The Arakelov-Zhang pairing and Julia sets

Andrew Bridy (joint with Matt Larson)
Yale University
January 17, 2020

Notation

Let K be a number field.
Let h be the logarithmic Weil height on $\mathbb{P}^{1}(\bar{K})$.
For $\phi \in K(x), \operatorname{deg} \phi \geq 2$, let \hat{h}_{ϕ} be the Call-Silverman canonical height:

$$
\hat{h}_{\phi}(z)=\lim _{n \rightarrow \infty} \frac{h\left(\phi^{n}(z)\right)}{(\operatorname{deg} \phi)^{n}}
$$

Let M_{K} be the set of places of K.
For $v \in M_{K}$, let P_{v}^{1} be the Berkovich projective line over \mathbb{C}_{v}.

Average heights of preimages

Our project started with the following experimental observation. Let $\phi(x)=x^{2}+c$ for $c \in \mathbb{Z}$. if $|c| \geq 4$, then for any $\beta \in \overline{\mathbb{Q}}$, we computed

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \sum_{\phi^{n}(z)=\beta} h(z)=\hat{h}_{\phi}(0) .
$$

In general, our experiments suggested that the average height of preimages of β converges to the same number regardless of β, as long as β is non-exceptional (i.e., has infinite backward orbit). Moreover,

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \sum_{\phi^{n}(z)=\beta} h(z) \geq \hat{h}_{\phi}(0)
$$

for every example we computed.

The Arakelov-Zhang pairing

Let $\psi, \phi \in K(x)$ for a number field K, with both $\operatorname{deg} \psi$ and $\operatorname{deg} \phi \geq 2$.
The Arakelov-Zhang pairing $\langle\psi, \phi\rangle$ is symmetric and non-negative. Its (rather technical) definition is in terms of local analysis on P_{v}^{1} at each $v \in M_{K}$. A simple way to characterize the pairing is:

Theorem (Petsche-Szpiro-Tucker)

Let $\left(x_{n}\right)$ be any sequence of distinct points in $\mathbb{P}^{1}(\bar{K})$ such that $\hat{h}_{\phi}\left(x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Then $\hat{h}_{\psi}\left(x_{n}\right) \rightarrow\langle\psi, \phi\rangle$ as $n \rightarrow \infty$.

By this characterization, it appears somewhat miraculous that the pairing is not just well-defined, but symmetric!

The Arakelov-Zhang pairing

$\langle\psi, \phi\rangle$ may be interpreted as a "dynamical distance" between ψ and ϕ.

Theorem (Petsche-Szpiro-Tucker, Zhang, Chambert-Loir-Thuillier, Mimar, Baker-DeMarco...)

The following are equivalent:
(1) $\langle\psi, \phi\rangle=0$
(2) $\hat{h}_{\psi}=\hat{h}_{\phi}$
(3) $\operatorname{PrePer}(\psi)=\operatorname{PrePer}(\phi)$
(1) $\operatorname{PrePer}(\psi) \cap \operatorname{PrePer}(\phi)$ is infinite

- $\lim \inf _{x \in \mathbb{P}^{1}(\bar{K})} \hat{h}_{\psi}(x)+\hat{h}_{\phi}(x)=0$

The pairing coincides with the square of a metric of mutual energy on adelic metrized line bundles (Fili) and has been used to study uniform Manin-Mumford problems (DeMarco-Krieger-Ye).

Average heights of preimages again

Using the transformation property $\hat{h}_{\phi}(\phi(x))=(\operatorname{deg} \phi) \hat{h}_{\phi}(x)$, we can find a good example of a sequence of points $\left(x_{n}\right)$ with $\hat{h}_{\phi}\left(x_{n}\right) \rightarrow 0$. Choose $\beta \in \mathbb{P}^{1}(K)$, and list the elements of

$$
\phi^{-1}(\beta), \text { then } \phi^{-2}(\beta) \text {, then } \phi^{-3}(\beta), \text { then } \phi^{-4}(\beta), \ldots
$$

Choose $\psi(x)=x^{2}$, so that $\hat{h}_{\psi}=h$. Then, as long as β is non-exceptional, the PST characterization gives

$$
\left\langle x^{2}, \phi\right\rangle=\lim _{n \rightarrow \infty} \frac{1}{(\operatorname{deg} \phi)^{n}} \sum_{\phi^{n}(z)=\beta} h(z),
$$

where the sum is counted with multiplicity. If β is periodic for ϕ, we need to show that repeated roots of $\phi^{n}(z)=\beta$ don't contribute too much to the average - this can be done using equidistribution.

The canonical invariant measure

Let $v \in M_{K}$. If v is archimedean, let $\mu_{\phi, 0}$ be the Haar measure on the unit circle in $\mathbb{P}^{1}(\mathbb{C})$. If v is non-archimedean, let $\mu_{\phi, 0}$ be the point mass at the Gauss point on P_{v}^{1}.

