The Galois-dynamics correspondence for unicritical polynomials

Robin Zhang
Columbia University

Joint Mathematics Meetings 2020

January 17, 2020

Overview

1. Introduction

- Dynatomic modular curves

2. Galois-dynamics correspondence

- Rationality of periodic points
- Irreducibility criterion
- Galois group criterion
- Fixing the index in GDC

3. Known cases of GDC

Introduction

Goal: Characterize the periodic points of polynomials $\phi \in \mathbb{Q}[z]$.

Introduction

Goal: Characterize the periodic points of polynomials $\phi \in \mathbb{Q}[z]$.

Conjecture (Flynn-Poonen-Schaefer (1997))

There are no quadratic polynomials $\phi \in \mathbb{Q}[z]$ with a rational periodic point of exact period $N \geq 4$.

Introduction

Goal: Characterize the periodic points of polynomials $\phi \in \mathbb{Q}[z]$.

Conjecture (Flynn-Poonen-Schaefer (1997))

There are no quadratic polynomials $\phi \in \mathbb{Q}[z]$ with a rational periodic point of exact period $N \geq 4$.

Theorem

- $N=4$: Morton (1998)
- $N=5$: Flynn-Poonen-Schaefer (1997)
- $N=6$: Stoll (2008) assuming standard conjectures on $J\left(C_{0}(6)\right)$

Introduction

Goal: Characterize the periodic points of polynomials $\phi \in \mathbb{Q}[z]$.

Conjecture (Flynn-Poonen-Schaefer (1997))

There are no quadratic polynomials $\phi \in \mathbb{Q}[z]$ with a rational periodic point of exact period $N \geq 4$.

Theorem

- $N=4:$ Morton (1998)
- $N=5$: Flynn-Poonen-Schaefer (1997)
- $N=6$: Stoll (2008) assuming standard conjectures on $J\left(C_{0}(6)\right)$

If ϕ is quadratic:

$$
\phi=a_{2} z^{2}+a_{1} z+a_{0} \xrightarrow{\text { linear conjugation }} \phi_{c}=z^{2}+c
$$

Introduction

Goal: Characterize the periodic points of polynomials $\phi \in \mathbb{Q}[z]$.

Conjecture (Flynn-Poonen-Schaefer (1997))

There are no quadratic polynomials $\phi \in \mathbb{Q}[z]$ with a rational periodic point of exact period $N \geq 4$.

Theorem

- $N=4:$ Morton (1998)
- $N=5$: Flynn-Poonen-Schaefer (1997)
- $N=6$: Stoll (2008) assuming standard conjectures on $J\left(C_{0}(6)\right)$

If ϕ is quadratic:

$$
\phi=a_{2} z^{2}+a_{1} z+a_{0} \xrightarrow{\text { linear conjugation }} \phi_{c}=z^{2}+c
$$

Reduces to studying periodic points of $\phi_{c}:=z^{2}+c$ with $c \in \mathbb{Q}$:

Dynatomic modular curves

Let $\phi_{c}:=z^{d}+c$ be any unicritical polynomial in $\mathbb{Q}[z]$.
Extend the domain of z from \mathbb{Q} to any number field K.

Dynatomic modular curves

Let $\phi_{c}:=z^{d}+c$ be any unicritical polynomial in $\mathbb{Q}[z]$.
Extend the domain of z from \mathbb{Q} to any number field K.

Periodic points of ϕ_{c} of period N are solutions of

$$
0=\phi_{c}^{(N)}(z)-z
$$

Dynatomic modular curves

Let $\phi_{c}:=z^{d}+c$ be any unicritical polynomial in $\mathbb{Q}[z]$.
Extend the domain of z from \mathbb{Q} to any number field K.

Periodic points of ϕ_{c} of period N are solutions of

$$
0=\phi_{c}^{(N)}(z)-z=\prod_{d \mid N} \Phi_{d}(z, c)
$$

Dynatomic modular curves

Let $\phi_{c}:=z^{d}+c$ be any unicritical polynomial in $\mathbb{Q}[z]$.
Extend the domain of z from \mathbb{Q} to any number field K.

