The Galois-dynamics correspondence for unicritical polynomials

Robin Zhang

Columbia University

Joint Mathematics Meetings 2020

January 17, 2020

- 1. Introduction
 - Dynatomic modular curves
- 2. Galois-dynamics correspondence
 - Rationality of periodic points
 - Irreducibility criterion
 - Galois group criterion
 - \bullet Fixing the index in GDC
- 3. Known cases of GDC

Goal: Characterize the periodic points of polynomials $\phi \in \mathbb{Q}[z]$.

Goal: Characterize the periodic points of polynomials $\phi \in \mathbb{Q}[z]$.

There are no quadratic polynomials $\phi \in \mathbb{Q}[z]$ with a rational periodic point of exact period $N \geq 4$.

Goal: Characterize the periodic points of polynomials $\phi \in \mathbb{Q}[z]$.

Conjecture (Flynn–Poonen–Schaefer (1997))

There are no quadratic polynomials $\phi \in \mathbb{Q}[z]$ with a rational periodic point of exact period $N \ge 4$.

Theorem

- N = 4: Morton (1998)
- N = 5: Flynn–Poonen–Schaefer (1997)
- N = 6: Stoll (2008) assuming standard conjectures on $J(C_0(6))$

A 4-cycle.

Goal: Characterize the periodic points of polynomials $\phi \in \mathbb{Q}[z]$.

Conjecture (Flynn–Poonen–Schaefer (1997))

There are no quadratic polynomials $\phi \in \mathbb{Q}[z]$ with a rational periodic point of exact period $N \geq 4$.

Theorem

- N = 4: Morton (1998)
- N = 5: Flynn–Poonen–Schaefer (1997)
- N = 6: Stoll (2008) assuming standard conjectures on $J(C_0(6))$

If ϕ is quadratic:

$$\phi = a_2 z^2 + a_1 z + a_0 \xrightarrow{\text{linear conjugation}} \phi_c = z^2 + c$$

Goal: Characterize the periodic points of polynomials $\phi \in \mathbb{Q}[z]$.

Conjecture (Flynn–Poonen–Schaefer (1997))

There are no quadratic polynomials $\phi \in \mathbb{Q}[z]$ with a rational periodic point of exact period $N \geq 4$.

Theorem

- N = 4: Morton (1998)
- N = 5: Flynn–Poonen–Schaefer (1997)
- N = 6: Stoll (2008) assuming standard conjectures on $J(C_0(6))$

If ϕ is quadratic:

$$\phi = a_2 z^2 + a_1 z + a_0 \xrightarrow{\text{linear conjugation}} \phi_c = z^2 + c$$

Reduces to studying periodic points of $\phi_c := z^2 + c$ with $c \in \mathbb{Q}$:

Let $\phi_c := z^d + c$ be any unicritical polynomial in $\mathbb{Q}[z]$. Extend the domain of z from \mathbb{Q} to any number field K.

Let $\phi_c := z^d + c$ be any unicritical polynomial in $\mathbb{Q}[z]$. Extend the domain of z from \mathbb{Q} to any number field K.

Periodic points of ϕ_c of period *N* are solutions of

 $0 = \phi_c^{(N)}(z) - z$

Let $\phi_c := z^d + c$ be any unicritical polynomial in $\mathbb{Q}[z]$. Extend the domain of z from \mathbb{Q} to any number field K.

Periodic points of ϕ_c of period N are solutions of

$$0 = \Phi_c^{(N)}(z) - z = \prod_{d|N} \Phi_d(z, c),$$

Let $\phi_c := z^d + c$ be any unicritical polynomial in $\mathbb{Q}[z]$. Extend the domain of z from \mathbb{Q} to any number field K.

