A Transcendental Dynamical Degree

Jeffrey Diller

University of Notre Dame

January 17, 2020

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Main Theorem

<ロ> (日) (日) (日) (日) (日)

æ

イロト イヨト イヨト イヨト

æ

Theorem (Bell-D-Jonsson)

There exists a rational map $f : \mathbf{P}^2 \dashrightarrow \mathbf{P}^2$ whose dynamical degree $\lambda(f)$ is a transcendental number.

Theorem (Bell-D-Jonsson)

There exists a rational map $f : \mathbf{P}^2 \dashrightarrow \mathbf{P}^2$ whose dynamical degree $\lambda(f)$ is a transcendental number.

• In homogeneous coordinates $f = [F_0 : F_1 : F_2]$ where $F_j(x_0, x_1, x_2)$ are homogeneous polynomials with (the same) degree deg(f) and no non-constant common factors.

Theorem (Bell-D-Jonsson)

There exists a rational map $f : \mathbf{P}^2 \dashrightarrow \mathbf{P}^2$ whose dynamical degree $\lambda(f)$ is a transcendental number.

- In homogeneous coordinates $f = [F_0 : F_1 : F_2]$ where $F_j(x_0, x_1, x_2)$ are homogeneous polynomials with (the same) degree deg(f) and no non-constant common factors.
- Note $\deg(f^{n+m}) \leq (\deg f^n)(\deg f^m)$ for any $n, m \in \mathbb{N}$.

Theorem (Bell-D-Jonsson)

There exists a rational map $f : \mathbf{P}^2 \dashrightarrow \mathbf{P}^2$ whose dynamical degree $\lambda(f)$ is a transcendental number.

- In homogeneous coordinates $f = [F_0 : F_1 : F_2]$ where $F_j(x_0, x_1, x_2)$ are homogeneous polynomials with (the same) degree deg(f) and no non-constant common factors.
- Note $\deg(f^{n+m}) \leq (\deg f^n)(\deg f^m)$ for any $n, m \in \mathbf{N}$.
- Hence (Russakovski-Shiffman) can define the *dynamical degree*

$$\lambda(f) := \lim_{n \to \infty} (\deg f^n)^{1/n}.$$

伺 と く ヨ と く ヨ と

J. Diller A Transcendental Dynamical Degree

æ

• If $f : \mathbf{P}^2 \to \mathbf{P}^2$ is a morphism, then $\lambda(f) = \deg(f) \in \mathbf{N}$.

- If $f: \mathbf{P}^2 \to \mathbf{P}^2$ is a morphism, then $\lambda(f) = \deg(f) \in \mathbf{N}$.
- If $f : \mathbf{P}^2 \to \mathbf{P}^2$ is rational, then $\lambda(T \circ f) = \deg(f) \in \mathbf{N}$ for almost any linear $T : \mathbf{P}^2 \to \mathbf{P}^2$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Known cases

- If $f : \mathbf{P}^2 \to \mathbf{P}^2$ is a morphism, then $\lambda(f) = \deg(f) \in \mathbf{N}$.
- If $f : \mathbf{P}^2 \to \mathbf{P}^2$ is rational, then $\lambda(T \circ f) = \deg(f) \in \mathbf{N}$ for almost any linear $T : \mathbf{P}^2 \to \mathbf{P}^2$.
- If $f = f_A = (x^a y^b, x^c y^d)$ is monomial, then $\lambda(f)$ is the spectral radius of $A := \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, i.e. a quadratic integer.

- If $f : \mathbf{P}^2 \to \mathbf{P}^2$ is a morphism, then $\lambda(f) = \deg(f) \in \mathbf{N}$.
- If $f : \mathbf{P}^2 \to \mathbf{P}^2$ is rational, then $\lambda(T \circ f) = \deg(f) \in \mathbf{N}$ for almost any linear $T : \mathbf{P}^2 \to \mathbf{P}^2$.
- If $f = f_A = (x^a y^b, x^c y^d)$ is monomial, then $\lambda(f)$ is the spectral radius of $A := \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, i.e. a quadratic integer.
- Favre-Jonsson: If $f : \mathbb{C}^2 \to \mathbb{C}^2$ is polynomial, then $\lambda(f)$ is a quadratic integer.

