over \mathbb{Z}_p .
- The variety X does not have to be nonsingular.
- The special fiber \tilde{X} does not have be nonsingular.
- The special fiber \tilde{X} does not even have to be irreducible.

The Setup of the Proof

We follow the proof in [Fak01] and other papers. Replacing f by an iterate we may assume that the reduction \tilde{P} of P is fixed under f. We follow the proof in [Fak01] and other papers.

Replacing f by an iterate

we may assume that the reduction \tilde{P} of P is fixed under f.

Let $\operatorname{Spec}(A)$ be the reduced subscheme of the model \mathcal{X} determined by the orbit of P.

Then f induces an \mathbb{Z}_p -automorphism σ of A.

It can be shown that \boldsymbol{A} is a local ring and

let \mathfrak{m} be the maximal ideal of A.

An Example

Let $K = \mathbb{Q}$, p = 3 and $X = \mathbb{P}^1$. Suppose $f : X \to X$ is given by $f(x) = x^2 - 4x + 3$ and P = 0. Then P is of primitive period 2 with orbit $O_f(P) = \{0, 3\}$.

An Example

Let $K = \mathbb{Q}$, p = 3 and $X = \mathbb{P}^1$. Suppose $f : X \to X$ is given by $f(x) = x^2 - 4x + 3$ and P = 0. Then P is of primitive period 2 with orbit $O_f(P) = \{0, 3\}$. In this case the ring $A = \mathbb{Z}_3[x]/x(x-3)$. It's a local ring with maximal ideal $\mathfrak{m} = (x, 3)$.

Outline



KEPING HUANG (U OF ROCHESTER)

UNIFORM BOUNDEDNESS

JANUARY 2020 12 / 19

The Framework

We first recall Proposition 1 of [Fak01]. We will use the notations there.

Proposition

With the notations as before, we have $n \leq n_0 r p^t$ where n_0 is the primitive period of the reduction \tilde{P} of P, r is the order of the induced map on the cotangent space $\mathfrak{m}/\mathfrak{m}^2$, and t depends only on K and the prime.

Clearly $n_0 \leq |\tilde{\mathcal{X}}(k)|$.

Notations

Recall that r is the order of the induced map on $\mathfrak{m}/\mathfrak{m}^2$. First we bound r.

We can show that $\dim_k(\mathfrak{m}/\mathfrak{m}^2) \leq d'$. By a result of Darafsheh, we have $r \leq p^{d'} - 1$.

The Setup

Replacing f by an iterate we may assume that the reduction \tilde{P} of P is fixed under f.

Let $\operatorname{Spec}(A)$ be the reduced subscheme of ${\mathcal X}$ determined by the orbit of P. Then f induces an $R\text{-morphism }\sigma$ of A.

Also let \mathfrak{m} be the maximal ideal of A.

Suppose the induced map $\tilde{\sigma}$ on $\mathfrak{m}/\mathfrak{m}^2$ is the identity.

The Setup

As in [Fak01], we look at the induced map $\sigma : A \to A$. Write $\sigma = id + h$. Then $h(\mathfrak{m}) \subseteq \mathfrak{m}^2$. Let $\nu : A \setminus \{0\} \to \mathbb{Z}$ be defined as follows: for $0 \neq a \in A$, let $\nu(a)$ be the largest integer ℓ such that $a \in \mathfrak{m}^{\ell}$.

The Setup

As in [Fak01], we look at the induced map $\sigma : A \to A$. Write $\sigma = \mathrm{id} + h$. Then $h(\mathfrak{m}) \subseteq \mathfrak{m}^2$. Let $\nu : A \setminus \{0\} \to \mathbb{Z}$ be defined as follows: for $0 \neq a \in A$, let $\nu(a)$ be the largest integer ℓ such that $a \in \mathfrak{m}^{\ell}$. Since $h(\mathfrak{m}) \subseteq \mathfrak{m}^2$, for all $a \in \mathfrak{m}$ either h(a) = 0 or $\nu(h^j(a)) > \nu(a)(j > 0)$. We will show that the order of σ is a power of p.

Poonen's Method

Suppose a is of period s and we have

$$a = \sigma^s(a) = (\mathrm{id} + h)^s(a)$$

Poonen's Method

Suppose a is of period s and we have

$$a = \sigma^{s}(a) = (\mathrm{id} + h)^{s}(a)$$

= $a + {\binom{s}{1}}h(a) + {\binom{s}{2}}h^{2}(a) + \dots + {\binom{s}{s-1}}h^{s-1}(a) + h^{s}(a),$
 $0 = sh(a) + {\binom{s}{2}}h^{2}(a) + \dots + sh^{s-1}(a) + h^{s}(a).$

Suppose a is of period s and we have

$$a = \sigma^{s}(a) = (\mathrm{id} + h)^{s}(a)$$

= $a + {\binom{s}{1}}h(a) + {\binom{s}{2}}h^{2}(a) + \dots + {\binom{s}{s-1}}h^{s-1}(a) + h^{s}(a),$
 $0 = sh(a) + {\binom{s}{2}}h^{2}(a) + \dots + sh^{s-1}(a) + h^{s}(a).$

Recall that our goal is to show that s is a power of p. It suffices to show that either s = 1 or p|s. Suppose a is of period s and we have

$$a = \sigma^{s}(a) = (\mathrm{id} + h)^{s}(a)$$

= $a + {\binom{s}{1}}h(a) + {\binom{s}{2}}h^{2}(a) + \dots + {\binom{s}{s-1}}h^{s-1}(a) + h^{s}(a),$
 $0 = sh(a) + {\binom{s}{2}}h^{2}(a) + \dots + sh^{s-1}(a) + h^{s}(a).$

Recall that our goal is to show that s is a power of p. It suffices to show that either s = 1 or p|s. Suppose $s \neq 1$ and p does not divide s. Since $\nu(h^N(a)) > \nu(a)$ for $a \in \mathfrak{m}, N \ge 1$, we must have $0 \notin \mathfrak{m}^{\nu(h(a))+1}$. Contradiction!

Keping Huang (U of Rochester)

Bibliography (Selected)

- Najmuddin Fakhruddin, Boundedness results for periodic points on algebraic varieties, Proc. Indian Acad. Sci. Math. Sci. 111 (2001), no. 2, 173–178. MR 1836365
- Benjamin Hutz, *Good reduction of periodic points on projective varieties*, Illinois J. Math. **53** (2009), no. 4, 1109–1126. MR 2741181
- Patrick Morton and Joseph H. Silverman, Rational periodic points of rational functions, Internat. Math. Res. Notices (1994), no. 2, 97–110. MR 1264933

Thank you!

KEPING HUANG (U OF ROCHESTER)

UNIFORM BOUNDEDNESS

JANUARY 2020 19 / 19

590