Periodic points of ϕ_c of period N are solutions of

$$\begin{split} 0 = \varphi_c^{(N)}(z) - z &= \prod_{d \mid N} \Phi_d(z, c), \\ \Phi_d(z, c) &:= \prod_{m \mid d} (\varphi_c^{(m)}(z) - z)^{\mu(d/m)} \in \mathbb{Q}[z, c] \end{split} \tag{Möbius inversion}$$

Let $\phi_c := z^d + c$ be any unicritical polynomial in $\mathbb{Q}[z]$. Extend the domain of z from \mathbb{Q} to any number field K.

Periodic points of ϕ_c of period N are solutions of

$$\begin{split} 0 = \varphi_c^{(N)}(z) - z &= \prod_{d \mid N} \Phi_d(z, c), \\ \Phi_d(z, c) &:= \prod_{m \mid d} (\varphi_c^{(m)}(z) - z)^{\mu(d/m)} \in \mathbb{Q}[z, c] \end{split} \tag{Möbius inversion}$$

Let $\phi_c := z^d + c$ be any unicritical polynomial in $\mathbb{Q}[z]$. Extend the domain of z from \mathbb{Q} to any number field K.

Periodic points of ϕ_c of period N are solutions of

$$\begin{split} 0 = \varphi_c^{(N)}(z) - z &= \prod_{d \mid N} \Phi_d(z,c), \\ \Phi_d(z,c) &:= \prod_{m \mid d} (\varphi_c^{(m)}(z) - z)^{\mu(d/m)} \in \mathbb{Q}[z,c] \end{split} \tag{Möbius inversion}$$

 $\begin{array}{l} C_1(N) := \text{algebraic curve defined by } \{ \Phi_N(z,c) = 0 \} \\ C_0(N) := \text{quotient curve } C_1(N) / \big((z,c) \mapsto (\varphi_c(z),c) \big) \\ \text{Tower of covers: } C_1(N) \to C_0(N) \to \mathbb{A}_1 \end{array}$

Let $\phi_c := z^d + c$ be any unicritical polynomial in $\mathbb{Q}[z]$. Extend the domain of z from \mathbb{Q} to any number field K.

Periodic points of ϕ_c of period N are solutions of

$$\begin{split} 0 = \varphi_c^{(N)}(z) - z &= \prod_{d \mid N} \Phi_d(z,c), \\ \Phi_d(z,c) &:= \prod_{m \mid d} (\varphi_c^{(m)}(z) - z)^{\mu(d/m)} \in \mathbb{Q}[z,c] \end{split} \tag{Möbius inversion}$$

 $\begin{array}{l} C_1(N) := \text{algebraic curve defined by } \{ \Phi_N(z,c) = 0 \} \\ C_0(N) := \text{quotient curve } C_1(N) / \big((z,c) \mapsto (\varphi_c(z),c) \big) \\ \text{Tower of covers: } C_1(N) \to C_0(N) \to \mathbb{A}_1 \end{array}$

 $(\phi_c, \text{periodic point of exact period } N) \longleftrightarrow K\text{-rational point of } C_1(N)$

 $(\phi_c, \text{cycle of exact period } N) \longleftrightarrow K$ -rational point of $C_0(N)$

Let $\phi_c := z^d + c$ be any unicritical polynomial in $\mathbb{Q}[z]$. Extend the domain of z from \mathbb{Q} to any number field K.

Periodic points of ϕ_c of period N are solutions of

$$\begin{split} 0 = \varphi_c^{(N)}(z) - z &= \prod_{d \mid N} \Phi_d(z,c), \\ \Phi_d(z,c) &:= \prod_{m \mid d} (\varphi_c^{(m)}(z) - z)^{\mu(d/m)} \in \mathbb{Q}[z,c] \end{split} \tag{Möbius inversion}$$

 $\begin{array}{l} C_1(N) := \text{algebraic curve defined by } \{ \Phi_N(z,c) = 0 \} \\ C_0(N) := \text{quotient curve } C_1(N) / \big((z,c) \mapsto (\varphi_c(z),c) \big) \\ \text{Tower of covers: } C_1(N) \to C_0(N) \to \mathbb{A}_1 \end{array}$

 $(\phi_c, \text{periodic point of exact period } N) \longleftrightarrow K$ -rational point of $C_1(N)$

 $(\phi_c, \text{cycle of exact period } N) \longleftrightarrow K$ -rational point of $C_0(N)$

Theorem (Douady–Hubbard ('85), Bousch ('92), Lau–Schleicher ('94), Xavier–Lei ('14), Morton ('96), Gao–Ou ('14))

 $C_1(N)$ is smooth and geometrically irreducible (in characteristic 0).

