

Totally *T*-adic functions of small height

Xander Faber (awfaber@super.org)

Joint Mathematics Meetings Arithmetic Dynamics Special Session

January 17, 2020

Center for Computing Sciences

17100 Science Drive • Bowie, Maryland 20715

This talk is joint work with Clayton Petsche at Oregon State University.

Totally Real Algebraic Numbers

Def. $\alpha \in \overline{\mathbb{Q}}$ is totally real if its image under every embedding in \mathbb{C} lies in \mathbb{R} . **e.g.**, $a + b\sqrt{2}$ for $a, b \in \mathbb{Q}$

Theorem (Schinzel) If $\alpha \neq 0, \pm 1$ is totally real, then $h(\alpha) \geq \frac{1}{2} \log \left(\frac{1+\sqrt{5}}{2}\right)$, and this bound is sharp.

Why is it true? Bilu's equidistribution theorem says $h(\alpha_n) \rightarrow 0$ implies Galois orbits of α_n 's equidistribute around unit circle in \mathbb{C} . But totally real numbers are stuck in the real axis.

Totally Real Algebraic Numbers

Def. $\alpha \in \overline{\mathbb{Q}}$ is totally real if its image under every embedding in \mathbb{C} lies in \mathbb{R} . **e.g.**, $a + b\sqrt{2}$ for $a, b \in \mathbb{Q}$

Theorem (Schinzel) If $\alpha \neq 0, \pm 1$ is totally real, then $h(\alpha) \geq \frac{1}{2} \log \left(\frac{1+\sqrt{5}}{2}\right)$, and this bound is sharp.

Why is it true? Bilu's equidistribution theorem says $h(\alpha_n) \rightarrow 0$ implies Galois orbits of α_n 's equidistribute around unit circle in \mathbb{C} . But totally real numbers are stuck in the real axis.

Totally *p*-adic Algebraic Numbers

Def. $\alpha \in \overline{\mathbb{Q}}$ is totally *p*-adic if its image under every embedding in \mathbb{C}_p lies in \mathbb{Q}_p .

e.g., $a + b\sqrt{2}$ for $a, b \in \mathbb{Q}$, provided p odd and $\left(\frac{2}{p}\right) = 1$

Theorem (Bombieri/Zannier/Fili/Petsche/Pottmeyer) If $\alpha \notin \{0\} \cup \mu_{p-1}$ is totally p-adic, then $h(\alpha) \ge \frac{\log(p/2)}{p+1}$.

Why is it true? Baker/Chambert-Loir/Favre/Rivera-Letelier/Rumely equidistribution theorem says $h(\alpha_n) \rightarrow 0$ implies Galois orbits of α_n 's equidistribute to Gauss point in $\mathbf{P}^1_{\mathbb{C}_p}$. But totally *p*-adic numbers are stuck in the $\mathbb{P}^1(\mathbb{F}_p)$ -branches.

Totally *p*-adic Algebraic Numbers

Def. $\alpha \in \overline{\mathbb{Q}}$ is totally *p*-adic if its image under every embedding in \mathbb{C}_p lies in \mathbb{Q}_p .

e.g., $a + b\sqrt{2}$ for $a, b \in \mathbb{Q}$, provided p odd and $\left(\frac{2}{p}\right) = 1$

Theorem (Bombieri/Zannier/Fili/Petsche/Pottmeyer) If $\alpha \notin \{0\} \cup \mu_{p-1}$ is totally p-adic, then $h(\alpha) \ge \frac{\log(p/2)}{p+1}$.

Why is it true? Baker/Chambert-Loir/Favre/Rivera-Letelier/Rumely equidistribution theorem says $h(\alpha_n) \rightarrow 0$ implies Galois orbits of α_n 's equidistribute to Gauss point in $\mathbf{P}^1_{\mathbb{C}_p}$. But totally *p*-adic numbers are stuck in the $\mathbb{P}^1(\mathbb{F}_p)$ -branches.

A Dramatic Reenactment

●●●○○ T-adic Mobile 중	11:35pm	50% 📼
〈 Messages	Clay P.	Contact
	Today8:32AM	
X - got a sec?		
	Yeah, what's u	p?
something something potential theory gives *sharp*lower bounds for heights of totally p-adic numbers?		
	might work. So hard tho 😡	ounds
prolly 😆		
	know what's e Geometry! 💪	asier?
true 👍		
Text Message		

Function Field Heights

Let $K/\mathbb{F}_q(T)$ be a finite separable extension.

