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Main Theorem

Joint work with Jason Bell and Mattias Jonsson.

Theorem (Bell-D-Jonsson)

There exists a rational map f : P2 99K P2 whose dynamical degree
λ(f ) is a transcendental number.

In homogeneous coordinates f = [F0 : F1 : F2] where
Fj(x0, x1, x2) are homogeneous polynomials with (the same)
degree deg(f ) and no non-constant common factors.

Note deg(f n+m) ≤ (deg f n)(deg f m) for any n,m ∈ N.

Hence (Russakovski-Shiffman) can define the dynamical
degree

λ(f ) := lim
n→∞

(deg f n)1/n.
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Known cases

If f : P2 → P2 is a morphism, then λ(f ) = deg(f ) ∈ N.

If f : P2 → P2 is rational, then λ(T ◦ f ) = deg(f ) ∈ N for
almost any linear T : P2 → P2.

If f = fA = (xayb, xcyd) is monomial, then λ(f ) is the

spectral radius of A :=

[
a b
c d

]
, i.e. a quadratic integer.

Favre-Jonsson: If f : C2 → C2 is polynomial, then λ(f ) is a
quadratic integer.

D-Favre: If f : P2 → P2 is birational, then λ(f ) is an
algebraic integer.
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Known cases (cont)

If f is polynomial or birational, then the sequence (deg f n)n∈N
satisfies a linear recurrence relation (with integer coefficients).

This is not necessarily true for monomial maps.

Theorem (Hasselblatt-Propp, Favre)

Let ζ ∈ Z[i ] be a Gaussian integer such that ζn /∈ R for any n ∈ N

and A =

[
Re ζ −Im ζ
Im ζ Re ζ

]
. Then the degree sequence (deg f nA )n∈N

does not satisfy a linear recursion relation.
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Degrees of monomial maps

Let Γ = {−2,±2i , 1± 2i}. Then

deg(f nA ) = max
γ∈Γ

Re γζn.

γ = 1− 2i

γ = 1 + 2i

γ = −2i

γ = 2i

γ = −2
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Transcendental example

Let τ = fA be the monomial map corresponding to the Gaussian
integer ζ above and σ : P2 → P2 be the birational involution given
in affine coordinates by

σ(x , y) =

(
x
x − y − 1

x + y − 1
, y

y − x − 1

x + y − 1

)
.

Claim that if f = τ ◦ σ, then λ(f ) /∈ Q.

First step of proof: toric geometry gives

Proposition

λ(f ) ∈ (λ(τ),∞) is the unique positive solution of

∑
n≥1

deg τ j

λ(f )j
= 1.
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Proof of transcendence

Write ζ = |ζ|e2πiθ for some θ ∈ (0, 1), irrational by hypothesis;

let

γ(j) ∈ Γ be the element that maximizes Re γζ j ;

α = ζ/λ(f ),

F (z) =
∑

j≥1 γ(j)z j .

Then |α| < 1 and ReF (α) = 1. Assume, in hope of a
contradiction, that α (and hence λ) is algebraic.

Main idea: if nθ is nearly an integer, then γ(j) is nearly n-periodic
in j . Hence F (z) is nearly, but not exactly, equal to the rational
function

Fn(z) :=
1

1− zn

n∑
j=1

γ(j)zn.
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Proof of transcendence (cont)

Lemma

For all n ∈ N, we have 1 = ReF (α) > ReFn(α).

Set

En(z) := |1−zn|2Re (F (z)−Fn(z)) = Re (1−z̄)n
∑
j>n

(γ(j)−γ(j−n))z j .

Then because ReF (α) = 1, we have that En(α) is a non-zero
polynomial in α, ᾱ with degree 2n and coefficients in the
(n-independent) finite set Γ ⊂ Q̄.

J. Diller A Transcendental Dynamical Degree



Proof of transcendence (cont)

Lemma

For all n ∈ N, we have 1 = ReF (α) > ReFn(α).

Set

En(z) := |1−zn|2Re (F (z)−Fn(z)) = Re (1−z̄)n
∑
j>n

(γ(j)−γ(j−n))z j .

Then because ReF (α) = 1, we have that En(α) is a non-zero
polynomial in α, ᾱ with degree 2n and coefficients in the
(n-independent) finite set Γ ⊂ Q̄.

J. Diller A Transcendental Dynamical Degree



Proof of Transcendence (cont)

By a Diophantine approximation theorem of Evertse (descendent of
the p-adic version of the Schmitt Subspace Theorem), we then get

Corollary

There exists δ > 0 such that |En(α)| > δ2n for any n ∈ N.

From here we seek to establish a contradictory bound in the other
direction.

Definition

An index j > n is n-irregular if γ(j) 6= γ(j − n).
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The well-approximable case

Definition

θ is well-approximable if it admits successive continued fraction
approximations m/n, m′/n′ with n′/n arbitrarily large.

Note: most irrational numbers are well-approximable, but we don’t
know about θ in particular.

Lemma

If θ is well-approximable, then for any C > 1 there exist n ∈ N
such that there is no n-irregular index j ∈ (n,Cn].

For such n, we have |En(α)| ≤ M|α|Cn for some M independent of
n, contrary (for large C and n) to our previous bound.
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The badly approximable case

If θ is badly approximable and m/n is a continued fraction
approximation of θ, then we can still control the number and
spacing of n-irregular indices j ∈ (n,Cn].

Hence a (different) theorem of Evertse, Schlickewei and Schmidt
guarantees that no subsum vanishes in

En(α) + Re (1− ᾱn)
∑

j∈(n,Cn]

(γ(j)− γ(j − n))αn.

This allows us to again apply Evertse’s Theorem. We get (almost
as before) m, δ > 0 such that the magnitude of the above
expression is bounded below by mδ2n.

Crucially, δ does not depend on C .
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Conclusion

We have an upper bound M|α|Cn as in the well-approximable case.
Upper and lower bounds again conflict for large C and n.

�

Thank You!
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