Misiurewicz
polynomials
and
irreducibility
Vefa Goksel

Post-critically
polynomials
The main
question
A summary of
known results
A new result

Misiurewicz polynomials and irreducibility

Vefa Goksel

University of Wisconsin-Madison
January 17, 2020

Presentation Outline

Misiurewicz
polynomials and
irreducibility
Vefa Goksel
1 Post-critically finite polynomials
Post-critically finite polynomials

The main
question
A summary of known results A new result
2. The main question

3 A summary of known results

4 A new result

Post-critically finite polynomials

Misiurewicz
polynomials and
irreducibility
Vefa Goksel

Post-critically finite polynomials

The main

question
A summary of
known results
A new result

Let $f(x) \in \mathbb{C}[x]$ be a polynomial of degree $d \geq 2$. We denote by $f^{n}(x)$ the nth iterate of $f(x)$.

Post-critically finite polynomials

Misiurewicz
polynomials and
irreducibility
Vefa Goksel

Post-critically
finite
polynomials
The main
question
A summary of known results

Let $f(x) \in \mathbb{C}[x]$ be a polynomial of degree $d \geq 2$. We denote by $f^{n}(x)$ the nth iterate of $f(x)$.

If c_{1}, \ldots, c_{d-1} are the critical points of f, then we call the set $O_{f}:=\cup_{i=1}^{d-1}\left\{f\left(c_{i}\right), f^{2}\left(c_{i}\right), \ldots\right\}$ the post-critical orbit of f.

Post-critically finite polynomials

Misiurewicz
polynomials and irreducibility

Vefa Goksel

Post-critically finite
polynomials
The main question

A summary of known results A new result

Let $f(x) \in \mathbb{C}[x]$ be a polynomial of degree $d \geq 2$. We denote by $f^{n}(x)$ the nth iterate of $f(x)$.

If c_{1}, \ldots, c_{d-1} are the critical points of f, then we call the set $O_{f}:=\cup_{i=1}^{d-1}\left\{f\left(c_{i}\right), f^{2}\left(c_{i}\right), \ldots\right\}$ the post-critical orbit of f.

When the set O_{f} is finite, we say $\mathbf{f}(\mathbf{x})$ is post-critically finite (PCF). Post-critically finite polynomials are rather rare, so they are somewhat exceptional.

An example

Misiurewicz
polynomials and
irreducibility
Vefa Goksel

Post-critically finite
polynomials
The main
question
A summary of known results

A new result

Consider $f(x)=x^{2}+i \in \mathbb{C}[x]$. It has the unique critical point 0 .
We have the following orbit behavior:

$$
i \rightarrow i-1 \longrightarrow-i
$$

So, O_{f} becomes

$$
O_{f}=\{i, i-1,-i\},
$$

and f is PCF.

A special family

Misiurewicz
polynomials and
irreducibility
Vefa Goksel

Post-critically
finite
polynomials
The main
question
A summary of known results

We focus on a particular family, namely the PCF polynomials of the form $f_{c}(x)=x^{2}+c \in \mathbb{C}[x]$. The post-critical orbit becomes

$$
O_{f_{c}}=\left\{c, c^{2}+c,\left(c^{2}+c\right)^{2}+c, \ldots\right\} .
$$

A special family

Misiurewicz
polynomials and irreducibility

Vefa Goksel

Post-critically
finite
polynomials
The main
question
A summary of known results A new result

We focus on a particular family, namely the PCF polynomials of the form $f_{c}(x)=x^{2}+c \in \mathbb{C}[x]$. The post-critical orbit becomes

$$
O_{f_{c}}=\left\{c, c^{2}+c,\left(c^{2}+c\right)^{2}+c, \ldots\right\} .
$$

In particular, any c_{0} value for which $f_{c_{0}}$ is PCF is an algebraic integer.

