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Joint work with Jason Bell and Mattias Jonsson.

Theorem (Bell-D-Jonsson)

There exists a rational map f : P?> --» P2 whose dynamical degree
A(f) is a transcendental number.

@ In homogeneous coordinates f = [Fy : F1 : F,] where
Fi(x0,x1,x2) are homogeneous polynomials with (the same)
degree deg(f) and no non-constant common factors.

o Note deg(f™™) < (deg f")(deg f™) for any n,m € N.

@ Hence (Russakovski-Shiffman) can define the dynamical

degree
A(F) = lim (deg FryL/n,
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almost any linear T : P2 — P2.
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Known cases

o If f : P2 = P? is a morphism, then \(f) = deg(f) € N.

o If f: P2 — P? is rational, then A\(T o f) = deg(f) € N for
almost any linear T : P2 — P2.

o If f =1fy= (xayb,xcyd) is monomial, then A\(f) is the

spectral radius of A := [i Z} i.e. a quadratic integer.

e Favre-Jonsson: If f : C?> — C? is polynomial, then A(f) is a
quadratic integer.

e D-Favre: If f : P? — P? is birational, then \(f) is an
algebraic integer.
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If f is polynomial or birational, then the sequence (deg "),en
satisfies a linear recurrence relation (with integer coefficients).
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If f is polynomial or birational, then the sequence (deg "),en
satisfies a linear recurrence relation (with integer coefficients).

This is not necessarily true for monomial maps.

Theorem (Hasselblatt-Propp, Favre)
Let ( € Z][i] be a Gaussian integer such that (" ¢ R for any n € N

Re¢ —Im(
Im¢ Re(
does not satisfy a linear recursion relation.

and A = [ ] . Then the degree sequence (deg f/’\’)neN
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Degrees of monomial maps

Let I = {—2,42i,142i}. Then

deg(fy) = maxRe~(".
yel

v =—=2i
vy=1-2j

vy=142i
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Transcendental example

Let 7 = f4 be the monomial map corresponding to the Gaussian
integer ¢ above and ¢ : P2 — P? be the birational involution given
in affine coordinates by

(x,y) x—y—1 y—x-1
x,y) =[x :
VY X—I—y—l’yx—l—y—l
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Transcendental example

Let 7 = f4 be the monomial map corresponding to the Gaussian
integer ¢ above and ¢ : P2 — P? be the birational involution given
in affine coordinates by

(x,y) x—y—1 y—x-1
xX,y)=1{x .
o,y x—|—y—1’yx—|—y—1

Claim that if f = 7 o o, then \(f) ¢ Q.
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Transcendental example

Let 7 = f4 be the monomial map corresponding to the Gaussian
integer ¢ above and ¢ : P2 — P? be the birational involution given
in affine coordinates by

x—y—1 y—x-1
O-(X7.y): X 7y *

x+y—-1"x4+y—-1

Claim that if f = 7 o o, then \(f) ¢ Q.

First step of proof: toric geometry gives

Proposition

A(f) € (A(7),00) is the unique positive solution of

deg 7/
Z NGO
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Proof of transcendence

Write ¢ = |¢|e®™% for some # € (0, 1), irrational by hypothesis;
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Proof of transcendence

Write ¢ = [¢|e®™ % for some # € (0, 1), irrational by hypothesis; let
@ 7(j) € T be the element that maximizes Rey¢/;
o a=(/A(f),
° F(z) = ijl 10)7.
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Proof of transcendence

Write ¢ = [¢|e®™ % for some # € (0, 1), irrational by hypothesis; let
@ 7(j) € T be the element that maximizes Rey¢/;
o a=C/A(F),
° F(z) = ijl 10)7.
Then |a| < 1 and Re F(a) = 1. Assume, in hope of a
contradiction, that a (and hence ) is algebraic.
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Proof of transcendence

Write ¢ = [¢|e®™ % for some # € (0, 1), irrational by hypothesis; let
@ 7(j) € T be the element that maximizes Rey¢/;
o a= (/NP
o F(z) =21 ()2
Then |a| < 1 and Re F(a) = 1. Assume, in hope of a
contradiction, that a (and hence ) is algebraic.

Main idea: if nf is nearly an integer, then ~(j) is nearly n-periodic
in j. Hence F(z) is nearly, but not exactly, equal to the rational
function

Fa(z) = 1 _lzn > )z
j=1
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Proof of transcendence (cont)

For all n € N, we have 1 = Re F(a) > Re Fp(a).
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Proof of transcendence (cont)

For all n € N, we have 1 = Re F(a) > Re Fp(a).