Periodic points of ϕ_{c} of period N are solutions of

$$
\begin{aligned}
0=\phi_{c}^{(N)}(z)-z=\prod_{d \mid N} & \Phi_{d}(z, c) \\
& \Phi_{d}(z, c):=\prod_{m \mid d}\left(\phi_{c}^{(m)}(z)-z\right)^{\mu(d / m)} \in \mathbb{Q}[z, c]
\end{aligned}
$$

(Möbius inversion)

Dynatomic modular curves

Let $\phi_{c}:=z^{d}+c$ be any unicritical polynomial in $\mathbb{Q}[z]$.
Extend the domain of z from \mathbb{Q} to any number field K.

Periodic points of ϕ_{c} of period N are solutions of

$$
\begin{aligned}
0=\phi_{c}^{(N)}(z)-z=\prod_{d \mid N} & \Phi_{d}(z, c) \\
& \Phi_{d}(z, c):=\prod_{m \mid d}\left(\phi_{c}^{(m)}(z)-z\right)^{\mu(d / m)} \in \mathbb{Q}[z, c]
\end{aligned}
$$

(Möbius inversion)

Dynatomic modular curves

Let $\phi_{c}:=z^{d}+c$ be any unicritical polynomial in $\mathbb{Q}[z]$.
Extend the domain of z from \mathbb{Q} to any number field K.

Periodic points of ϕ_{c} of period N are solutions of

$$
\begin{aligned}
0=\phi_{c}^{(N)}(z)-z=\prod_{d \mid N} & \Phi_{d}(z, c) \\
& \Phi_{d}(z, c):=\prod_{m \mid d}\left(\phi_{c}^{(m)}(z)-z\right)^{\mu(d / m)} \in \mathbb{Q}[z, c]
\end{aligned}
$$

(Möbius inversion)
$C_{1}(N):=$ algebraic curve defined by $\left\{\Phi_{N}(z, c)=0\right\}$
$C_{0}(N):=$ quotient curve $C_{1}(N) /\left((z, c) \mapsto\left(\phi_{c}(z), c\right)\right)$
Tower of covers: $C_{1}(N) \rightarrow C_{0}(N) \rightarrow \mathbb{A}_{1}$

Dynatomic modular curves

Let $\phi_{c}:=z^{d}+c$ be any unicritical polynomial in $\mathbb{Q}[z]$.
Extend the domain of z from \mathbb{Q} to any number field K.

Periodic points of ϕ_{c} of period N are solutions of

$$
\begin{aligned}
0=\phi_{c}^{(N)}(z)-z=\prod_{d \mid N} & \Phi_{d}(z, c) \\
& \Phi_{d}(z, c):=\prod_{m \mid d}\left(\phi_{c}^{(m)}(z)-z\right)^{\mu(d / m)} \in \mathbb{Q}[z, c]
\end{aligned}
$$

(Möbius inversion)
$C_{1}(N):=$ algebraic curve defined by $\left\{\Phi_{N}(z, c)=0\right\}$
$C_{0}(N):=$ quotient curve $C_{1}(N) /\left((z, c) \mapsto\left(\phi_{c}(z), c\right)\right)$
Tower of covers: $C_{1}(N) \rightarrow C_{0}(N) \rightarrow \mathbb{A}_{1}$
$\left(\phi_{c}\right.$, periodic point of exact period $\left.N\right) \longleftrightarrow K$-rational point of $C_{1}(N)$ $\left(\phi_{c}\right.$, cycle of exact period $\left.N\right) \longleftrightarrow K$-rational point of $C_{0}(N)$

Dynatomic modular curves

Let $\phi_{c}:=z^{d}+c$ be any unicritical polynomial in $\mathbb{Q}[z]$.
Extend the domain of z from \mathbb{Q} to any number field K.

Periodic points of ϕ_{c} of period N are solutions of

$$
\begin{aligned}
0=\phi_{c}^{(N)}(z)-z=\prod_{d \mid N} & \Phi_{d}(z, c) \\
& \Phi_{d}(z, c):=\prod_{m \mid d}\left(\phi_{c}^{(m)}(z)-z\right)^{\mu(d / m)} \in \mathbb{Q}[z, c]
\end{aligned}
$$

