Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary or known results

A new result

Misiurewicz polynomials and irreducibility

Vefa Goksel

University of Wisconsin-Madison

January 17, 2020

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Presentation Outline

Misiurewicz polynomials and irreducibility

Vefa Gokse

Post-critically finite polynomials

The main question

A summary of known results

A new result

1 Post-critically finite polynomials

The main question

A summary of known results

4 A new result

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Post-critically finite polynomials

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

Let $f(x) \in \mathbb{C}[x]$ be a polynomial of degree $d \ge 2$. We denote by $f^n(x)$ the *n*th iterate of f(x).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Post-critically finite polynomials

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

Let $f(x) \in \mathbb{C}[x]$ be a polynomial of degree $d \ge 2$. We denote by $f^n(x)$ the *n*th iterate of f(x).

If c_1, \ldots, c_{d-1} are the critical points of f, then we call the set $O_f := \bigcup_{i=1}^{d-1} \{f(c_i), f^2(c_i), \ldots\}$ the post-critical orbit of f.

Post-critically finite polynomials

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

Let $f(x) \in \mathbb{C}[x]$ be a polynomial of degree $d \ge 2$. We denote by $f^n(x)$ the *n*th iterate of f(x).

If c_1, \ldots, c_{d-1} are the critical points of f, then we call the set $O_f := \bigcup_{i=1}^{d-1} \{f(c_i), f^2(c_i), \ldots\}$ the post-critical orbit of f.

When the set O_f is finite, we say f(x) is post-critically finite (PCF). Post-critically finite polynomials are rather rare, so they are somewhat exceptional.

An example

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

Consider $f(x) = x^2 + i \in \mathbb{C}[x]$. It has the unique critical point 0. We have the following orbit behavior:

$$i \longrightarrow i - 1 \xrightarrow{} -i$$

So, O_f becomes

$$O_f=\{i,i-1,-i\},$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

and f is PCF.

A special family

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

We focus on a particular family, namely the PCF polynomials of the form $f_c(x) = x^2 + c \in \mathbb{C}[x]$. The post-critical orbit becomes

$$O_{f_c} = \{c, c^2 + c, (c^2 + c)^2 + c, \dots\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A special family

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

We focus on a particular family, namely the PCF polynomials of the form $f_c(x) = x^2 + c \in \mathbb{C}[x]$. The post-critical orbit becomes

$$O_{f_c} = \{c, c^2 + c, (c^2 + c)^2 + c, \dots\}.$$

In particular, any c_0 value for which f_{c_0} is PCF is an algebraic integer.

Periodic case

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary o known results

ſ

A new result

Example: Let's find c values such that 0 is periodic under f_c with exact period 3.

$$0 \rightarrow c \rightarrow c^2 + c$$

$$f_c^3(0) = (c^2 + c)^2 + c = c(c^3 + 2c^2 + c + 1) = 0$$

 \implies For any root c_0 of $c^3 + 2c^2 + c + 1$, f_{c_0} will have 0 as a periodic point of exact period 3.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

Definition: The **Gleason polynomial** G_n is the factor of $f_c^n(0)$ whose roots are the c_0 values for which 0 is periodic under f_{c_0} with exact period n.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

Definition: The **Gleason polynomial** G_n is the factor of $f_c^n(0)$ whose roots are the c_0 values for which 0 is periodic under f_{c_0} with exact period n.

 $G_1 = c$.

$$G_2 = c + 1$$

 $G_3 = c^3 + 2c^2 + c + 1.$

 $\boldsymbol{G_4} = c^6 + 3c^5 + 3c^4 + 3c^3 + 2c^2 + 1.$

 $\boldsymbol{G_5} = c^{15} + 8c^{14} + 28c^{13} + 60c^{12} + 94c^{11} + 116c^{10} + 114c^9 + 94c^8 + 69c^7 + 44c^6 + 26c^5 + 14c^4 + 5c^3 + 2c^2 + c + 1.$

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

Conjecture: For any $n \ge 1$, G_n is irreducible over \mathbb{Q} .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

Conjecture: For any $n \ge 1$, G_n is irreducible over \mathbb{Q} .