Periodic case

Misiurewicz polynomials and irreducibility Vefa Goksel

Post-critically finite
polynomials
The main
question
A summary of known results A new result

Example: Let's find c values such that 0 is periodic under f_{c} with exact period 3.

$$
\begin{aligned}
& 0 \longrightarrow c \longrightarrow c^{2}+c \\
& f_{c}^{3}(0)=\left(c^{2}+c\right)^{2}+c=c\left(c^{3}+2 c^{2}+c+1\right)=0
\end{aligned}
$$

\Longrightarrow For any root c_{0} of $c^{3}+2 c^{2}+c+1, f_{c_{0}}$ will have 0 as a periodic point of exact period 3 .

Gleason polynomials

Misiurewicz
polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

Definition: The Gleason polynomial G_{n} is the factor of $f_{c}^{n}(0)$ whose roots are the c_{0} values for which 0 is periodic under $f_{c_{0}}$ with exact period n.

Gleason polynomials

Misiurewicz
polynomials and irreducibility

Vefa Goksel

Post-critically finite
polynomials
The main
question
A summary of known results A new result

Definition: The Gleason polynomial G_{n} is the factor of $f_{c}^{n}(0)$ whose roots are the c_{0} values for which 0 is periodic under $f_{c_{0}}$ with exact period n.

$$
\boldsymbol{G}_{\mathbf{1}}=c .
$$

$$
\begin{aligned}
& \boldsymbol{G}_{2}=c+1 \\
& \boldsymbol{G}_{3}=c^{3}+2 c^{2}+c+1
\end{aligned}
$$

$$
\boldsymbol{G}_{4}=c^{6}+3 c^{5}+3 c^{4}+3 c^{3}+2 c^{2}+1
$$

$$
\boldsymbol{G}_{5}=c^{15}+8 c^{14}+28 c^{13}+60 c^{12}+94 c^{11}+116 c^{10}+114 c^{9}+
$$

$$
94 c^{8}+69 c^{7}+44 c^{6}+26 c^{5}+14 c^{4}+5 c^{3}+2 c^{2}+c+1
$$

Gleason polynomials

Misiurewicz
polynomials and
irreducibility
Vefa Goksel

Post-critically finite polynomials

The main

question
A summary of
known results
A new result

Conjecture: For any $n \geq 1, G_{n}$ is irreducible over \mathbb{Q}.

Gleason polynomials

Misiurewicz
polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

Conjecture: For any $n \geq 1, G_{n}$ is irreducible over \mathbb{Q}.
If true, this would be a dynamical analog of the well-known fact that cylotomic polynomials are irreducible over \mathbb{Q}. But, it looks difficult.

Strictly preperiodic case

Misiurewicz
polynomials and
irreducibility
Vefa Goksel

Post-critically finite
polynomials
The main
question
A summary of known results

f_{c} has orbit type (m, n) when $f_{c}^{m}(0)$ is the first periodic element, and n is the exact period (so $f_{c}^{m}(0)=f_{c}^{m+n}(0)$).

Strictly preperiodic case

Misiurewicz
polynomials and irreducibility

Vefa Goksel

Post-critically
polynomials
The main
question
A summary of known results

A new result

f_{c} has orbit type (m, n) when $f_{c}^{m}(0)$ is the first periodic element, and n is the exact period (so $f_{c}^{m}(0)=f_{c}^{m+n}(0)$).

Definition: The Misiurewicz polynomial $G_{m, n}$ is the factor of $f_{c}^{m+n}(0)-f_{c}^{m}(0)$ whose roots are the c_{0} values for which 0 is strictly preperiodic under $f_{c_{0}}$ with orbit type (m, n).