(Möbius inversion)
$C_{1}(N):=$ algebraic curve defined by $\left\{\Phi_{N}(z, c)=0\right\}$
$C_{0}(N):=$ quotient curve $C_{1}(N) /\left((z, c) \mapsto\left(\phi_{c}(z), c\right)\right)$
Tower of covers: $C_{1}(N) \rightarrow C_{0}(N) \rightarrow \mathbb{A}_{1}$

$$
\begin{aligned}
\left(\phi_{c}, \text { periodic point of exact period } N\right) & \longleftrightarrow K \text {-rational point of } C_{1}(N) \\
\left(\phi_{c}, \text { cycle of exact period } N\right) & \longleftrightarrow K \text {-rational point of } C_{0}(N)
\end{aligned}
$$

Theorem (Douady-Hubbard ('85), Bousch ('92), Lau-Schleicher ('94), Xavier-Lei ('14), Morton ('96), Gao-Ou ('14))

$C_{1}(N)$ is smooth and geometrically irreducible (in characteristic 0).

Galois-dynamics correspondence

Definition

Fix $c \in \mathbb{Q}$. Let K / \mathbb{Q} be a (nontrivial) finite Galois extension and let $N \geq 2$. Suppose that for each N-periodic point $z \in K-\mathbb{Q}$ of ϕ_{c},

$$
\sigma z=\phi_{c}^{(i)}(z),
$$

for some $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$ and some positive integer $i<N$.
Then ϕ_{c} satisfies the Galois-dynamics correspondence (GDC) for K and N.

Galois-dynamics correspondence

Definition

Fix $c \in \mathbb{Q}$. Let K / \mathbb{Q} be a (nontrivial) finite Galois extension and let $N \geq 2$.
Suppose that for each N-periodic point $z \in K-\mathbb{Q}$ of ϕ_{c},

$$
\sigma z=\phi_{c}^{(i)}(z),
$$

for some $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$ and some positive integer $i<N$.
Then ϕ_{c} satisfies the Galois-dynamics correspondence (GDC) for K and N.

For each cycle, the Galois-dynamics correspondence describes for some subgroup H of $\operatorname{Gal}(K / \mathbb{Q})$ and some n,

Galois action \longleftrightarrow Dynamical acton

$$
H \longleftrightarrow \mathbb{Z} / n \mathbb{Z}
$$

If the periodic point z is fixed, $H=\langle\sigma\rangle$ and $n=\frac{N}{\operatorname{gcd}(i, N)}$.

Rationality of periodic points

Theorem (Z.)

Suppose ϕ_{c} satisfies the Galois-dynamics correspondence for a quadratic number field K and N. Then:

- For any N-cycle $\left\{z_{0}, \ldots, z_{N-1}\right\}$ of ϕ_{c} in K, its trace $\sum_{i=1}^{N-1} \phi^{(i)}(z)$ is rational.
- Furthermore, if N is odd then every N-periodic point of ϕ_{c} is rational.

Rationality of periodic points

Theorem (Z.)

Suppose ϕ_{c} satisfies the Galois-dynamics correspondence for a quadratic number field K and N. Then:

- For any N-cycle $\left\{z_{0}, \ldots, z_{N-1}\right\}$ of ϕ_{c} in K, its trace $\sum_{i=1}^{N-1} \phi^{(i)}(z)$ is rational.
- Furthermore, if N is odd then every N-periodic point of ϕ_{c} is rational.

Reduces looking for quadratic periodic points of unicritical polynomials to looking for points in $C_{1}(N)(\mathbb{Q})$ or $C_{0}(N)(\mathbb{Q})$.

Rationality of periodic points

Theorem (Z.)

Suppose ϕ_{c} satisfies the Galois-dynamics correspondence for a quadratic number field K and N. Then:

- For any N-cycle $\left\{z_{0}, \ldots, z_{N-1}\right\}$ of ϕ_{c} in K, its trace $\sum_{i=1}^{N-1} \phi^{(i)}(z)$ is rational.
- Furthermore, if N is odd then every N-periodic point of ϕ_{c} is rational.

Reduces looking for quadratic periodic points of unicritical polynomials to looking for points in $C_{1}(N)(\mathbb{Q})$ or $C_{0}(N)(\mathbb{Q})$.
Corollary for $d=2$:
If the Galois-dynamics correspondence holds for a quadratic polynomial $\phi \in \mathbb{Q}[z]$, then ϕ has no quadratic periodic points of exact period 5 and exactly one (conditionally on standard conjectures) cycle of exact period 6 .

