Totally T-adic functions of small height

Xander Faber (awfaber@super.org)
Joint Mathematics Meetings
Arithmetic Dynamics Special Session

January 17, 2020

Center for Computing Sciences
17100 Science Drive • Bowie, Maryland 20715

Collaborators

This talk is joint work with Clayton Petsche at Oregon State University.

Totally Real Algebraic Numbers

Def. $\alpha \in \overline{\mathbb{Q}}$ is totally real if its image under every embedding in \mathbb{C} lies in \mathbb{R}.
e.g., $a+b \sqrt{2}$ for $a, b \in \mathbb{Q}$

Theorem (Schinzel)

If $\alpha \neq 0, \pm 1$ is totally real, then $h(\alpha) \geq \frac{1}{2} \log \left(\frac{1+\sqrt{5}}{2}\right)$, and this bound is sharp.

Why is it true? Bilu's equidistribution theorem says $h\left(\alpha_{n}\right) \rightarrow 0$ implies Galois orbits of α_{n} 's equidistribute around unit circle in \mathbb{C}. But totally real numbers are stuck in the real axis.

Totally Real Algebraic Numbers

Def. $\alpha \in \overline{\mathbb{Q}}$ is totally real if its image under every embedding in \mathbb{C} lies in \mathbb{R}.
e.g., $a+b \sqrt{2}$ for $a, b \in \mathbb{Q}$

Theorem (Schinzel)

If $\alpha \neq 0, \pm 1$ is totally real, then $h(\alpha) \geq \frac{1}{2} \log \left(\frac{1+\sqrt{5}}{2}\right)$, and this bound is sharp.

Why is it true? Bilu's equidistribution theorem says $h\left(\alpha_{n}\right) \rightarrow 0$ implies Galois orbits of α_{n} 's equidistribute around unit circle in \mathbb{C}. But totally real numbers are stuck in the real axis.

Totally p-adic Algebraic Numbers

Def. $\alpha \in \overline{\mathbb{Q}}$ is totally p-adic if its image under every embedding in \mathbb{C}_{p} lies in \mathbb{Q}_{p}.
e.g., $a+b \sqrt{2}$ for $a, b \in \mathbb{Q}$, provided p odd and $\left(\frac{2}{p}\right)=1$

Theorem (Bombieri/Zannier/Fili/Petsche/Pottmeyer)
If $\alpha \notin\{0\} \cup \mu_{p-1}$ is totally p-adic, then $h(\alpha) \geq \frac{\log (p / 2)}{p+1}$.

Why is it true? Baker/Chambert-Loir/Favre/Rivera-Letelier/Rumely equidistribution theorem says $h\left(\alpha_{n}\right) \rightarrow 0$ implies Galois orbits of α_{n} 's equidistribute to Gauss point in $\mathbf{P}_{\mathbb{C}_{p}}^{1}$. But totally p-adic numbers are stuck in the $\mathbb{P}^{1}\left(\mathbb{F}_{p}\right)$-branches.

Totally p-adic Algebraic Numbers

Def. $\alpha \in \overline{\mathbb{Q}}$ is totally p-adic if its image under every embedding in \mathbb{C}_{p} lies in \mathbb{Q}_{p}. e.g., $a+b \sqrt{2}$ for $a, b \in \mathbb{Q}$, provided p odd and $\left(\frac{2}{p}\right)=1$

Theorem (Bombieri/Zannier/Fili/Petsche/Pottmeyer)
If $\alpha \notin\{0\} \cup \mu_{p-1}$ is totally p-adic, then $h(\alpha) \geq \frac{\log (p / 2)}{p+1}$.

Why is it true? Baker/Chambert-Loir/Favre/Rivera-Letelier/Rumely equidistribution theorem says $h\left(\alpha_{n}\right) \rightarrow 0$ implies Galois orbits of α_{n} 's equidistribute to Gauss point in $\mathbf{P}_{\mathbb{C}_{p}}^{1}$. But totally p-adic numbers are stuck in the $\mathbb{P}^{1}\left(\mathbb{F}_{p}\right)$-branches.

A Dramatic Reenactment

Function Field Heights

Let $K / \mathbb{F}_{q}(T)$ be a finite separable extension.

- K is the function field of a smooth proper curve C over \mathbb{F}_{q}.
- places of K correspond to closed points of C, denoted $|C|$
- For $P \in\left|\mathbb{P}_{\mathbb{F}_{q}}^{1}\right|$, set $\mathbb{C}_{P}=\widehat{\mathbb{F}_{q}(T)^{\text {sep }}}$, completed with respect to ord_{P}. Height of $\alpha \in K$ is a sum of local contributions:
- $h(\alpha)=0$ if and only if $\alpha \in \mathbb{P}^{1}\left(\overline{\mathbb{F}}_{q}\right)$
- $\alpha \in K$ has a minimal polynomial $f \in \mathbb{F}_{q}[T][x]$. Then $h(\alpha)=\frac{\operatorname{deg}_{T}(f)}{\operatorname{deg}_{x}(f)}$.