Some Misiurewicz polynomials

Misiurewicz
polynomials
and
irreducibility
Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

$$
\boldsymbol{G}_{2, \mathbf{2}}=c^{2}+1 .
$$

$$
\boldsymbol{G}_{2,3}=c^{6}+2 c^{5}+2 c^{4}+2 c^{3}+c^{2}+1
$$

$$
\boldsymbol{G}_{2,4}=c^{12}+6 c^{11}+15 c^{10}+22 c^{9}+23 c^{8}+18 c^{7}+11 c^{6}+8 c^{5}+6 c^{4}
$$

$$
+2 c^{3}+1
$$

$\boldsymbol{G}_{2, \mathbf{5}}=c^{30}+14 c^{29}+92 c^{28}+384 c^{27}+1164 c^{26}+2768 c^{25}+$ $5412 c^{24}+8964 c^{23}+12854 c^{22}+16236 c^{21}+18316 c^{20}+$ $18676 c^{19}+17394 c^{18}+14912 c^{17}+11834 c^{16}+8730 c^{15}+$ $6001 c^{14}+3862 c^{13}+2344 c^{12}+1348 c^{11}+738 c^{10}+384 c^{9}+$ $190 c^{8}+90 c^{7}+41 c^{6}+18 c^{5}+6 c^{4}+2 c^{3}+c^{2}+1$.

Presentation Outline

Misiurewicz
polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results A new result

1 Post-critically finite polynomials

2 The main question

3 A summary of known results

4 A new result

The main question

Misiurewicz
polynomials and irreducibility

Vefa Goksel

Post-critically finite
polynomials
The main question
A summary of
known results
A new result

Question: Is it true that the polynomial $G_{m, n}$ is always irreducible over \mathbb{Q} ?

Presentation Outline

Misiurewicz
polynomials and irreducibility

Vefa Goksel
1 Post-critically finite polynomials
Post-critically finite
polynomials
The main
question
A summary of known results

A new result
3 A summary of known results

4 A new result

A summary of known results

Misiurewicz
polynomials and irreducibility

Vefa Goksel

Post-critically
polynomials
The main
question
A summary of known results

Theorem (G; 2018)

For any $m \neq 0, G_{m, 1}$ and $G_{m, 2}$ are irreducible over \mathbb{Q}.

A summary of known results

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically
polynomials
The main
question
A summary of known results

A new result

Theorem (G ; 2018)

For any $m \neq 0, G_{m, 1}$ and $G_{m, 2}$ are irreducible over \mathbb{Q}.

Theorem (Buff, Epstein, Koch; 2018)

For any $m \neq 0, G_{m, 3}$ is irreducible over \mathbb{Q}.

Presentation Outline

Misiurewicz
polynomials and irreducibility

Vefa Goksel
1 Post-critically finite polynomials
Post-critically finite polynomials

The main
question
A summary of known results

A new result
2. The main question

3 A summary of known results

4 A new result

A new result

Misiurewicz
polynomials and irreducibility

Vefa Goksel

Post-critically finite
polynomials
The main
question
A summary of known results

Theorem (G; 2019)

For any $m \neq 0$, the number of irreducible factors of $G_{m, n}$ over \mathbb{Q} is bounded from above by the number of irreducible factors of the reduced polynomial $\bar{G}_{n} \in \mathbb{F}_{2}[c]$. In particular, if the reduced polynomial $\bar{G}_{n} \in \mathbb{F}_{2}[c]$ is irreducible, then $G_{m, n}$ is irreducible over \mathbb{Q}.

A new result

Misiurewicz
polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

Theorem (G; 2019)

For any $m \neq 0$, the number of irreducible factors of $G_{m, n}$ over \mathbb{Q} is bounded from above by the number of irreducible factors of the reduced polynomial $\bar{G}_{n} \in \mathbb{F}_{2}[c]$. In particular, if the reduced polynomial $\bar{G}_{n} \in \mathbb{F}_{2}[c]$ is irreducible, then $G_{m, n}$ is irreducible over \mathbb{Q}.

- It recovers the previously known results ($n=1,2,3$).

A new result

Theorem (G; 2019)

For any $m \neq 0$, the number of irreducible factors of $G_{m, n}$ over \mathbb{Q} is bounded from above by the number of irreducible factors of the reduced polynomial $\bar{G}_{n} \in \mathbb{F}_{2}[c]$. In particular, if the reduced polynomial $\bar{G}_{n} \in \mathbb{F}_{2}[c]$ is irreducible, then $G_{m, n}$ is irreducible over \mathbb{Q}.