Irreducibility criterion

Proposition (Vivaldi-Hatjispyros (1992))

Fix $c \in \mathbb{Q}$ and $d=2$. Let $\phi=\phi_{2, c}$.
If $\Phi_{N}(z, c)$ is irreducible in $\mathbb{Q}[z]$ (not just $\mathbb{Q}[z, c]$), then ϕ_{c} satisfies the Galois-dynamics correspondence for all K.

Irreducibility criterion

Proposition (Vivaldi-Hatjispyros (1992))

Fix $c \in \mathbb{Q}$ and $d=2$. Let $\phi=\phi_{2, c}$.
If $\Phi_{N}(z, c)$ is irreducible in $\mathbb{Q}[z]$ (not just $\mathbb{Q}[z, c]$), then ϕ_{c} satisfies the Galois-dynamics correspondence for all K.

There are infinite families where $\Phi_{N}(z, c)$ is reducible in $\mathbb{Q}[z]$:

- $N=3$ and any c
- $N>2$ and $c=-2$
- $2^{N}-1$ is not a Mersenne prime and $c=0$

Irreducibility criterion

Proposition (Vivaldi-Hatjispyros (1992))

Fix $c \in \mathbb{Q}$ and $d=2$. Let $\phi=\phi_{2, c}$.
If $\Phi_{N}(z, c)$ is irreducible in $\mathbb{Q}[z]$ (not just $\mathbb{Q}[z, c]$), then ϕ_{c} satisfies the Galois-dynamics correspondence for all K.

There are infinite families where $\Phi_{N}(z, c)$ is reducible in $\mathbb{Q}[z]$:

- $N=3$ and any c
- $N>2$ and $c=-2$
- $2^{N}-1$ is not a Mersenne prime and $c=0$

Vivaldi and Hatjspyros showed that $\Phi_{N}(z, c)$ is typically irreducible for $N<3$ and conjectured the same for all N.

Irreducibility criterion

Proposition (Vivaldi-Hatjispyros (1992))

Fix $c \in \mathbb{Q}$ and $d=2$. Let $\phi=\phi_{2, c}$.
If $\Phi_{N}(z, c)$ is irreducible in $\mathbb{Q}[z]$ (not just $\mathbb{Q}[z, c]$), then ϕ_{c} satisfies the Galois-dynamics correspondence for all K.

There are infinite families where $\Phi_{N}(z, c)$ is reducible in $\mathbb{Q}[z]$:

- $N=3$ and any c
- $N>2$ and $c=-2$
- $2^{N}-1$ is not a Mersenne prime and $c=0$

Vivaldi and Hatjspyros showed that $\Phi_{N}(z, c)$ is typically irreducible for $N<3$ and conjectured the same for all N.

- Irreducibility over $\mathbb{Q}[z, c]+$ Hilbert irreducibility \Rightarrow irreducibility in $\mathbb{Q}[z]$ for almost all $c \in \mathbb{Q}$.

Irreducibility criterion

Proposition (Vivaldi-Hatjispyros (1992))

Fix $c \in \mathbb{Q}$ and $d=2$. Let $\phi=\phi_{2, c}$.
If $\Phi_{N}(z, c)$ is irreducible in $\mathbb{Q}[z]$ (not just $\mathbb{Q}[z, c]$), then ϕ_{c} satisfies the Galois-dynamics correspondence for all K.

There are infinite families where $\Phi_{N}(z, c)$ is reducible in $\mathbb{Q}[z]$:

- $N=3$ and any c
- $N>2$ and $c=-2$
- $2^{N}-1$ is not a Mersenne prime and $c=0$

Vivaldi and Hatjspyros showed that $\Phi_{N}(z, c)$ is typically irreducible for $N<3$ and conjectured the same for all N.

- Irreducibility over $\mathbb{Q}[z, c]+$ Hilbert irreducibility \Rightarrow irreducibility in $\mathbb{Q}[z]$ for almost all $c \in \mathbb{Q}$.
- Explicit description for the thin set where irreducibility fails (Krumm-Sutherland (to appear) \& Krumm (2019))

Irreducibility criterion

Proposition (Vivaldi-Hatjispyros (1992))

Fix $c \in \mathbb{Q}$ and $d=2$. Let $\phi=\phi_{2, c}$.
If $\Phi_{N}(z, c)$ is irreducible in $\mathbb{Q}[z]$ (not just $\mathbb{Q}[z, c]$), then ϕ_{c} satisfies the Galois-dynamics correspondence for all K.