Robin Zhang (Columbia University)

Galois-dynamics correspondence

Joint Mathematics Meetings 2020 January 17, 2020

Galois-dynamics correspondence

Definition

Fix $c \in \mathbb{Q}$. Let K/\mathbb{Q} be a (nontrivial) finite Galois extension and let $N \geq 2$. Suppose that for each N-periodic point $z \in K - \mathbb{Q}$ of ϕ_c ,

$$\sigma z = \phi_c^{(i)}(z),$$

for some $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$ and some positive integer i < N. Then ϕ_c satisfies the *Galois–dynamics correspondence* (GDC) for K and N.

Galois-dynamics correspondence

Definition

Fix $c \in \mathbb{Q}$. Let K/\mathbb{Q} be a (nontrivial) finite Galois extension and let $N \geq 2$. Suppose that for each N-periodic point $z \in K - \mathbb{Q}$ of ϕ_c ,

$$\sigma z = \phi_c^{(i)}(z),$$

for some $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$ and some positive integer i < N. Then ϕ_c satisfies the *Galois–dynamics correspondence* (GDC) for K and N.

For each cycle, the Galois–dynamics correspondence describes for some subgroup H of $\operatorname{Gal}(K/\mathbb{Q})$ and some n,

 $H \longleftrightarrow \mathbb{Z}/n\mathbb{Z}$

If the periodic point z is fixed, $H = \langle \sigma \rangle$ and $n = \frac{N}{\gcd(i,N)}$.

Rationality of periodic points

Theorem (Z.)

Suppose ϕ_c satisfies the Galois–dynamics correspondence for a quadratic number field K and N. Then:

- For any *N*-cycle $\{z_0, \ldots, z_{N-1}\}$ of ϕ_c in *K*, its trace $\sum_{i=1}^{N-1} \phi^{(i)}(z)$ is rational.
- Furthermore, if N is odd then every N-periodic point of ϕ_c is rational.

Rationality of periodic points

Theorem (Z.)

Suppose ϕ_c satisfies the Galois–dynamics correspondence for a quadratic number field K and N. Then:

- For any N-cycle $\{z_0, \ldots, z_{N-1}\}$ of ϕ_c in K, its trace $\sum_{i=1}^{N-1} \phi^{(i)}(z)$ is rational.
- Furthermore, if N is odd then every N-periodic point of ϕ_c is rational.

Reduces looking for quadratic periodic points of unicritical polynomials to looking for points in $C_1(N)(\mathbb{Q})$ or $C_0(N)(\mathbb{Q})$.

Rationality of periodic points

Theorem (Z.)

Suppose ϕ_c satisfies the Galois–dynamics correspondence for a quadratic number field K and N. Then:

- For any N-cycle $\{z_0, \ldots, z_{N-1}\}$ of ϕ_c in K, its trace $\sum_{i=1}^{N-1} \phi^{(i)}(z)$ is rational.
- Furthermore, if N is odd then every N-periodic point of ϕ_c is rational.

Reduces looking for quadratic periodic points of unicritical polynomials to looking for points in $C_1(N)(\mathbb{Q})$ or $C_0(N)(\mathbb{Q})$.

Corollary for d = 2:

If the Galois–dynamics correspondence holds for a quadratic polynomial $\phi \in \mathbb{Q}[z]$,

then ϕ has no *quadratic* periodic points of exact period 5 and exactly one (conditionally on standard conjectures) cycle of exact period 6.