- If $f : \mathbf{P}^2 \to \mathbf{P}^2$ is a morphism, then $\lambda(f) = \deg(f) \in \mathbf{N}$.
- If $f : \mathbf{P}^2 \to \mathbf{P}^2$ is rational, then $\lambda(T \circ f) = \deg(f) \in \mathbf{N}$ for almost any linear $T : \mathbf{P}^2 \to \mathbf{P}^2$.
- If $f = f_A = (x^a y^b, x^c y^d)$ is monomial, then $\lambda(f)$ is the spectral radius of $A := \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, i.e. a quadratic integer.
- Favre-Jonsson: If $f : \mathbb{C}^2 \to \mathbb{C}^2$ is polynomial, then $\lambda(f)$ is a quadratic integer.
- D-Favre: If $f : \mathbf{P}^2 \to \mathbf{P}^2$ is birational, then $\lambda(f)$ is an algebraic integer.

If f is polynomial or birational, then the sequence $(\deg f^n)_{n \in \mathbb{N}}$ satisfies a linear recurrence relation (with integer coefficients).

If f is polynomial or birational, then the sequence $(\deg f^n)_{n \in \mathbb{N}}$ satisfies a linear recurrence relation (with integer coefficients).

This is not necessarily true for monomial maps.

Theorem (Hasselblatt-Propp, Favre)

Let $\zeta \in \mathbf{Z}[i]$ be a Gaussian integer such that $\zeta^n \notin \mathbf{R}$ for any $n \in \mathbf{N}$ and $A = \begin{bmatrix} \operatorname{Re} \zeta & -\operatorname{Im} \zeta \\ \operatorname{Im} \zeta & \operatorname{Re} \zeta \end{bmatrix}$. Then the degree sequence $(\deg f_A^n)_{n \in \mathbf{N}}$ does not satisfy a linear recursion relation.

Degrees of monomial maps

Let $\Gamma = \{-2, \pm 2i, 1 \pm 2i\}$. Then $\deg(f_A^n) = \max_{\gamma \in \Gamma} \operatorname{Re} \gamma \zeta^n.$ $\gamma = -2i$ $\gamma = 1 - 2i$ $\gamma = 2i$ $\gamma = 1 + 2i$

J. Diller A Transcendental Dynamical Degree

• • • • • • • •

э

Transcendental example

Let $\tau = f_A$ be the monomial map corresponding to the Gaussian integer ζ above and $\sigma : \mathbf{P}^2 \to \mathbf{P}^2$ be the birational involution given in affine coordinates by

$$\sigma(x,y) = \left(x\frac{x-y-1}{x+y-1}, y\frac{y-x-1}{x+y-1}\right).$$

Transcendental example

Let $\tau = f_A$ be the monomial map corresponding to the Gaussian integer ζ above and $\sigma : \mathbf{P}^2 \to \mathbf{P}^2$ be the birational involution given in affine coordinates by

$$\sigma(x,y) = \left(x\frac{x-y-1}{x+y-1}, y\frac{y-x-1}{x+y-1}\right).$$

Claim that if $f = \tau \circ \sigma$, then $\lambda(f) \notin \overline{\mathbf{Q}}$.

Transcendental example

Let $\tau = f_A$ be the monomial map corresponding to the Gaussian integer ζ above and $\sigma : \mathbf{P}^2 \to \mathbf{P}^2$ be the birational involution given in affine coordinates by

$$\sigma(x,y) = \left(x\frac{x-y-1}{x+y-1}, y\frac{y-x-1}{x+y-1}\right).$$

Claim that if $f = \tau \circ \sigma$, then $\lambda(f) \notin \overline{\mathbf{Q}}$.