If true, this would be a dynamical analog of the well-known fact that cylotomic polynomials are irreducible over \mathbb{Q} . **But**, it looks difficult.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Strictly preperiodic case

Misiurewicz polynomials and irreducibility

Vefa Gokse

Post-critically finite polynomials

The main question

A summary of known results

A new result

 f_c has orbit type (m, n) when $f_c^m(0)$ is the first periodic element, and n is the exact period (so $f_c^m(0) = f_c^{m+n}(0)$).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Strictly preperiodic case

Misiurewicz polynomials and irreducibility

Vefa Gokse

Post-critically finite polynomials

The main question

A summary of known results

A new result

 f_c has orbit type (m, n) when $f_c^m(0)$ is the first periodic element, and n is the exact period (so $f_c^m(0) = f_c^{m+n}(0)$).

Definition: The **Misiurewicz polynomial** $G_{m,n}$ is the factor of $f_c^{m+n}(0) - f_c^m(0)$ whose roots are the c_0 values for which 0 is strictly preperiodic under f_{c_0} with orbit type (m, n).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Some Misiurewicz polynomials

Misiurewicz polynomials and irreducibility

Post-critically finite polynomials

$$G_{2,2} = c^2 + 1.$$

$$\mathbf{G}_{2,3} = c^6 + 2c^5 + 2c^4 + 2c^3 + c^2 + 1.$$

 $\mathbf{G}_{24} = c^{12} + 6c^{11} + 15c^{10} + 22c^9 + 23c^8 + 18c^7 + 11c^6 + 8c^5 + 6c^4$ $+2c^{3}+1$

 $\boldsymbol{G_{2.5}} = c^{30} + 14c^{29} + 92c^{28} + 384c^{27} + 1164c^{26} + 2768c^{25} +$ $5412c^{24} + 8964c^{23} + 12854c^{22} + 16236c^{21} + 18316c^{20} +$ $18676c^{19} + 17394c^{18} + 14912c^{17} + 11834c^{16} + 8730c^{15} +$ $6001c^{14} + 3862c^{13} + 2344c^{12} + 1348c^{11} + 738c^{10} + 384c^{9} + 384c^{9}$ $190c^{8} + 90c^{7} + 41c^{6} + 18c^{5} + 6c^{4} + 2c^{3} + c^{2} + 1$

Presentation Outline

Misiurewicz polynomials and irreducibility

Vefa Gokse

Post-critically finite polynomials

The main question

A summary of known results

A new result

Post-critically finite polynomials

2 The main question

A summary of known results

4 A new result

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

The main question

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

Question: Is it true that the polynomial $G_{m,n}$ is always irreducible over \mathbb{Q} ?

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Presentation Outline

Misiurewicz polynomials and irreducibility

Vefa Gokse

Post-critically finite polynomials

The main question

A summary of known results

A new result

Post-critically finite polynomials

The main question

3 A summary of known results

4 A new result

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

A summary of known results

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

Theorem (G; 2018)

For any $m \neq 0$, $G_{m,1}$ and $G_{m,2}$ are irreducible over \mathbb{Q} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A summary of known results

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

Theorem (G; 2018)

For any $m \neq 0$, $G_{m,1}$ and $G_{m,2}$ are irreducible over \mathbb{Q} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Buff, Epstein, Koch; 2018)

For any $m \neq 0$, $G_{m,3}$ is irreducible over \mathbb{Q} .