Proposition (Vivaldi-Hatjispyros (1992))

Fix $c \in \mathbb{Q}$ and d = 2. Let $\phi = \phi_{2,c}$. If $\Phi_N(z,c)$ is irreducible in $\mathbb{Q}[z]$ (not just $\mathbb{Q}[z,c]$), then ϕ_c satisfies the Galois–dynamics correspondence for all K.

Proposition (Vivaldi-Hatjispyros (1992))

Fix $c \in \mathbb{Q}$ and d = 2. Let $\phi = \phi_{2,c}$. If $\phi_N(z,c)$ is irreducible in $\mathbb{Q}[z]$ (not just $\mathbb{Q}[z,c]$), then ϕ_c satisfies the Galois–dynamics correspondence for all K.

There are infinite families where $\Phi_N(z, c)$ is reducible in $\mathbb{Q}[z]$:

- N = 3 and any c
- N>2 and c=-2
- $2^N 1$ is not a Mersenne prime and c = 0

Proposition (Vivaldi-Hatjispyros (1992))

Fix $c \in \mathbb{Q}$ and d = 2. Let $\phi = \phi_{2,c}$. If $\phi_N(z,c)$ is irreducible in $\mathbb{Q}[z]$ (not just $\mathbb{Q}[z,c]$), then ϕ_c satisfies the Galois–dynamics correspondence for all K.

There are infinite families where $\Phi_N(z, c)$ is reducible in $\mathbb{Q}[z]$:

- N = 3 and any c
- N > 2 and c = −2
- $2^N 1$ is not a Mersenne prime and c = 0

Vivaldi and Hatjspyros showed that $\Phi_N(z,c)$ is typically irreducible for N < 3 and conjectured the same for all N.

Proposition (Vivaldi-Hatjispyros (1992))

Fix $c \in \mathbb{Q}$ and d = 2. Let $\phi = \phi_{2,c}$. If $\phi_N(z,c)$ is irreducible in $\mathbb{Q}[z]$ (not just $\mathbb{Q}[z,c]$), then ϕ_c satisfies the Galois–dynamics correspondence for all K.

There are infinite families where $\Phi_N(z, c)$ is reducible in $\mathbb{Q}[z]$:

- N = 3 and any c
- N > 2 and c = −2
- $2^N 1$ is not a Mersenne prime and c = 0

Vivaldi and Hatjspyros showed that $\Phi_N(z, c)$ is typically irreducible for N < 3 and conjectured the same for all N.

• Irreducibility over $\mathbb{Q}[z, c]$ + Hilbert irreducibility \Rightarrow irreducibility in $\mathbb{Q}[z]$ for almost all $c \in \mathbb{Q}$.

Proposition (Vivaldi-Hatjispyros (1992))

Fix $c \in \mathbb{Q}$ and d = 2. Let $\phi = \phi_{2,c}$. If $\phi_N(z,c)$ is irreducible in $\mathbb{Q}[z]$ (not just $\mathbb{Q}[z,c]$), then ϕ_c satisfies the Galois–dynamics correspondence for all K.

There are infinite families where $\Phi_N(z, c)$ is reducible in $\mathbb{Q}[z]$:

- N = 3 and any c
- N > 2 and c = −2
- $2^N 1$ is not a Mersenne prime and c = 0

Vivaldi and Hatjspyros showed that $\Phi_N(z,c)$ is typically irreducible for N < 3 and conjectured the same for all N.

- Irreducibility over $\mathbb{Q}[z, c]$ + Hilbert irreducibility \Rightarrow irreducibility in $\mathbb{Q}[z]$ for almost all $c \in \mathbb{Q}$.
- Explicit description for the thin set where irreducibility fails (Krumm–Sutherland (to appear) & Krumm (2019))

Proposition (Vivaldi-Hatjispyros (1992))

Fix $c \in \mathbb{Q}$ and d = 2. Let $\phi = \phi_{2,c}$. If $\phi_N(z,c)$ is irreducible in $\mathbb{Q}[z]$ (not just $\mathbb{Q}[z,c]$), then ϕ_c satisfies the Galois–dynamics correspondence for all K.