First step of proof: toric geometry gives

Proposition

 $\lambda(f)\in (\lambda(au),\infty)$ is the unique positive solution of

$$\sum_{n\geq 1}\frac{\deg \tau^j}{\lambda(f)^j}=1.$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Proof of transcendence

Write $\zeta = |\zeta|e^{2\pi i\theta}$ for some $\theta \in (0,1)$, irrational by hypothesis;

< ∃ > 3

Proof of transcendence

Write $\zeta = |\zeta|e^{2\pi i \theta}$ for some $\theta \in (0,1)$, irrational by hypothesis; let

- $\gamma(j) \in \Gamma$ be the element that maximizes $\operatorname{Re} \gamma \zeta^{j}$;
- $\alpha = \zeta/\lambda(f)$,
- $F(z) = \sum_{j\geq 1} \gamma(j) z^j$.

Proof of transcendence

Write $\zeta = |\zeta|e^{2\pi i\theta}$ for some $\theta \in (0,1)$, irrational by hypothesis; let

- $\gamma(j) \in \Gamma$ be the element that maximizes $\operatorname{Re} \gamma \zeta^{j}$;
- $\alpha = \zeta/\lambda(f)$,
- $F(z) = \sum_{j\geq 1} \gamma(j) z^j$.

Then $|\alpha| < 1$ and $\operatorname{Re} F(\alpha) = 1$. Assume, in hope of a contradiction, that α (and hence λ) is algebraic.

Write $\zeta = |\zeta|e^{2\pi i\theta}$ for some $\theta \in (0,1)$, irrational by hypothesis; let

- $\gamma(j) \in \Gamma$ be the element that maximizes $\operatorname{Re} \gamma \zeta^{j}$;
- $\alpha = \zeta/\lambda(f)$,
- $F(z) = \sum_{j\geq 1} \gamma(j) z^j$.

Then $|\alpha| < 1$ and $\operatorname{Re} F(\alpha) = 1$. Assume, in hope of a contradiction, that α (and hence λ) is algebraic.

Main idea: if $n\theta$ is nearly an integer, then $\gamma(j)$ is nearly *n*-periodic in *j*. Hence F(z) is nearly, but not exactly, equal to the rational function

$$F_n(z):=\frac{1}{1-z^n}\sum_{j=1}^n\gamma(j)z^n.$$

Lemma

For all $n \in \mathbf{N}$, we have $1 = \operatorname{Re} F(\alpha) > \operatorname{Re} F_n(\alpha)$.

• • = • • = •

э

Lemma

For all $n \in \mathbf{N}$, we have $1 = \operatorname{Re} F(\alpha) > \operatorname{Re} F_n(\alpha)$.

Set

$$E_n(z) := |1-z^n|^2 \operatorname{Re} \left(F(z)-F_n(z)\right) = \operatorname{Re} \left(1-\overline{z}\right)^n \sum_{j>n} (\gamma(j)-\gamma(j-n)) z^j.$$

Then because $\operatorname{Re} F(\alpha) = 1$, we have that $E_n(\alpha)$ is a non-zero polynomial in $\alpha, \overline{\alpha}$ with degree 2n and coefficients in the (*n*-independent) finite set $\Gamma \subset \overline{\mathbf{Q}}$.

By a Diophantine approximation theorem of Evertse (descendent of the p-adic version of the Schmitt Subspace Theorem), we then get

Corollary

There exists $\delta > 0$ such that $|E_n(\alpha)| > \delta^{2n}$ for any $n \in \mathbf{N}$.

By a Diophantine approximation theorem of Evertse (descendent of the p-adic version of the Schmitt Subspace Theorem), we then get

Corollary

There exists $\delta > 0$ such that $|E_n(\alpha)| > \delta^{2n}$ for any $n \in \mathbf{N}$.