There are infinite families where $\Phi_{N}(z, c)$ is reducible in $\mathbb{Q}[z]$:

- $N=3$ and any c
- $N>2$ and $c=-2$
- $2^{N}-1$ is not a Mersenne prime and $c=0$

Vivaldi and Hatjspyros showed that $\Phi_{N}(z, c)$ is typically irreducible for $N<3$ and conjectured the same for all N.

- Irreducibility over $\mathbb{Q}[z, c]+$ Hilbert irreducibility \Rightarrow irreducibility in $\mathbb{Q}[z]$ for almost all $c \in \mathbb{Q}$.
- Explicit description for the thin set where irreducibility fails (Krumm-Sutherland (to appear) \& Krumm (2019))

The proposition also holds for $d>2$, but not much is known about irreducibility over $\mathbb{Q}[z]$.

Galois group criterion

Proposition

Fix $c \in \mathbb{Q}$.
If the Galois group $G_{N, c}$ of $\Phi_{N}(z, c)$ over \mathbb{Q} equals the Galois group G_{N} of $\Phi_{N}(z, t)$ over $\mathbb{Q}(t)$, then ϕ_{c} satisfies the Galois-dynamics correspondence for all K.

Galois group criterion

Proposition

Fix $c \in \mathbb{Q}$.
If the Galois group $G_{N, c}$ of $\Phi_{N}(z, c)$ over \mathbb{Q} equals the Galois group G_{N} of $\Phi_{N}(z, t)$ over $\mathbb{Q}(t)$, then ϕ_{c} satisfies the Galois-dynamics correspondence for all K.

By the work of Bousch (1992), $G_{N}=(\mathbb{Z} / N \mathbb{Z})$ 々 S_{r} where $r N=\operatorname{deg} \Phi_{N}$.

Galois group criterion

Proposition

Fix $c \in \mathbb{Q}$.
If the Galois group $G_{N, c}$ of $\Phi_{N}(z, c)$ over \mathbb{Q} equals the Galois group G_{N} of $\Phi_{N}(z, t)$ over $\mathbb{Q}(t)$, then ϕ_{c} satisfies the Galois-dynamics correspondence for all K.

By the work of Bousch (1992), $G_{N}=(\mathbb{Z} / N \mathbb{Z})$ 亿 S_{r} where $r N=\operatorname{deg} \Phi_{N}$.
The structure of $G_{N, c}$ is not known in general, but $G_{N} \cong G_{N, c}$ outside of a thin set Σ_{N} of \mathbb{Q} by Hilbert's irreducibility theorem.

Galois group criterion

Proposition

Fix $c \in \mathbb{Q}$.
If the Galois group $G_{N, c}$ of $\Phi_{N}(z, c)$ over \mathbb{Q} equals the Galois group G_{N} of $\Phi_{N}(z, t)$ over $\mathbb{Q}(t)$, then ϕ_{c} satisfies the Galois-dynamics correspondence for all K.

By the work of Bousch (1992), $G_{N}=(\mathbb{Z} / N \mathbb{Z})$ 々 S_{r} where $r N=\operatorname{deg} \Phi_{N}$.
The structure of $G_{N, c}$ is not known in general, but $G_{N} \cong G_{N, c}$ outside of a thin set Σ_{N} of \mathbb{Q} by Hilbert's irreducibility theorem.

In particular, more is known for small N :

- Σ_{3} is infinite \& explicitly described (Morton 1992)
- Σ_{4} is infinite \& explicitly described (Krumm 2018)
- $N \in\{5,6,7,9\}: \Sigma_{N}$ is finite (Krumm 2019)
- $N>4$: Empirical evidence for finiteness

Fixing the index in GDC

Lemma

Let K / \mathbb{Q} be a (nontrivial) finite Galois extension of degree D and z a periodic point of ϕ_{c} of exact period $N \geq 2$ in $K-\mathbb{Q}$. If for some $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$,

$$
\sigma z=\phi_{c}^{(i)}(z)
$$

then $i=\frac{m N}{g}$ with $0 \leq m<g:=\operatorname{gcd}(N, D)$.

