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Dynamical Semigroups

Goal: To understand the existence of finite orbits of dynamical
semigroups.

I Let f1(x), f2(x), . . . , fm(x) ∈ C(x) be rational functions,

〈f1, f2, . . . , fm〉 := {Semigroup gen. by fi(x) under composition.}

I If p ∈ P1(C), we are interested in studying the orbit of p
under D = 〈f1, . . . , fm〉,

D(p) = {w(p) : w ∈ D}.

I If D = 〈f(x)〉, then

D(p) = {p, f(p), f2(p), . . .}.



Finite Orbits

Portrait: A finite set P together with an action by a free
semigroup 〈F1, F2, . . . , Fm〉.

Realization: A finite set of points in a space X labelled by
elements of P and endomorphisms f1, f2, . . . , fm of X such
that for all p ∈ P and all fj,

fj(xp) = xFj(p).



Portrait Moduli Spaces

Portrait: A finite set P together with an action by a free
semigroup 〈F1, F2, . . . , Fm〉.

Realization: A finite set of points in a space X labelled by
elements of P and endomorphisms f1, f2, . . . , fm of X such
that for all p ∈ P and all fj,

fj(xp) = xFj(p).



Portrait Moduli Spaces

I If P is a portrait and X is a space, letRP(X) denote the
realization space of the portrait P in X.

RP(X) = {(f1, . . . , fm; x1, . . . , xn) : fi ∈ End(X), xj ∈ X, realize P}.

I The group Aut(X) acts naturally onRP(X), let

MP(X) := RP(X)/Aut(X)

denote the portrait moduli space of P in X.



Interesting Special Case

I Let X = A1(C), so End(A1) = C[x].

I LetMd
P denote the subspace ofMP(A1(C)) where each

fi(x) is a degree d polynomial.

I If P has m = 2 functions and n = 2d points, then the
expected dimension ofMd

P is 0.

Suppose P has m degree d polynomials and n points.

Expected Dimension ofMd
P

= #coeffs. + #pts. − #arrows − dim sym.
= m(d + 1) + n−mn− 2.



Two Quadratics, Four Points

I Accounting for symmetry and degree constraints, there are
780 combinatorially distinct plausible portraits P.

Dim. ofM2
P Num. of Portraits

−1 206
0 560
1 14

I Question: Can we detect these unlikely intersections from
the combinatorics of P?



Two Quadratics, Four Points

Portraits P withM2
P of dimension 1



Two Quadratics, Four Points

I 13 of the 14 portraits with
dimM2

P = 1 were combinations
of these 3 portraits:

I These are precisely the degree 2
portraits with two image points.



Two Quadratics, Four Points

Theorem (Two-Image Theorem)
Let d ≥ 1 and suppose P is a plausible degree d portrait with 2d
points and m functions F1, . . . , Fm such that |Fi(P)| = 2 for each
i. If the fiber partitions

Πi = {F−1
i (p) : p ∈ Fi(P)}

of P are all identical, then dimMd
P = d− 1. Otherwise,Md

P = ∅.
I Aut(A1(C)) is sharply 2 transitive.
I Generalizes to rational functions with two replaced by

three, and to other natural families.
I d− 1 is the maximal possible dimension.



Two Quadratics, Four Points



Two Quadratics, Four Points

I If dimM2
P = 0, thenM2

P is a finite set of points.



Two Cubics, Six Points

I 1350742 combinatorially distinct plausible portraits P.
I We have “computed”M3

P for over 97% of portraits.

Dim. ofM3
P Num. of Portraits*

−1 42753
0 745608
1 909
2 11

I These portraits all accounted for by our Two-Image
Theorem.

*Incomplete data!



Two Cubics, Six Points



Thank you!
And thanks to ICERM for hosting us in the summer of
2019 and providing generous access to their computing
resources!