There are infinite families where $\Phi_N(z, c)$ is reducible in $\mathbb{Q}[z]$:

- N = 3 and any c
- N > 2 and c = −2
- $2^N 1$ is not a Mersenne prime and c = 0

Vivaldi and Hatjspyros showed that $\Phi_N(z,c)$ is typically irreducible for N < 3 and conjectured the same for all N.

- Irreducibility over $\mathbb{Q}[z, c]$ + Hilbert irreducibility \Rightarrow irreducibility in $\mathbb{Q}[z]$ for almost all $c \in \mathbb{Q}$.
- Explicit description for the thin set where irreducibility fails (Krumm–Sutherland (to appear) & Krumm (2019))

The proposition also holds for d > 2, but not much is known about irreducibility over $\mathbb{Q}[z]$.

Proposition

Fix $c \in \mathbb{Q}$. If the Galois group $G_{N,c}$ of $\Phi_N(z,c)$ over \mathbb{Q} equals the Galois group G_N of $\Phi_N(z,t)$ over $\mathbb{Q}(t)$, then ϕ_c satisfies the Galois–dynamics correspondence for all K.

Proposition

Fix $c \in \mathbb{Q}$. If the Galois group $G_{N,c}$ of $\Phi_N(z,c)$ over \mathbb{Q} equals the Galois group G_N of $\Phi_N(z,t)$ over $\mathbb{Q}(t)$, then ϕ_c satisfies the Galois–dynamics correspondence for all K.

By the work of Bousch (1992), $G_N = (\mathbb{Z}/N\mathbb{Z}) \wr S_r$ where $rN = \deg \Phi_N$.

Proposition

Fix $c \in \mathbb{Q}$. If the Galois group $G_{N,c}$ of $\Phi_N(z,c)$ over \mathbb{Q} equals the Galois group G_N of $\Phi_N(z,t)$ over $\mathbb{Q}(t)$, then ϕ_c satisfies the Galois–dynamics correspondence for all K.

By the work of Bousch (1992), $G_N = (\mathbb{Z}/N\mathbb{Z}) \wr S_r$ where $rN = \deg \Phi_N$.

The structure of $G_{N,c}$ is not known in general, but $G_N \cong G_{N,c}$ outside of a thin set Σ_N of \mathbb{Q} by Hilbert's irreducibility theorem.

Proposition

Fix $c \in \mathbb{Q}$. If the Galois group $G_{N,c}$ of $\Phi_N(z,c)$ over \mathbb{Q} equals the Galois group G_N of $\Phi_N(z,t)$ over $\mathbb{Q}(t)$, then ϕ_c satisfies the Galois–dynamics correspondence for all K.

By the work of Bousch (1992), $G_N = (\mathbb{Z}/N\mathbb{Z}) \wr S_r$ where $rN = \deg \Phi_N$.

The structure of $G_{N,c}$ is not known in general, but $G_N \cong G_{N,c}$ outside of a thin set Σ_N of \mathbb{Q} by Hilbert's irreducibility theorem.

In particular, more is known for small N:

- Σ₃ is infinite & explicitly described (Morton 1992)
- Σ₄ is infinite & explicitly described (Krumm 2018)
- $N \in \{5, 6, 7, 9\}$: Σ_N is finite (Krumm 2019)
- N > 4: Empirical evidence for finiteness

Fixing the index in GDC

Lemma

Let K/\mathbb{Q} be a (nontrivial) finite Galois extension of degree D and z a periodic point of ϕ_c of exact period $N \ge 2$ in $K - \mathbb{Q}$. If for some $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$,

$$\sigma z = \phi_c^{(i)}(z)$$

then $i = \frac{mN}{\sigma}$ with $0 \le m < g := \operatorname{gcd}(N, D)$.