Function Field Heights

Let $K / \mathbb{F}_{q}(T)$ be a finite separable extension.

- K is the function field of a smooth proper curve C over \mathbb{F}_{q}.
- places of K correspond to closed points of C, denoted $|C|$
- For $P \in\left|\mathbb{P}_{\mathbb{F}_{q}}^{1}\right|$, set $\mathbb{C}_{P}=\widehat{\mathbb{F}_{q}(T)^{\text {sep }}}$, completed with respect to ord or $^{\text {. }}$ Height of $\alpha \in \mathbb{K}$ is a sum of local contributions.

- $h(\alpha)=0$ if and only if $\alpha \in \mathbb{P}^{1}\left(\overline{\mathbb{F}}_{q}\right)$
- $\alpha \in K$ has a minimal polynomial $f \in \mathbb{F}_{q}[T][x]$. Then $h(\alpha)=\frac{\operatorname{deg}_{T}(f)}{\operatorname{deg}_{x}(f)}$.

Totally T-adic Functions

Def. Set $\mathbb{C}_{T}=\mathbb{F}_{q}(T)^{\text {sep }}$, completed with respect to ord ${ }_{T}$.
Say $\alpha \in \mathbb{F}_{q}(T)^{\text {sep }}$ is totally T-adic if

- its image under every embedding in \mathbb{C}_{T} lies in $\mathbb{F}_{q}((T))$, or equivalently,
- T splits completely in the function field $\mathbb{F}_{q}(T, \alpha)$.
e.g., Roots of $T x^{q+1}+x^{q}-x-c T$, where q is odd and $c \neq \square$ in \mathbb{F}_{q}.

Theorem (XF/Petsche)

If $\alpha \notin \mathbb{F}_{q}$ is totally T-adic, then $h(\alpha) \geq \frac{1}{q+1}$. This bound is sharp.

Proof Haiku. Rework Pottmeyer.
Archimedean places?
Not in function fields!

Don't like poetry? A geometric proof for pros(e)

Theorem (XF/Petsche)
If $\alpha \notin \mathbb{F}_{q}$ is totally T-adic, then $h(\alpha) \geq \frac{1}{q+1}$. This bound is sharp.

Proof. $f(T, x)=$ min. poly. for α. Set $d=\operatorname{deg}_{x}(f)$ and $n=\operatorname{deg}_{T}(f)$.

$$
\begin{aligned}
C_{/ \mathbb{F}_{q}}= & \text { smooth proper curve } \\
& \text { birational to }\{f=0\} .
\end{aligned}
$$

$$
\# C\left(\mathbb{F}_{q}\right)
$$

Don't like poetry? A geometric proof for pros(e)

Theorem (XF/Petsche)

If $\alpha \notin \mathbb{F}_{q}$ is totally T-adic, then $h(\alpha) \geq \frac{1}{q+1}$. This bound is sharp.

Proof. $f(T, x)=$ min. poly. for α.
Set $d=\operatorname{deg}_{x}(f)$ and $n=\operatorname{deg}_{T}(f)$.

$$
\begin{aligned}
C_{/ \mathbb{F}_{q}}= & \text { smooth proper curve } \\
& \text { birational to }\{f=0\} .
\end{aligned}
$$

Don't like poetry? A geometric proof for pros(e)

Theorem (XF/Petsche)

If $\alpha \notin \mathbb{F}_{q}$ is totally T-adic, then $h(\alpha) \geq \frac{1}{q+1}$. This bound is sharp.

Proof. $f(T, x)=$ min. poly. for α.
Set $d=\operatorname{deg}_{x}(f)$ and $n=\operatorname{deg}_{T}(f)$.
$C_{/ \mathbb{F}_{q}}=$ smooth proper curve birational to $\{f=0\}$.

Don't like poetry? A geometric proof for pros(e)

Theorem (XF/Petsche)

If $\alpha \notin \mathbb{F}_{q}$ is totally T-adic, then $h(\alpha) \geq \frac{1}{q+1}$. This bound is sharp.

Proof. $f(T, x)=$ min. poly. for α.
Set $d=\operatorname{deg}_{x}(f)$ and $n=\operatorname{deg}_{T}(f)$.

$$
\begin{aligned}
C_{/ \mathbb{F}_{q}}= & \text { smooth proper curve } \\
& \text { birational to }\{f=0\} .
\end{aligned}
$$

$\Longrightarrow h(\alpha)=\frac{n}{d} \geq \frac{1}{q+1} . \quad$ Done!

Geometry of Minimum Height Elements

Theorem. (XF/Petsche)

Suppose C is a smooth proper curve over $\mathbb{F}_{q}, n \geq 1$ is an integer, and $T, x \in \kappa(C)$ are separable functions such that:

- $\# C\left(\mathbb{F}_{q}\right)=n(q+1)$;
- T has degree $n(q+1)$ and x has degree n;
- $\kappa(C)=\mathbb{F}_{q}(T, x)$;
- T vanishes at all points of $C\left(\mathbb{F}_{q}\right)$.