Fixing the index in GDC

Lemma

Let K / \mathbb{Q} be a (nontrivial) finite Galois extension of degree D and z a periodic point of ϕ_{c} of exact period $N \geq 2$ in $K-\mathbb{Q}$. If for some $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$,

$$
\sigma z=\phi_{c}^{(i)}(z)
$$

then $i=\frac{m N}{g}$ with $0 \leq m<g:=\operatorname{gcd}(N, D)$.
In particular, if there is no such σ then the N-cycles and their Galois conjugates are disjoint, i.e.

$$
\left\{z_{0}, \ldots, z_{N-1}\right\} \cap\left\{\tau z_{0}, \ldots, \tau z_{N-1}\right\}=\emptyset,
$$

for all nontrivial $\tau \in \operatorname{Gal}(K / \mathbb{Q})$.

Fixing the index in GDC

Lemma

Let K / \mathbb{Q} be a (nontrivial) finite Galois extension of degree D and z a periodic point of ϕ_{c} of exact period $N \geq 2$ in $K-\mathbb{Q}$. If for some $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$,

$$
\sigma z=\phi_{c}^{(i)}(z)
$$

then $i=\frac{m N}{g}$ with $0 \leq m<g:=\operatorname{gcd}(N, D)$.
In particular, if there is no such σ then the N-cycles and their Galois conjugates are disjoint, i.e.

$$
\left\{z_{0}, \ldots, z_{N-1}\right\} \cap\left\{\tau z_{0}, \ldots, \tau z_{N-1}\right\}=\emptyset
$$

for all nontrivial $\tau \in \operatorname{Gal}(K / \mathbb{Q})$.

Example

Assuming standard conjectures on $J\left(C_{0}(6)\right)$, the only quadratic 6 -cycle for any quadratic polynomial in $\mathbb{Q}[z]$ is:

$$
\phi_{c}=z^{2}-\frac{71}{48}
$$

- $z_{0}=-1+\frac{\sqrt{33}}{12}$
- $z_{3}=-1-\frac{\sqrt{33}}{12}$

$$
K=\mathbb{Q}(\sqrt{33})
$$

- $z_{1}=-\frac{1}{4}-\frac{\sqrt{33}}{6}$
$\sigma z=\bar{z}$
$i=3$
- $z_{2}=-\frac{1}{2}+\frac{\sqrt{33}}{12}$
- $z_{4}=-\frac{1}{4}+\frac{\sqrt{33}}{6}$
- $z_{5}=-\frac{1}{2}-\frac{\sqrt{33}}{12}$

Known cases of GDC

Known cases of GDC

Known cases of GDC for $d=2$:
Using the lemma determining i, we deduce that GDC holds for

- $N=2$: since there is at most one 2-cycle for a given c

Known cases of GDC

Known cases of GDC for $d=2$:
Using the lemma determining i, we deduce that GDC holds for

- $N=2$: since there is at most one 2-cycle for a given c
- $N=3$: due to how $\Phi_{3}(z, c)$ factorizes (Vivaldi-Hatjispyros (1992))

Known cases of GDC

Known cases of GDC for $d=2$:
Using the lemma determining i, we deduce that GDC holds for

- $N=2$: since there is at most one 2-cycle for a given c
- $N=3$: due to how $\Phi_{3}(z, c)$ factorizes (Vivaldi-Hatjispyros (1992))
- $N=4$: due to an explicit parametrization of 4-cycles (Panraksa (2011))

Known cases of GDC

Known cases of GDC for $d=2$:

Using the lemma determining i, we deduce that GDC holds for

- $N=2$: since there is at most one 2-cycle for a given c
- $N=3$: due to how $\Phi_{3}(z, c)$ factorizes (Vivaldi-Hatjispyros (1992))
- $N=4$: due to an explicit parametrization of 4-cycles (Panraksa (2011))

Known cases of GDC for general d :

- $\Phi_{N}(z, c)$ is irreducible in $\mathbb{Q}[z]$ for fixed c : by an extension of Vivaldi-Hatjispyros
- $G_{N} \cong G_{N, c}$: exceptions Σ_{N} described for small N by Morton \& Krumm