- K is the function field of a smooth proper curve C over \mathbb{F}_q .
- places of K correspond to closed points of C, denoted |C|
- For P ∈ |P¹_{𝔽q}|, set C_P = 𝔽_q(T)^{sep}, completed with respect to ord_P. Height of α ∈ K is a sum of local contributions:

$$h(\alpha) = \frac{1}{[K : \mathbb{F}_q(T)]} \sum_{P \in |\mathbb{P}_{\mathbb{F}_q}^1|} \sum_{\sigma : K \hookrightarrow \mathbb{C}_P} \max\{-\operatorname{ord}_P(\sigma(\alpha)), 0\}.$$

• $h(\alpha) = 0$ if and only if $\alpha \in \mathbb{P}^1(\bar{\mathbb{F}}_q)$

• $\alpha \in K$ has a minimal polynomial $f \in \mathbb{F}_q[T][x]$. Then $h(\alpha) = \frac{\deg_T(f)}{\deg_x(f)}$.

Function Field Heights

Let $\mathcal{K}/\mathbb{F}_q(\mathcal{T})$ be a finite separable extension.

- K is the function field of a smooth proper curve C over \mathbb{F}_q .
- places of K correspond to closed points of C, denoted |C|
- For $P \in |\mathbb{P}^1_{\mathbb{F}_q}|$, set $\mathbb{C}_P = \mathbb{F}_q(T)^{\text{sep}}$, completed with respect to ord_P . Height of $\alpha \in K$ is a sum of local contributions.

$$h(\alpha) = \frac{1}{[K : \mathbb{F}_q(T)]} \sum_{P \in |\mathbb{P}^1_{\mathbb{F}_q}|} \sum_{\sigma : K \hookrightarrow \mathbb{C}_P} \max\{-\operatorname{ord}_P(\sigma(\alpha)), 0\}.$$

• $h(\alpha) = 0$ if and only if $\alpha \in \mathbb{P}^1(\bar{\mathbb{F}}_q)$

• $\alpha \in K$ has a minimal polynomial $f \in \mathbb{F}_q[T][x]$. Then $h(\alpha) = \frac{\deg_T(f)}{\deg_T(f)}$.

Totally *T*-adic Functions

Def. Set $\mathbb{C}_{\mathcal{T}} = \mathbb{F}_{q}(\mathcal{T})^{\text{sep}}$, completed with respect to $\operatorname{ord}_{\mathcal{T}}$. Say $\alpha \in \mathbb{F}_{q}(\mathcal{T})^{\text{sep}}$ is totally \mathcal{T} -adic if

- its image under every embedding in $\mathbb{C}_{\mathcal{T}}$ lies in $\mathbb{F}_q((\mathcal{T}))$, or equivalently,
- T splits completely in the function field $\mathbb{F}_q(T, \alpha)$.

e.g., Roots of $Tx^{q+1} + x^q - x - cT$, where q is odd and $c \neq \Box$ in \mathbb{F}_q .

Theorem (XF/Petsche)

If $\alpha \notin \mathbb{F}_q$ is totally T-adic, then $h(\alpha) \geq \frac{1}{q+1}$. This bound is sharp.

Proof Haiku. Rework Pottmeyer. Archimedean places? Not in function fields!

If $\alpha \notin \mathbb{F}_q$ is totally T-adic, then $h(\alpha) \geq \frac{1}{q+1}$. This bound is sharp.

Proof. $f(T, x) = \min$ poly. for α . Set $d = \deg_x(f)$ and $n = \deg_T(f)$.

 $\#C(\mathbb{F}_{q})$

$$C_{/\mathbb{F}_q} =$$
smooth proper curve birational to $\{f = 0\}$.

If $\alpha \notin \mathbb{F}_q$ is totally T-adic, then $h(\alpha) \geq \frac{1}{q+1}$. This bound is sharp.

Proof. $f(T, x) = \min$ poly. for α . Set $d = \deg_x(f)$ and $n = \deg_T(f)$.

 $d \leq \#C(\mathbb{F}_q)$ totally *T*-adic

 $C_{/\mathbb{F}_q} =$ smooth proper curve birational to $\{f = 0\}$.

If $\alpha \notin \mathbb{F}_q$ is totally T-adic, then $h(\alpha) \geq \frac{1}{q+1}$. This bound is sharp.

Proof. $f(T, x) = \min$ poly. for α . Set $d = \deg_x(f)$ and $n = \deg_T(f)$.

 $d \leq \#C(\mathbb{F}_q) \leq n(q+1)$ totally *T*-adic trivial bound for *x*

 $C_{/\mathbb{F}_q} =$ smooth proper curve birational to $\{f = 0\}$.

If $\alpha \notin \mathbb{F}_q$ is totally T-adic, then $h(\alpha) \geq \frac{1}{q+1}$. This bound is sharp.

Proof. $f(T, x) = \min$ poly. for α . Set $d = \deg_x(f)$ and $n = \deg_T(f)$.

 $d \leq \#C(\mathbb{F}_q) \leq n(q+1)$ totally *T*-adic trivial bound for *x* $\implies h(\alpha) = \frac{n}{d} \geq \frac{1}{q+1}.$ Done! $C_{/\mathbb{F}_q} =$ smooth proper curve birational to $\{f = 0\}$.