Fixing the index in GDC

Lemma

Let K/\mathbb{Q} be a (nontrivial) finite Galois extension of degree D and z a periodic point of ϕ_c of exact period $N \ge 2$ in $K - \mathbb{Q}$. If for some $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$,

$$\sigma z = \phi_c^{(i)}(z)$$

then $i = \frac{mN}{\sigma}$ with $0 \le m < g := \operatorname{gcd}(N, D)$.

In particular, if there is no such σ then the N-cycles and their Galois conjugates are disjoint, i.e.

$$[z_0,\ldots,z_{N-1}]\cap\{\tau z_0,\ldots,\tau z_{N-1}\}=\emptyset,$$

for all nontrivial $\tau \in \operatorname{Gal}(K/\mathbb{Q})$.

Fixing the index in GDC

Lemma

Let K/\mathbb{Q} be a (nontrivial) finite Galois extension of degree D and z a periodic point of ϕ_c of exact period $N \ge 2$ in $K - \mathbb{Q}$. If for some $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$,

$$\sigma z = \phi_c^{(i)}(z)$$

then $i = \frac{mN}{\sigma}$ with $0 \le m < g := \operatorname{gcd}(N, D)$.

In particular, if there is no such σ then the N-cycles and their Galois conjugates are disjoint, i.e.

$$[z_0,\ldots,z_{N-1}]\cap\{\tau z_0,\ldots,\tau z_{N-1}\}=\emptyset,$$

for all nontrivial $\tau \in \operatorname{Gal}(K/\mathbb{Q})$.

Example

Assuming standard conjectures on $J(C_0(6))$, the only quadratic 6-cycle for any quadratic polynomial in $\mathbb{Q}[z]$ is: $\phi_c = z^2 - \frac{71}{48}$ $K = \mathbb{Q}(\sqrt{33})$ $\sigma z = \overline{z}$ i = 3• $z_0 = -1 + \frac{\sqrt{33}}{12}$ • $z_1 = -\frac{1}{4} - \frac{\sqrt{33}}{6}$ • $z_2 = -\frac{1}{2} + \frac{\sqrt{33}}{12}$ • $z_4 = -\frac{1}{4} + \frac{\sqrt{33}}{6}$ • $z_5 = -\frac{1}{2} - \frac{\sqrt{33}}{12}$

Known cases of GDC for d = 2:

Using the lemma determining i, we deduce that GDC holds for

• N = 2: since there is at most one 2-cycle for a given c

Known cases of GDC for d = 2:

Using the lemma determining *i*, we deduce that GDC holds for

- N = 2: since there is at most one 2-cycle for a given c
- N = 3: due to how $\Phi_3(z, c)$ factorizes (Vivaldi-Hatjispyros (1992))

Known cases of GDC for d = 2:

Using the lemma determining i, we deduce that GDC holds for

- N = 2: since there is at most one 2-cycle for a given c
- N = 3: due to how $\Phi_3(z, c)$ factorizes (Vivaldi-Hatjispyros (1992))
- N = 4: due to an explicit parametrization of 4-cycles (Panraksa (2011))

Known cases of GDC for d = 2:

Using the lemma determining *i*, we deduce that GDC holds for

- N = 2: since there is at most one 2-cycle for a given c
- N = 3: due to how $\Phi_3(z, c)$ factorizes (Vivaldi-Hatjispyros (1992))
- N = 4: due to an explicit parametrization of 4-cycles (Panraksa (2011))

Known cases of GDC for general d:

- $\Phi_N(z, c)$ is irreducible in $\mathbb{Q}[z]$ for fixed c: by an extension of Vivaldi–Hatjispyros
- $G_N \cong G_{N,c}$: exceptions Σ_N described for small N by Morton & Krumm