Portrait Spaces for Dynamical Semigroups and Unlikely Intersections

Preliminary Report

Trevor Hyde University of Chicago

Joint work with Talia Blum, John Doyle, Colby Kelln, Henry Talbott, and Max Weinreich.

ション・ 山 ・ 山 ・ 山 ・ 山 ・ 山 ・ シック・

Goal: To understand the existence of finite orbits of dynamical semigroups.

• Let $f_1(x), f_2(x), \ldots, f_m(x) \in \mathbb{C}(x)$ be rational functions,

 $\langle f_1, f_2, \ldots, f_m \rangle := \{ \text{Semigroup gen. by } f_i(x) \text{ under composition.} \}$

If p ∈ P¹(C), we are interested in studying the orbit of p under D = ⟨f₁,..., f_m⟩,

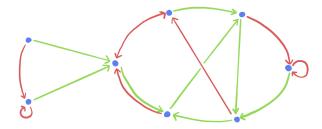
$$D(p) = \{w(p) : w \in D\}.$$

• If $D = \langle f(x) \rangle$, then

$$D(p) = \{p, f(p), f^2(p), \ldots\}.$$

Finite Orbits

Portrait: A finite set *P* together with an action by a free semigroup $\langle F_1, F_2, \ldots, F_m \rangle$.

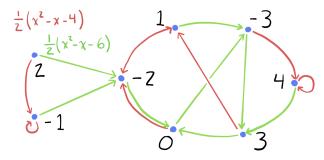


Realization: A finite set of points in a space X labelled by elements of P and endomorphisms f_1, f_2, \ldots, f_m of X such that for all $p \in P$ and all f_i ,

$$f_j(\boldsymbol{x}_p) = \boldsymbol{x}_{F_j(p)}.$$

Portrait Moduli Spaces

Portrait: A finite set *P* together with an action by a free semigroup $\langle F_1, F_2, \ldots, F_m \rangle$.



Realization: A finite set of points in a space X labelled by elements of P and endomorphisms f_1, f_2, \ldots, f_m of X such that for all $p \in P$ and all f_i ,

$$f_j(\boldsymbol{x}_p) = \boldsymbol{x}_{F_j(p)}.$$

► If P is a portrait and X is a space, let R_P(X) denote the realization space of the portrait P in X.

 $\mathcal{R}_{\mathcal{P}}(X) = \{(f_1, \dots, f_m; x_1, \dots, x_n) : f_i \in \operatorname{End}(X), x_j \in X, \text{ realize } \mathcal{P}\}.$

• The group Aut(X) acts naturally on $\mathcal{R}_P(X)$, let

$$\mathcal{M}_{\mathcal{P}}(X) := \mathcal{R}_{\mathcal{P}}(X) / \operatorname{Aut}(X)$$

ション・ 山 ・ 山 ・ 山 ・ 山 ・ 山 ・ しょう

denote the **portrait moduli space** of *P* in *X*.

Interesting Special Case

• Let
$$X = \mathbb{A}^1(\mathbb{C})$$
, so $\operatorname{End}(\mathbb{A}^1) = \mathbb{C}[x]$.

Let *M^d_P* denote the subspace of *M_P*(A¹(ℂ)) where each *f_i(x)* is a degree *d* polynomial.

If P has m = 2 functions and n = 2d points, then the expected dimension of M^d_P is 0.

Suppose *P* has *m* degree *d* polynomials and *n* points.

Expected Dimension of \mathcal{M}_{P}^{d}

$$= m(d+1) + n - mn - 2.$$

Accounting for symmetry and degree constraints, there are 780 combinatorially distinct plausible portraits *P*.

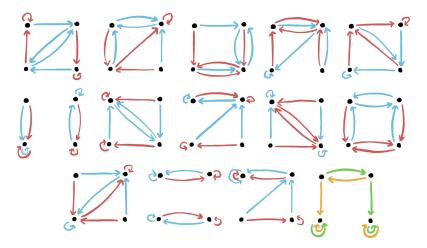
Dim. of \mathcal{M}_P^2	Num. of Portraits
-1	206
0	560
1	14

Question: Can we detect these unlikely intersections from the combinatorics of P?

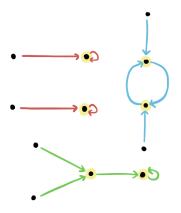
▲ロト ▲ 同 ト ▲ 国 ト → 国 - シ へ () ヘ

Two Quadratics, Four Points

Portraits *P* with \mathcal{M}_P^2 of dimension 1



- 13 of the 14 portraits with dim M²_P = 1 were combinations of these 3 portraits:
- These are precisely the degree 2 portraits with two image points.



・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Theorem (Two-Image Theorem)

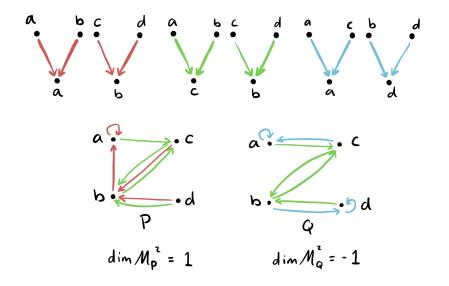
Let $d \ge 1$ and suppose P is a plausible degree d portrait with 2d points and m functions F_1, \ldots, F_m such that $|F_i(P)| = 2$ for each *i*. If the **fiber partitions**

$$\Pi_i = \{F_i^{-1}(p) : p \in F_i(P)\}$$

of P are all identical, then dim $\mathcal{M}_P^d = d - 1$. Otherwise, $\mathcal{M}_P^d = \emptyset$.

- $Aut(\mathbb{A}^1(\mathbb{C}))$ is sharply 2 transitive.
- Generalizes to rational functions with two replaced by three, and to other natural families.
- d-1 is the maximal possible dimension.

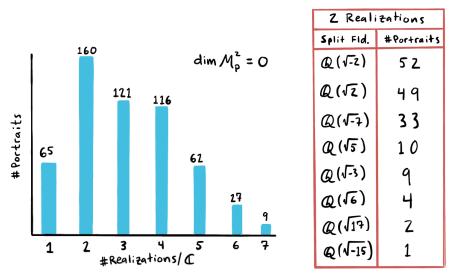
Two Quadratics, Four Points



▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Two Quadratics, Four Points

• If dim $\mathcal{M}_P^2 = 0$, then \mathcal{M}_P^2 is a finite set of points.



▲□▶▲圖▶▲≣▶▲≣▶ ■ のQの

Two Cubics, Six Points

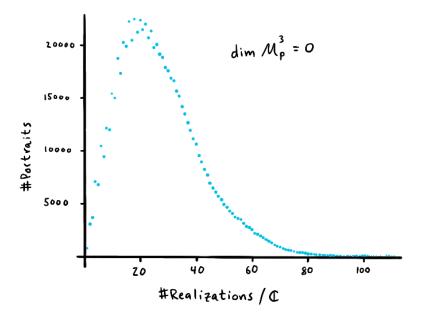
- ▶ 1350742 combinatorially distinct plausible portraits *P*.
- We have "computed" \mathcal{M}_{P}^{3} for over 97% of portraits.

Dim. of \mathcal{M}_P^3	Num. of Portraits*
-1	42753
0	745608
1	909
2	11

 These portraits all accounted for by our Two-Image Theorem.

*Incomplete data!

Two Cubics, Six Points



900

Thank you!

And thanks to ICERM for hosting us in the summer of 2019 and providing generous access to their computing resources!

▲ロト ▲園 ト ▲ 国 ト ▲ 国 ト 一 回 - つ Q ()