Then x generates a totally T-adic extension of $\mathbb{F}_{q}(T)$, and $h(x)=\frac{1}{q+1}$.
Fun fact. Suppose $n \mid(q-1)$, and consider the cyclic n-cover of \mathbb{P}^{1} given by

$$
C_{/ \mathbb{F}_{q}}: y^{n}=x^{n}\left(x^{q}-x\right)^{n}+1
$$

For $T=\frac{x^{q}-x}{y}, x$ is a totally T-adic function of minimum height.

Castelnuovo Hasse-Weil with Curves

Theorem. (XF/Petsche)

Let α be totally T-adic with minimum height $1 /(q+1)$ and associated curve C. Then the gonality n and the genus $g(C)$ satisfy

$$
\frac{(n-1)(q+1)}{2 \sqrt{q}} \leq g(C) \leq \frac{1}{2}(q+1)(n-1)^{2}+\frac{1}{2}(q-1)(n-1) .
$$

Lower bound. Hasse-Weil. $n(q+1)=\# C\left(\mathbb{F}_{q}\right) \leq q+1+2 g \sqrt{q}$
Upper bound. Essentially Castelnuovo's estimate. Functions T, x give a morphism $C \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$. Use adjunction after controlling singularities.

Properties of Minimum Height Elements

Pottmeyer's argument plus invariance properties of totally T-adic numbers under the action of $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ show that the conjugates of a minimum-height α are "well-distributed". Over $\mathbb{F}_{q} \llbracket T \rrbracket$, the minimal polynomial of α factors as

$$
f=\prod_{i=1}^{n}\left(T x-a_{i}\right) \prod_{u \in \mathbb{F}_{q}} \prod_{i=1}^{n}\left(x-u-T b_{u, i}\right)
$$

for some units $a_{i}, b_{u, i} \in \mathbb{F}_{q} \llbracket T \rrbracket^{\times}$.
Upshot. Working modulo T^{n+1} gives a search space for finding examples.

- Construct examples for $n=3$ and $q=3$:

$$
\begin{aligned}
& T^{3} x^{12}+2 T^{2} x^{11}+\left(2 T^{3}+2 T\right) x^{10}+\left(T^{2}+1\right) x^{9}+\left(T^{2}+T\right) x^{8}+\left(T^{3}+2 T^{2}\right) x^{7} \\
& +\left(2 T^{3}+2 T\right) x^{6}+2 T^{3} x^{5}+\left(2 T^{3}+2\right) x^{3}+\left(2 T^{2}+T\right) x^{2}+\left(T^{3}+T^{2}\right) x+2 T^{3} .
\end{aligned}
$$

- No example exists for $q=2$ and $n=2,3,4$!

What about elements of small height?

Write \mathcal{T}_{q} for set of totally T-adic separable functions. Do we expect that $\liminf _{\alpha \in \mathcal{T}_{q}} h(\alpha)>\frac{1}{q+1}$? That's what happens for totally real numbers. Not sure about totally p-adic numbers.

Theorem. (XF/Petsche)

Set $\phi(x)=\frac{x^{q}-x}{T}$. Let $\alpha_{j} \in \mathbb{F}_{q}(T)^{\text {sep }}$ satisfy $\phi^{j}\left(\alpha_{j}\right)=1$. Then α_{j} is totally T-adic, and

$$
\lim _{j \rightarrow \infty} h\left(\alpha_{j}\right)=\frac{1}{q-1}=\frac{1}{q+1}+\frac{2}{q^{2}-1} .
$$

In particular,

$$
\frac{1}{q+1} \leq \liminf _{\alpha \in \mathcal{T}_{q}} h(\alpha) \leq \frac{1}{q-1} .
$$

Ongoing Work

1. Fix q. Do there exist infinitely many totally T-adic functions of minimum height $1 /(q+1)$? For any fixed gonality n, the answer is no. (Follows from algorithmic description.) A heuristic suggests answer is no for $q=2$ and yes for $q>2$!
2. What is the true value of the limit infimum? More generally, what are the accumulation points (in \mathbb{R}) of heights of totally T-adic functions? Can we get to these points with dynamical constructions?
3. Does the geometry play nicely with potential theory in this setting?

Ongoing Work

1. Fix q. Do there exist infinitely many totally T-adic functions of minimum height $1 /(q+1)$? For any fixed gonality n, the answer is no. (Follows from algorithmic description.) A heuristic suggests answer is no for $q=2$ and yes for $q>2$!
2. What is the true value of the limit infimum? More generally, what are the accumulation points (in \mathbb{R}) of heights of totally T-adic functions? Can we get to these points with dynamical constructions?
3. Does the geometry play nicely with potential theory in this setting?

Thank you!