Set
En(2) == |1-2"*Re (F(2)—Fu(2)) = Re(l—f)”Z(vU)—v(J—n))Zj-

Then because Re F(a) = 1, we have that E,(«) is a non-zero
polynomial in «, & with degree 2n and coefficients in the
(n-independent) finite set ' C Q.
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Proof of Transcendence (cont)

By a Diophantine approximation theorem of Evertse (descendent of
the p-adic version of the Schmitt Subspace Theorem), we then get

There exists 6 > 0 such that |E,(a)| > 62" for any n € N.
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Proof of Transcendence (cont)

By a Diophantine approximation theorem of Evertse (descendent of
the p-adic version of the Schmitt Subspace Theorem), we then get

There exists 6 > 0 such that |E,(a)| > 62" for any n € N.

From here we seek to establish a contradictory bound in the other
direction.
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Proof of Transcendence (cont)

By a Diophantine approximation theorem of Evertse (descendent of
the p-adic version of the Schmitt Subspace Theorem), we then get

There exists 6 > 0 such that |E,(a)| > 62" for any n € N.

From here we seek to establish a contradictory bound in the other
direction.

Definition

An index j > nis n-irregular if v(j) # v(j — n).
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The well-approximable case

Definition

0 is well-approximable if it admits successive continued fraction
approximations m/n, m'/n’ with n’/n arbitrarily large.
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The well-approximable case

Definition

0 is well-approximable if it admits successive continued fraction
approximations m/n, m'/n’ with n’/n arbitrarily large.

Note: most irrational numbers are well-approximable, but we don’t
know about 6 in particular.
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Definition

0 is well-approximable if it admits successive continued fraction
approximations m/n, m'/n’ with n’/n arbitrarily large.

Note: most irrational numbers are well-approximable, but we don’t
know about 6 in particular.

If 0 is well-approximable, then for any C > 1 there exist n € N
such that there is no n-irregular index j € (n, Cn].
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The well-approximable case

Definition

0 is well-approximable if it admits successive continued fraction
approximations m/n, m'/n’ with n’/n arbitrarily large.

Note: most irrational numbers are well-approximable, but we don’t
know about 6 in particular.

If 0 is well-approximable, then for any C > 1 there exist n € N
such that there is no n-irregular index j € (n, Cn].

For such n, we have |E,(a)| < M|a|" for some M independent of
n, contrary (for large C and n) to our previous bound.
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The badly approximable case

If 6 is badly approximable and m/n is a continued fraction
approximation of 6, then we can still control the number and
spacing of n-irregular indices j € (n, Cn].
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The badly approximable case

If 6 is badly approximable and m/n is a continued fraction
approximation of 6, then we can still control the number and
spacing of n-irregular indices j € (n, Cn].

Hence a (different) theorem of Evertse, Schlickewei and Schmidt
guarantees that no subsum vanishes in

En(a) +Re(1—a") > (v() =0 — m))a”.

J€(n,Cn]
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The badly approximable case

If 6 is badly approximable and m/n is a continued fraction
approximation of 6, then we can still control the number and
spacing of n-irregular indices j € (n, Cn].

Hence a (different) theorem of Evertse, Schlickewei and Schmidt
guarantees that no subsum vanishes in

En(a) +Re(1—a") > (v() =0 — m))a”.

J€(n,Cn]

This allows us to again apply Evertse's Theorem. We get (almost
as before) m,§ > 0 such that the magnitude of the above
expression is bounded below by md§?".
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The badly approximable case

If 6 is badly approximable and m/n is a continued fraction
approximation of 6, then we can still control the number and
spacing of n-irregular indices j € (n, Cn].

Hence a (different) theorem of Evertse, Schlickewei and Schmidt
guarantees that no subsum vanishes in

En(a) +Re(1—a") > (v() =0 — m))a”.

J€(n,Cn]

This allows us to again apply Evertse's Theorem. We get (almost
as before) m,§ > 0 such that the magnitude of the above
expression is bounded below by md§?".

Crucially,  does not depend on C.

J. Diller A Transcendental Dynamical Degree



Conclusion

We have an upper bound M|a|" as in the well-approximable case.

Upper and lower bounds again conflict for large C and n.
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Conclusion

We have an upper bound M|a|" as in the well-approximable case.
Upper and lower bounds again conflict for large C and n. ]

Thank You!
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