

Multiplier spectra of PCF rational maps

Sarah C. Koch
University of Michigan

Let $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ be a rational map of degree $d \geqslant 2$.
The multiplier of the periodic cycle

is the complex number

$$
\lambda=\left(f^{n}\right)^{\prime}\left(x_{i}\right) .
$$

The multiplier spectrum of f is the subset of \mathbb{C} consisting of the multipliers of all periodic cycles of f.

How do we understand Λ_{f} ?

$$
f_{a}: z \mapsto a z(z-1)
$$

$$
f_{a}(0)=0, \text { and } f_{a}^{\prime}(0)=a
$$

Postcritically finite rational maps

Let $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ be a rational map of degree $d \geqslant 2$.
f is PCF provided that every critical point eventually maps into a periodic cycle

PCF rational maps are entitled to only repelling periodic cycles or superattracting cycles

PCF rational maps have algebraic coefficients (Thurston)
\Longrightarrow if λ belongs to the multiplier spectrum of a PCF rational map, then

$$
\lambda \in \overline{\mathbb{Q}}, \quad \text { and } \quad \lambda=0 \text { or } \quad|\lambda|>1
$$

Galois conjugates

$$
z \mapsto a z(1-z)
$$

PCF locus?

Exercise:

What can we say about the multiplier spectrum of $z \mapsto z^{2}$?

Question:

What can we say about the multiplier spectrum of $z \mapsto z^{2}-1$?

This is too hard. Ask a different question.

Consider PCF rational maps of degree 2.

Can we say anything about the multiplier spectra?
a quadratic rational maps has 3 fixed points.

Lemma 3.1. These three multipliers determine f up to holomorphic conjugacy, and are subject only to the restriction

$$
\begin{equation*}
\mu_{1} \mu_{2} \mu_{3}-\left(\mu_{1}+\mu_{2}+\mu_{3}\right)+2=0, \tag{3-1}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\sigma_{3}=\sigma_{1}-2 . \tag{3-2}
\end{equation*}
$$

Hence the moduli space \mathcal{M}_{2} is canonically isomorphic to \mathbf{C}^{2}, with coordinates σ_{1} and σ_{2}.
a quadratic rational map has a unique periodic cycle of period 2 (allowing degenerations).

$$
\begin{gathered}
1 \longrightarrow c \quad \infty \xrightarrow{1} v \longrightarrow \cdots \\
0 \xrightarrow{2} \cdots \\
f_{c, v}: z \mapsto \frac{(v-1) c^{2}+(v-1) c+\left(1-z^{2}\right) v}{(v-1) c-z^{2}+v}
\end{gathered}
$$

The multiplier is:

$$
\mu=\frac{4 c}{(c+1)^{2}}!!
$$

Which values arise as this multiplier for PCF maps?

$$
f_{c, v}: z \mapsto \frac{(v-1) c^{2}+(v-1) c+\left(1-z^{2}\right) v}{(v-1) c-z^{2}+v}
$$

The multiplier is:

$$
\mu=\frac{4 c}{(c+1)^{2}}
$$

Which values arise as this

 multiplier for PCF maps?$\operatorname{Per}_{2}(\lambda) \subseteq \mathrm{M}_{2}$ is the set of all f that have a 2 -cycle of multiplier λ. For which $\lambda \in \mathbb{C}$, is

$$
\begin{aligned}
& \operatorname{Per}_{2}(\lambda) \cap \mathrm{PCF} \neq \emptyset ? \\
& \operatorname{Per}_{2}(\lambda) \cap \mathrm{PCF}=\emptyset ? \\
& \operatorname{Per}_{2}(\lambda) \cap \mathrm{PCF} \text { finite? } \\
& \operatorname{Per}_{2}(\lambda) \cap \mathrm{PCF} \text { infinite? (Baker-DeMarco) }
\end{aligned}
$$

$$
\begin{aligned}
\mu & =\frac{4 c}{(c+1)^{2}} \\
c & =0
\end{aligned}
$$

$$
\infty \xrightarrow{2} v \xrightarrow{\longrightarrow}
$$

$\mathrm{Per}_{2}(0)$

$$
\mu=\frac{4 c}{(c+1)^{2}}
$$

$$
\begin{gathered}
\infty \xrightarrow{2} v- \\
0 \xrightarrow{2} \cdots
\end{gathered}
$$

$$
c=i
$$

$\operatorname{Per}_{2}(2)$
Are there any PCF maps in here?

Algebraic conspiracies

$$
\operatorname{Per}_{3}(1)=\operatorname{Per}_{1}(\omega) \cup \operatorname{Per}_{1}(\bar{\omega}) \cup \operatorname{Per}_{2}(-3),
$$

where ω is a primitive cube root of unity (compare Figures 7 and 10). The first two lines, with slope -1 , correspond to maps for which one orbit of period 3 degenerates to a fixed point of multiplier ω or $\bar{\omega}$, while the third straight line, with equation $\sigma_{2}=-2 \sigma_{1}-3$, corresponds to maps for which the two period-three orbits coincide. For some reason, which I do not understand, this locus is precisely equal to the line $\operatorname{Per}_{2}(-3)$. This third

Consequently $\operatorname{Per}_{2}(-3) \cap \mathrm{PCF}=\emptyset$.

Algebraic conspiracies

Do other curves $\operatorname{Per}_{n}(\lambda)$ and $\operatorname{Per}_{m}(\mu)$ ever coincide?
If $\operatorname{Per}_{n}(\lambda)$ and $\operatorname{Per}_{m}(\mu)$ coincide, then are λ and μ necessarily algebraic?

$$
\operatorname{Per}_{3}(1)=\operatorname{Per}_{1}(\omega) \cup \operatorname{Per}_{1}(\bar{\omega}) \cup \operatorname{Per}_{2}(-3),
$$

What can we say about $\operatorname{Per}_{k}(1)$?
It should be "predictably" reducible.