■ It recovers the previously known results ($n=1,2,3$).
■ It gives an upper bound on the number of irreducible factors of any Misiurewicz polynomial, which depends only on the period.

A new result

Theorem (G; 2019)

For any $m \neq 0$, the number of irreducible factors of $G_{m, n}$ over \mathbb{Q} is bounded from above by the number of irreducible factors of the reduced polynomial $\bar{G}_{n} \in \mathbb{F}_{2}[c]$. In particular, if the reduced polynomial $\bar{G}_{n} \in \mathbb{F}_{2}[c]$ is irreducible, then $G_{m, n}$ is irreducible over \mathbb{Q}.

- It recovers the previously known results ($n=1,2,3$).

■ It gives an upper bound on the number of irreducible factors of any Misiurewicz polynomial, which depends only on the period.

- It simplifies the general irreducibility question by reducing it to eliminating some particular possibilities.

One particular example

Misiurewicz
polynomials and
irreducibility
Vefa Goksel

Post-critically
finite
polynomials
The main
question
A summary of
known results
A new result

Take $n=4$. It is not known whether $G_{m, 4}$ is irreducible over \mathbb{Q} for all $m \neq 0$ or not.

One particular example

Misiurewicz
polynomials and
irreducibility
Vefa Goksel

Post-critically
finite
polynomials
The main
question
A summary of
known results
A new result

Take $n=4$. It is not known whether $G_{m, 4}$ is irreducible over \mathbb{Q} for all $m \neq 0$ or not. By the theorem, it could have at most 2 irreducible factors over \mathbb{Q}.

One particular example

Misiurewicz
polynomials and
irreducibility
Vefa Goksel

Post-critically finite
polynomials
The main
question
A summary of
known results
A new result

Take $n=4$. It is not known whether $G_{m, 4}$ is irreducible over \mathbb{Q} for all $m \neq 0$ or not. By the theorem, it could have at most 2 irreducible factors over \mathbb{Q}. Suppose it is reducible for some $m \neq 0$.

One particular example

Misiurewicz
polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

Take $n=4$. It is not known whether $G_{m, 4}$ is irreducible over \mathbb{Q} for all $m \neq 0$ or not. By the theorem, it could have at most 2 irreducible factors over \mathbb{Q}. Suppose it is reducible for some $m \neq 0$. It follows from the proof of the theorem that we must then have

$$
G_{m, 4}=\left[\left(c^{2}+c+1\right)^{c_{m}}+2 f(c)\right]\left[\left(c^{4}+c+1\right)^{c_{m}}+2 g(c)\right],
$$

where $c_{m}=2^{m-1}$ if $m \not \equiv 1(\bmod 4)$, and $c_{m}=2^{m-1}-1$ otherwise.

Some notation

Misiurewicz
polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

Let $m \neq 0$, and c_{0} a root of $G_{m, n}$. The post-critical orbit of $f_{c_{0}}$ becomes

$$
\left\{a_{1}, a_{2}, \ldots, a_{m+n-1}\right\}
$$

where $a_{i}=f_{c_{0}}^{i}(0)$. Set $K=\mathbb{Q}\left(c_{0}\right)$, and let \mathcal{O}_{K} be its ring of integers.

For $a \in \mathcal{O}_{K}$, we will denote by (a) the ideal of \mathcal{O}_{K} generated by a.