The canonical ϕ-invariant probability measure $\mu_{\phi, v}$ is the weak limit of the sequence of measures defined by

$$
\mu_{\phi, k+1}=\frac{1}{\operatorname{deg} \phi} \phi^{*} \mu_{\phi, k} .
$$

The support of $\mu_{\phi, v}$ is precisely the Julia set $J(\phi)$ of $\phi: \mathrm{P}_{v}^{1} \rightarrow \mathrm{P}_{v}^{1}$. The multisets of nth preimages of any non-exceptional β equidistribute along $J(\phi)$ (Baker-Rumely, Chambert-Loir, Favre-Rivera-Letelier).

The main theorem

As $\hat{h}_{x^{2}}=h$, the pairing $\left\langle x^{2}, \phi\right\rangle$ may be interpreted as a measure of the dynamical complexity of ϕ. Our experimental observation leads to a way of proving a formula for $\left\langle x^{2}, \phi\right\rangle$.

Theorem (B.-Larson)

$$
\left\langle x^{2}, \phi\right\rangle=h_{\phi}(0)-\sum_{v \in M_{K}} \frac{\left[K_{v}: \mathbb{Q}_{v}\right]}{[K: \mathbb{Q}]} \int_{|\alpha|<1} \log |\alpha| d \mu_{\phi, v}
$$

We give a straightforward proof using equidistribution of average heights of preimages and basic algebraic number theory ${ }^{1}$. A shorter proof can be obtained by invoking more of the local analytic machinery.

[^0]
A corollary of the main theorem

Corollary

Let $\phi \in K(x)$. Then

$$
\left\langle x^{2}, \phi\right\rangle \geq h_{\phi}(0)
$$

with equality if and only the Julia set of $\phi: \mathrm{P}_{v}^{1} \rightarrow \mathrm{P}_{v}^{1}$ is disjoint from the open unit disk in P_{v}^{1} at every $v \in M_{K}$.

Note the disjointness hypothesis of (1) is satisfied at the non-archimedean place v if ϕ has potentially good reduction at v, i.e., good reduction after a change of variables.

An application of the corollary

Let $\phi(x)=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{0} \in K[x]$, and assume $0 \in \operatorname{PrePer}(\phi)$.

Proposition

Suppose that for every non-archimedean place v, either

- ϕ has potentially good reduction at v, or
- $v\left(a_{0}\right) \leq 0$ and $v\left(a_{0}\right)<v\left(a_{i}\right)$ for $1 \leq i \leq d-1$.

Further suppose that the Julia set of ϕ at every archimedean place v does not intersect the open unit disc. Then $\phi(x)=x^{d}$.

The hypotheses imply $\left\langle x^{2}, \phi\right\rangle=0$, thus $\hat{h}_{\phi}=\hat{h}_{x^{2}}$. Then we use a result of Kawaguchi-Silverman on polynomials with equal canonical heights.

This proposition gives us an easy proof of the following fact: if c is a preperiodic parameter in the Mandelbrot set, then $J\left(x^{2}+c^{\prime}\right)$ must intersect the open unit disc for some conjugate c^{\prime} of c.

Another corollary: the purely archimedean case

Corollary (2)

Let $\phi \in \mathbb{Z}[x]$ be monic. Then

$$
\left\langle x^{2}, \phi\right\rangle=h_{\phi}(0)-\int_{|z|<1} \log |z| d \mu_{\phi}
$$

This explains our experimental observation about quadratic polynomials. Once $|c|$ is large enough, the complex Julia set of $x^{2}+c$ is disjoint from the open unit disc.

The statement of the corollary is explicit enough to exactly compute $\left\langle x^{2}, \phi\right\rangle$ in some special cases. We also use it to improve bounds of Petsche-Szpiro-Tucker on $\left|h(x)-\hat{h}_{\phi}(x)\right|$ for some ϕ.

Chebyshev polynomials

For $n \geq 2$, let $T_{n}(x)$ be the degree n Chebyshev polynomial. The Julia set $J\left(T_{n}\right)$ is the closed interval $[-2,2]$ in \mathbb{R}, and

$$
d \mu_{T_{n}}=\frac{1}{2 \pi} \frac{1}{\sqrt{1-x^{2} / 4}} d x
$$

for the Lebesgue measure $d x$ on \mathbb{R}. By Corollary 2 ,

$$
\left\langle x^{2}, T_{n}\right\rangle=-\frac{1}{2 \pi} \int_{-1}^{1} \frac{\log |x|}{\sqrt{1-x^{2} / 4}} d x=\frac{3 \sqrt{3}}{4 \pi} L(2, \chi) \approx 0.3231
$$

where L is the Dirichlet L-function associated to the nontrivial character $\chi \bmod 3$.

The Arakelov-Zhang pairing and Julia sets

Andrew Bridy (joint with Matt Larson)
Yale University
January 17, 2020

[^0]: $1_{\text {which doesn't work when } 0}$ is in the Julia set of ϕ at some place

