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z 7! z2 + c

Let f : P1 ! P1 be a rational map of degree d > 2.

f has 2d� 2 critical points

f is PCF provided that every critical point eventually maps
into a periodic cycle

z 7! z2 � 1

fa : C ! C

fa : z 7! az(1� z)

Let x0 7! x1 7! x2 7! · · · 7! xn�1 7! x0

The multiplier of the periodic cycle

x0 // x1 // · · · // xn�1ff

is the complex number

� = (fn)0(xi).

and gives geometric information about the cycle.

What can we say about the
multiplier spectrum of z 7! z2?

What can we say about the
multiplier spectrum of z 7! z2 � 1?

c = 0

Per2(0)

Per2(�) ✓ M2 is the set of all f that have a 2-cycle of multiplier
�. For which � 2 C, is

Per2(�) \ PCF = ;?

Per2(�) \ PCF finite?

Per2(�) \ PCF infinite? (Baker-DeMarco)

Which µ arise as

multipliers of the 2-cycle

for PCF maps?

µ =
4c

(c+ 1)2

1 // c]] 1 2 // v // · · · 0
2 // · · ·

fc,v : z 7! (v � 1)c2 + (v � 1)c+ (1� z2)v

(v � 1)c� z2 + v

The moduli space of quadratic rational maps is isomorphic to
C2 (Milnor).

What is the multiplier spectra for f : z 7! z2?

fn(z) = z2
n

The
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fa : z 7! az(z � 1)

fa(0) = 0, and f 0
a(0) = a.
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Postcritically finite rational mapsz 7! z2 + c

Let f : P1 ! P1 be a rational map of degree d > 2.

f has 2d� 2 critical points

f is PCF provided that every critical point eventually maps
into a periodic cycle

z 7! z2 � 1

fa : C ! C

fa : z 7! az(1� z)

z 7! z2 + c

Let f : P1 ! P1 be a rational map of degree d > 2.

f has 2d� 2 critical points

f is PCF provided that every critical point eventually maps
into a periodic cycle

z 7! z2 � 1

fa : C ! C

fa : z 7! az(1� z)

z 7! z2 + c

Let f : P1 ! P1 be a rational map of degree d > 2.

f has 2d� 2 critical points

f is PCF provided that every critical point eventually maps
into a periodic cycle

PCF rational maps are entitled to only repelling periodic
cycles or superattracting cycles.

PCF rational maps have algebraic coe�cients (Thurston)

z 7! z2 � 1

fa : C ! C

fa : z 7! az(1� z)

=) if � belongs to the multiplier spectra of a PCF rational
map, then

� 2 Q, and � = 0 or |�| > 1

Galois closed.

Galois conjugates

What is the multiplier spectra for f : z 7! z2?

fn(z) = z2
n

The
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z 7! z2 + c

Let f : ¶1 ! ¶1 be a rational map of degree d > 2.

f has 2d� 2 critical points

f is PCF provided that every critical point eventually maps
into a periodic cycle

fa : C ! C

fa : z 7! az(1� z)

PCF locus?



Question: 

This is too hard. 
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Consider PCF rational maps of degree 2. 
Can we say anything about the multiplier spectra?

a quadratic rational maps has 3 fixed points. 



a quadratic rational map has a unique periodic 
cycle of period 2 (allowing degenerations). 
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!!
Which values arise as this 
multiplier for PCF maps?
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