Presentation Outline

Misiurewicz polynomials and irreducibility

Vefa Gokse

Post-critically finite polynomials

The main question

A summary of known results

A new result

Post-critically finite polynomials

2 The main question

A summary of known results

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

Theorem (G; 2019)

For any $m \neq 0$, the number of irreducible factors of $G_{m,n}$ over \mathbb{Q} is bounded from above by the number of irreducible factors of the reduced polynomial $\overline{G_n} \in \mathbb{F}_2[c]$. In particular, if the reduced polynomial $\overline{G_n} \in \mathbb{F}_2[c]$ is irreducible, then $G_{m,n}$ is irreducible over \mathbb{Q} .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

Theorem (G; 2019)

For any $m \neq 0$, the number of irreducible factors of $G_{m,n}$ over \mathbb{Q} is bounded from above by the number of irreducible factors of the reduced polynomial $\overline{G_n} \in \mathbb{F}_2[c]$. In particular, if the reduced polynomial $\overline{G_n} \in \mathbb{F}_2[c]$ is irreducible, then $G_{m,n}$ is irreducible over \mathbb{Q} .

It recovers the previously known results (n = 1, 2, 3).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

Theorem (G; 2019)

For any $m \neq 0$, the number of irreducible factors of $G_{m,n}$ over \mathbb{Q} is bounded from above by the number of irreducible factors of the reduced polynomial $\overline{G_n} \in \mathbb{F}_2[c]$. In particular, if the reduced polynomial $\overline{G_n} \in \mathbb{F}_2[c]$ is irreducible, then $G_{m,n}$ is irreducible over \mathbb{Q} .

- It recovers the previously known results (n = 1, 2, 3).
- It gives an upper bound on the number of irreducible factors of any Misiurewicz polynomial, which depends only on the period.

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

Theorem (G; 2019)

For any $m \neq 0$, the number of irreducible factors of $G_{m,n}$ over \mathbb{Q} is bounded from above by the number of irreducible factors of the reduced polynomial $\overline{G_n} \in \mathbb{F}_2[c]$. In particular, if the reduced polynomial $\overline{G_n} \in \mathbb{F}_2[c]$ is irreducible, then $G_{m,n}$ is irreducible over \mathbb{Q} .

- It recovers the previously known results (n = 1, 2, 3).
- It gives an upper bound on the number of irreducible factors of any Misiurewicz polynomial, which depends only on the period.
- It simplifies the general irreducibility question by reducing it to eliminating some particular possibilities.

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

Take n = 4. It is not known whether $G_{m,4}$ is irreducible over \mathbb{Q} for all $m \neq 0$ or not.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Misiurewicz polynomials and irreducibility

Vefa Gokse

Post-critically finite polynomials

The main question

A summary of known results

A new result

Take n = 4. It is not known whether $G_{m,4}$ is irreducible over \mathbb{Q} for all $m \neq 0$ or not. By the theorem, it could have at most 2 irreducible factors over \mathbb{Q} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Misiurewicz polynomials and irreducibility

Vefa Gokse

Post-critically finite polynomials

The main question

A summary of known results

A new result

Take n = 4. It is not known whether $G_{m,4}$ is irreducible over \mathbb{Q} for all $m \neq 0$ or not. By the theorem, it could have at most 2 irreducible factors over \mathbb{Q} . Suppose it is reducible for some $m \neq 0$.

Misiurewicz polynomials and irreducibility

Vefa Gokse

Post-critically finite polynomials

The main question

A summary of known results

A new result

Take n = 4. It is not known whether $G_{m,4}$ is irreducible over \mathbb{Q} for all $m \neq 0$ or not. By the theorem, it could have at most 2 irreducible factors over \mathbb{Q} . Suppose it is reducible for some $m \neq 0$. It follows from the proof of the theorem that we must then have

$$G_{m,4} = [(c^{2} + c + 1)^{c_{m}} + 2f(c)][(c^{4} + c + 1)^{c_{m}} + 2g(c)],$$

where $c_m = 2^{m-1}$ if $m \notin 1 \pmod{4}$, and $c_m = 2^{m-1} - 1$ otherwise.

Some notation

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary or known results

A new result

Let $m \neq 0$, and c_0 a root of $G_{m,n}$. The post-critical orbit of f_{c_0} becomes

$$\{a_1, a_2, \ldots, a_{m+n-1}\},\$$

where $a_i = f_{c_0}^i(0)$. Set $K = \mathbb{Q}(c_0)$, and let \mathcal{O}_K be its ring of integers.