From here we seek to establish a contradictory bound in the other direction.

By a Diophantine approximation theorem of Evertse (descendent of the p-adic version of the Schmitt Subspace Theorem), we then get

Corollary

There exists $\delta > 0$ such that $|E_n(\alpha)| > \delta^{2n}$ for any $n \in \mathbf{N}$.

From here we seek to establish a contradictory bound in the other direction.

Definition

An index j > n is *n*-irregular if $\gamma(j) \neq \gamma(j - n)$.

 θ is well-approximable if it admits successive continued fraction approximations m/n, m'/n' with n'/n arbitrarily large.

 θ is well-approximable if it admits successive continued fraction approximations m/n, m'/n' with n'/n arbitrarily large.

Note: most irrational numbers are well-approximable, but we don't know about θ in particular.

 θ is well-approximable if it admits successive continued fraction approximations m/n, m'/n' with n'/n arbitrarily large.

Note: most irrational numbers are well-approximable, but we don't know about θ in particular.

Lemma

If θ is well-approximable, then for any C > 1 there exist $n \in \mathbb{N}$ such that there is no n-irregular index $j \in (n, Cn]$.

 θ is well-approximable if it admits successive continued fraction approximations m/n, m'/n' with n'/n arbitrarily large.

Note: most irrational numbers are well-approximable, but we don't know about θ in particular.

Lemma

If θ is well-approximable, then for any C > 1 there exist $n \in \mathbb{N}$ such that there is no n-irregular index $j \in (n, Cn]$.

For such *n*, we have $|E_n(\alpha)| \le M |\alpha|^{Cn}$ for some *M* independent of *n*, contrary (for large *C* and *n*) to our previous bound.

If θ is badly approximable and m/n is a continued fraction approximation of θ , then we can still control the number and spacing of *n*-irregular indices $j \in (n, Cn]$. If θ is badly approximable and m/n is a continued fraction approximation of θ , then we can still control the number and spacing of *n*-irregular indices $j \in (n, Cn]$.

Hence a (different) theorem of Evertse, Schlickewei and Schmidt guarantees that no subsum vanishes in

$$E_n(\alpha) + \operatorname{Re}(1-\bar{\alpha}^n) \sum_{j \in (n,Cn]} (\gamma(j) - \gamma(j-n)) \alpha^n.$$

If θ is badly approximable and m/n is a continued fraction approximation of θ , then we can still control the number and spacing of *n*-irregular indices $j \in (n, Cn]$.

Hence a (different) theorem of Evertse, Schlickewei and Schmidt guarantees that no subsum vanishes in

$$E_n(\alpha) + \operatorname{Re}(1-\bar{\alpha}^n) \sum_{j \in (n,Cn]} (\gamma(j) - \gamma(j-n)) \alpha^n.$$

This allows us to again apply Evertse's Theorem. We get (almost as before) $m, \delta > 0$ such that the magnitude of the above expression is bounded below by $m\delta^{2n}$.

If θ is badly approximable and m/n is a continued fraction approximation of θ , then we can still control the number and spacing of *n*-irregular indices $j \in (n, Cn]$.

Hence a (different) theorem of Evertse, Schlickewei and Schmidt guarantees that no subsum vanishes in

$$E_n(\alpha) + \operatorname{Re}(1-\bar{\alpha}^n) \sum_{j \in (n,Cn]} (\gamma(j) - \gamma(j-n)) \alpha^n.$$

This allows us to again apply Evertse's Theorem. We get (almost as before) $m, \delta > 0$ such that the magnitude of the above expression is bounded below by $m\delta^{2n}$.

Crucially, δ does not depend on C.

We have an upper bound $M|\alpha|^{Cn}$ as in the well-approximable case. Upper and lower bounds again conflict for large C and n.

We have an upper bound $M|\alpha|^{Cn}$ as in the well-approximable case. Upper and lower bounds again conflict for large *C* and *n*.

Thank You!