A phenomenon in the critical orbit

Misiurewicz
polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results A new result

Theorem (G; 2018)
Let $f_{c_{0}}(x)=x^{2}+c_{0} \in \overline{\mathbb{Q}}[x]$ be a PCF polynomial having orbit type (m, n) with $m \neq 0$. Set $K=\mathbb{Q}\left(c_{0}\right)$, and let $O_{f_{c_{0}}}=\left\{a_{1}, a_{2}, \ldots, a_{m+n-1}\right\} \subset \mathcal{O}_{K}$ be the critical orbit of $f_{c_{0}}$. Then the following holds:
If $n+i$, then a_{i} is a unit. If $n \mid i$, then one has $\left(a_{i}\right)^{M_{m, n}}=(2)$, where

$$
M_{m, n}= \begin{cases}2^{m-1} & \text { if } n+m-1 \\ 2^{m-1}-1 & \text { if } n \mid m-1\end{cases}
$$

Ideas from the proof

Misiurewicz
polynomials and
irreducibility
Vefa Goksel

Post-critically finite
polynomials
The main
question
A summary of
known results
A new result

Let c_{0} be a root of $G_{m, n}$, and set $K=\mathbb{Q}\left(c_{0}\right)$.
Strategy: Ideally; find $[K: \mathbb{Q}]$ by studying the ramification of (2) in K, and then compare it with $\operatorname{deg}\left(G_{m, n}\right)$.

Ideas from the proof

Misiurewicz
polynomials and
irreducibility
Vefa Goksel

Post-critically
finite
polynomials
The main question

A summary of known results

A new result

Let c_{0} be a root of $G_{m, n}$, and set $K=\mathbb{Q}\left(c_{0}\right)$.
Strategy: Ideally; find $[K: \mathbb{Q}]$ by studying the ramification of (2) in K, and then compare it with $\operatorname{deg}\left(G_{m, n}\right)$.

■ The theorem in the previous slide directly implies the irreducibility of $G_{m, n}$ when $n=1,2$.

Ideas from the proof

Misiurewicz
polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

Let c_{0} be a root of $G_{m, n}$, and set $K=\mathbb{Q}\left(c_{0}\right)$.
Strategy: Ideally; find $[K: \mathbb{Q}]$ by studying the ramification of (2) in K, and then compare it with $\operatorname{deg}\left(G_{m, n}\right)$.

■ The theorem in the previous slide directly implies the irreducibility of $G_{m, n}$ when $n=1,2$.

- For $n>2$, one needs a more refined ramification information about the ideal (2). For this, I found a factorization of the ideal $\left(a_{n}\right)$ in \mathcal{O}_{K}.

Misiurewicz
polynomials and irreducibility

Vefa Goksel

Post-critically finite
polynomials
The main
question
A summary of known results

A new result

THANK YOU!!

Extra - ideas from the proof

Misiurewicz
polynomials and irreducibility

Vefa Goksel

Let $\overline{G_{n}}=f_{1} \cdots f_{k} \in \mathbb{F}_{2}[c]$, and let $\tilde{f}_{1}, \ldots, \tilde{f}_{k} \in \mathbb{Z}[c]$ be any lifts of f_{1}, \ldots, f_{k}, respectively.

Extra - ideas from the proof

Misiurewicz polynomials and irreducibility Vefa Goksel

Post-critically finite polynomials

The main
question
A summary of known results

A new result

Let $\overline{G_{n}}=f_{1} \cdots f_{k} \in \mathbb{F}_{2}[c]$, and let $\tilde{f}_{1}, \ldots, \tilde{f}_{k} \in \mathbb{Z}[c]$ be any lifts of f_{1}, \ldots, f_{k}, respectively.

Proposition (G; 2019)

Let $f_{c_{0}}(x)=x^{2}+c_{0} \in \overline{\mathbb{Q}}[x]$ be a PCF polynomial having orbit type (m, n) with $m \neq 0$. Set $K=\mathbb{Q}\left(c_{0}\right)$, and let $O_{f_{c_{0}}}=\left\{a_{1}, a_{2}, \ldots, a_{m+n-1}\right\} \subset \mathcal{O}_{K}$ be the critical orbit of $f_{c_{0}}$. Then the following holds:

$$
\left(a_{n}\right)=\left(2, \tilde{f}_{1}\left(c_{0}\right)\right) \cdots\left(2, \tilde{f}_{k}\left(c_{0}\right)\right)
$$