Geometry of Minimum Height Elements

Theorem. (XF/Petsche)

Suppose C is a smooth proper curve over \mathbb{F}_q , $n \ge 1$ is an integer, and $T, x \in \kappa(C)$ are separable functions such that:

- $\#C(\mathbb{F}_q) = n(q+1);$
- T has degree n(q + 1) and x has degree n;
- $\kappa(C) = \mathbb{F}_q(T, x);$
- T vanishes at all points of $C(\mathbb{F}_q)$.

Then x generates a totally T-adic extension of $\mathbb{F}_q(T)$, and $h(x) = \frac{1}{q+1}$.

Fun fact. Suppose $n \mid (q-1)$, and consider the cyclic *n*-cover of \mathbb{P}^1 given by

$$C_{/\mathbb{F}_q}: y^n = x^n (x^q - x)^n + 1.$$

For
$$T = \frac{x^q - x}{y}$$
, x is a totally T-adic function of minimum height

Let α be totally T-adic with minimum height 1/(q+1) and associated curve C. Then the gonality n and the genus g(C) satisfy

$$rac{(n-1)(q+1)}{2\sqrt{q}} \leq g(C) \leq rac{1}{2}(q+1)(n-1)^2 + rac{1}{2}(q-1)(n-1).$$

Lower bound. Hasse-Weil. $n(q+1) = \#C(\mathbb{F}_q) \le q+1+2g\sqrt{q}$

Upper bound. Essentially Castelnuovo's estimate. Functions T, x give a morphism $C \to \mathbb{P}^1 \times \mathbb{P}^1$. Use adjunction after controlling singularities.

Properties of Minimum Height Elements

Pottmeyer's argument plus invariance properties of totally T-adic numbers under the action of $PGL_2(\mathbb{F}_q)$ show that the conjugates of a minimum-height α are "well-distributed". Over $\mathbb{F}_q[\![T]\!]$, the minimal polynomial of α factors as

$$f = \prod_{i=1}^{n} (Tx - a_i) \prod_{u \in \mathbb{F}_q} \prod_{i=1}^{n} (x - u - Tb_{u,i})$$

for some units $a_i, b_{u,i} \in \mathbb{F}_q[\![T]\!]^{\times}$.

Upshot. Working modulo T^{n+1} gives a search space for finding examples.

• Construct examples for n = 3 and q = 3:

$$T^{3}x^{12} + 2T^{2}x^{11} + (2T^{3} + 2T)x^{10} + (T^{2} + 1)x^{9} + (T^{2} + T)x^{8} + (T^{3} + 2T^{2})x^{7} + (2T^{3} + 2T)x^{6} + 2T^{3}x^{5} + (2T^{3} + 2)x^{3} + (2T^{2} + T)x^{2} + (T^{3} + T^{2})x + 2T^{3}.$$

• No example exists for q = 2 and n = 2, 3, 4!

What about elements of small height?

Write \mathcal{T}_q for set of totally *T*-adic separable functions. Do we expect that $\liminf_{\alpha \in \mathcal{T}_q} h(\alpha) > \frac{1}{q+1}$? That's what happens for totally real numbers. Not sure about totally *p*-adic numbers.

Theorem. (XF/Petsche) Set $\phi(x) = \frac{x^q - x}{T}$. Let $\alpha_j \in \mathbb{F}_q(T)^{\text{sep}}$ satisfy $\phi^j(\alpha_j) = 1$. Then α_j is totally *T*-adic, and $\lim_{j \to \infty} h(\alpha_j) = \frac{1}{q-1} = \frac{1}{q+1} + \frac{2}{q^2 - 1}$. In particular, $\frac{1}{q+1} \leq \liminf_{\alpha \in T_q} h(\alpha) \leq \frac{1}{q-1}$.

Ongoing Work

- 1. Fix q. Do there exist infinitely many totally *T*-adic functions of minimum height 1/(q+1)? For any fixed gonality n, the answer is no. (Follows from algorithmic description.) A heuristic suggests answer is no for q = 2 and yes for q > 2!
- 2. What is the true value of the limit infimum? More generally, what are the accumulation points (in \mathbb{R}) of heights of totally *T*-adic functions? Can we get to these points with dynamical constructions?
- 3. Does the geometry play nicely with potential theory in this setting?

Ongoing Work

- 1. Fix q. Do there exist infinitely many totally *T*-adic functions of minimum height 1/(q+1)? For any fixed gonality n, the answer is no. (Follows from algorithmic description.) A heuristic suggests answer is no for q = 2 and yes for q > 2!
- 2. What is the true value of the limit infimum? More generally, what are the accumulation points (in \mathbb{R}) of heights of totally *T*-adic functions? Can we get to these points with dynamical constructions?
- 3. Does the geometry play nicely with potential theory in this setting?

Thank you!