For $a \in \mathcal{O}_K$, we will denote by (a) the ideal of \mathcal{O}_K generated by a.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A phenomenon in the critical orbit

Misiurewicz polynomials and irreducibility

Theorem (G; 2018)

Post-critically finite polynomials

The main question

A summary of known results

A new result

Let $f_{c_0}(x) = x^2 + c_0 \in \overline{\mathbb{Q}}[x]$ be a PCF polynomial having orbit type (m, n) with $m \neq 0$. Set $K = \mathbb{Q}(c_0)$, and let $O_{f_{c_0}} = \{a_1, a_2, \dots, a_{m+n-1}\} \subset \mathcal{O}_K$ be the critical orbit of f_{c_0} . Then the following holds: If $n \neq i$, then a_i is a unit.

If $n \mid i$, then one has $(a_i)^{M_{m,n}} = (2)$, where

$$M_{m,n} = \begin{cases} 2^{m-1} & \text{if } n + m-1 \\ 2^{m-1} - 1 & \text{if } n \mid m-1. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Ideas from the proof

Misiurewicz polynomials and irreducibility

Vefa Gokse

Post-critically finite polynomials

The main question

A summary of known results

A new result

Let c_0 be a root of $G_{m,n}$, and set $K = \mathbb{Q}(c_0)$.

Strategy: Ideally; find $[K : \mathbb{Q}]$ by studying the ramification of (2) in K, and then compare it with deg $(G_{m,n})$.

Ideas from the proof

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary or known results

A new result

Let c_0 be a root of $G_{m,n}$, and set $K = \mathbb{Q}(c_0)$.

Strategy: Ideally; find $[K : \mathbb{Q}]$ by studying the ramification of (2) in K, and then compare it with deg $(G_{m,n})$.

• The theorem in the previous slide directly implies the irreducibility of $G_{m,n}$ when n = 1, 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Ideas from the proof

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

Let c_0 be a root of $G_{m,n}$, and set $K = \mathbb{Q}(c_0)$.

Strategy: Ideally; find $[K : \mathbb{Q}]$ by studying the ramification of (2) in K, and then compare it with deg $(G_{m,n})$.

- The theorem in the previous slide directly implies the irreducibility of $G_{m,n}$ when n = 1, 2.
- For n > 2, one needs a more refined ramification information about the ideal (2). For this, I found a factorization of the ideal (a_n) in \mathcal{O}_K .

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary o known results

A new result

THANK YOU!!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Extra - ideas from the proof

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary or known results

A new result

Let $\overline{G_n} = f_1 \cdots f_k \in \mathbb{F}_2[c]$, and let $\tilde{f_1}, \ldots, \tilde{f_k} \in \mathbb{Z}[c]$ be any lifts of f_1, \ldots, f_k , respectively.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Extra - ideas from the proof

Misiurewicz polynomials and irreducibility

Vefa Goksel

Post-critically finite polynomials

The main question

A summary of known results

A new result

Let $\overline{G_n} = f_1 \cdots f_k \in \mathbb{F}_2[c]$, and let $\tilde{f_1}, \ldots, \tilde{f_k} \in \mathbb{Z}[c]$ be any lifts of f_1, \ldots, f_k , respectively.

Proposition (G; 2019)

Let $f_{c_0}(x) = x^2 + c_0 \in \overline{\mathbb{Q}}[x]$ be a PCF polynomial having orbit type (m, n) with $m \neq 0$. Set $K = \mathbb{Q}(c_0)$, and let $O_{f_{c_0}} = \{a_1, a_2, \dots, a_{m+n-1}\} \subset \mathcal{O}_K$ be the critical orbit of f_{c_0} . Then the following holds:

$$(a_n) = (2, \tilde{f}_1(c_0)) \cdots (2, \tilde{f}_k(c_0)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで