A Transcendental Dynamical Degree

Jeffrey Diller

University of Notre Dame
January 17, 2020

Main Theorem

Main Theorem

Joint work with Jason Bell and Mattias Jonsson.

Main Theorem

Joint work with Jason Bell and Mattias Jonsson.
Theorem (Bell-D-Jonsson)
There exists a rational map $f: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$ whose dynamical degree $\lambda(f)$ is a transcendental number.

Main Theorem

Joint work with Jason Bell and Mattias Jonsson.
Theorem (Bell-D-Jonsson)
There exists a rational map $f: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$ whose dynamical degree $\lambda(f)$ is a transcendental number.

- In homogeneous coordinates $f=\left[F_{0}: F_{1}: F_{2}\right]$ where $F_{j}\left(x_{0}, x_{1}, x_{2}\right)$ are homogeneous polynomials with (the same) degree $\operatorname{deg}(f)$ and no non-constant common factors.

Main Theorem

Joint work with Jason Bell and Mattias Jonsson.

Theorem (Bell-D-Jonsson)

There exists a rational map $f: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$ whose dynamical degree $\lambda(f)$ is a transcendental number.

- In homogeneous coordinates $f=\left[F_{0}: F_{1}: F_{2}\right]$ where $F_{j}\left(x_{0}, x_{1}, x_{2}\right)$ are homogeneous polynomials with (the same) degree $\operatorname{deg}(f)$ and no non-constant common factors.
- Note $\operatorname{deg}\left(f^{n+m}\right) \leq\left(\operatorname{deg} f^{n}\right)\left(\operatorname{deg} f^{m}\right)$ for any $n, m \in \mathbf{N}$.

Main Theorem

Joint work with Jason Bell and Mattias Jonsson.

Theorem (Bell-D-Jonsson)

There exists a rational map $f: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$ whose dynamical degree $\lambda(f)$ is a transcendental number.

- In homogeneous coordinates $f=\left[F_{0}: F_{1}: F_{2}\right]$ where $F_{j}\left(x_{0}, x_{1}, x_{2}\right)$ are homogeneous polynomials with (the same) degree $\operatorname{deg}(f)$ and no non-constant common factors.
- Note $\operatorname{deg}\left(f^{n+m}\right) \leq\left(\operatorname{deg} f^{n}\right)\left(\operatorname{deg} f^{m}\right)$ for any $n, m \in \mathbf{N}$.
- Hence (Russakovski-Shiffman) can define the dynamical degree

$$
\lambda(f):=\lim _{n \rightarrow \infty}\left(\operatorname{deg} f^{n}\right)^{1 / n}
$$

Known cases

Known cases

- If $f: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$ is a morphism, then $\lambda(f)=\operatorname{deg}(f) \in \mathbf{N}$.
- If $f: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$ is a morphism, then $\lambda(f)=\operatorname{deg}(f) \in \mathbf{N}$.
- If $f: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$ is rational, then $\lambda(T \circ f)=\operatorname{deg}(f) \in \mathbf{N}$ for almost any linear $T: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$.
- If $f: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$ is a morphism, then $\lambda(f)=\operatorname{deg}(f) \in \mathbf{N}$.
- If $f: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$ is rational, then $\lambda(T \circ f)=\operatorname{deg}(f) \in \mathbf{N}$ for almost any linear $T: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$.
- If $f=f_{A}=\left(x^{a} y^{b}, x^{c} y^{d}\right)$ is monomial, then $\lambda(f)$ is the spectral radius of $A:=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, i.e. a quadratic integer.
- If $f: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$ is a morphism, then $\lambda(f)=\operatorname{deg}(f) \in \mathbf{N}$.
- If $f: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$ is rational, then $\lambda(T \circ f)=\operatorname{deg}(f) \in \mathbf{N}$ for almost any linear $T: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$.
- If $f=f_{A}=\left(x^{a} y^{b}, x^{c} y^{d}\right)$ is monomial, then $\lambda(f)$ is the spectral radius of $A:=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, i.e. a quadratic integer.
- Favre-Jonsson: If $f: \mathbf{C}^{2} \rightarrow \mathbf{C}^{2}$ is polynomial, then $\lambda(f)$ is a quadratic integer.
- If $f: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$ is a morphism, then $\lambda(f)=\operatorname{deg}(f) \in \mathbf{N}$.
- If $f: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$ is rational, then $\lambda(T \circ f)=\operatorname{deg}(f) \in \mathbf{N}$ for almost any linear $T: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$.
- If $f=f_{A}=\left(x^{a} y^{b}, x^{c} y^{d}\right)$ is monomial, then $\lambda(f)$ is the spectral radius of $A:=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, i.e. a quadratic integer.
- Favre-Jonsson: If $f: \mathbf{C}^{2} \rightarrow \mathbf{C}^{2}$ is polynomial, then $\lambda(f)$ is a quadratic integer.
- D-Favre: If $f: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$ is birational, then $\lambda(f)$ is an algebraic integer.

Known cases (cont)

If f is polynomial or birational, then the sequence $\left(\operatorname{deg} f^{n}\right)_{n \in \mathbf{N}}$ satisfies a linear recurrence relation (with integer coefficients).

Known cases (cont)

If f is polynomial or birational, then the sequence $\left(\operatorname{deg} f^{n}\right)_{n \in \mathbf{N}}$ satisfies a linear recurrence relation (with integer coefficients).

This is not necessarily true for monomial maps.

Theorem (Hasselblatt-Propp, Favre)

Let $\zeta \in \mathbf{Z}[i]$ be a Gaussian integer such that $\zeta^{n} \notin \mathbf{R}$ for any $n \in \mathbf{N}$ and $A=\left[\begin{array}{cc}\operatorname{Re} \zeta & -\operatorname{Im} \zeta \\ \operatorname{Im} \zeta & \operatorname{Re} \zeta\end{array}\right]$. Then the degree sequence $\left(\operatorname{deg} f_{A}^{n}\right)_{n \in \mathbf{N}}$ does not satisfy a linear recursion relation.

Degrees of monomial maps

Let $\Gamma=\{-2, \pm 2 i, 1 \pm 2 i\}$. Then $\operatorname{deg}\left(f_{A}^{n}\right)=\max _{\gamma \in \Gamma} \operatorname{Re} \gamma \zeta^{n}$.

Transcendental example

Let $\tau=f_{A}$ be the monomial map corresponding to the Gaussian integer ζ above and $\sigma: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$ be the birational involution given in affine coordinates by

$$
\sigma(x, y)=\left(x \frac{x-y-1}{x+y-1}, y \frac{y-x-1}{x+y-1}\right) .
$$

Transcendental example

Let $\tau=f_{A}$ be the monomial map corresponding to the Gaussian integer ζ above and $\sigma: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$ be the birational involution given in affine coordinates by

$$
\sigma(x, y)=\left(x \frac{x-y-1}{x+y-1}, y \frac{y-x-1}{x+y-1}\right) .
$$

Claim that if $f=\tau \circ \sigma$, then $\lambda(f) \notin \overline{\mathbf{Q}}$.

Transcendental example

Let $\tau=f_{A}$ be the monomial map corresponding to the Gaussian integer ζ above and $\sigma: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$ be the birational involution given in affine coordinates by

$$
\sigma(x, y)=\left(x \frac{x-y-1}{x+y-1}, y \frac{y-x-1}{x+y-1}\right) .
$$

Claim that if $f=\tau \circ \sigma$, then $\lambda(f) \notin \overline{\mathbf{Q}}$.
First step of proof: toric geometry gives

Proposition

$\lambda(f) \in(\lambda(\tau), \infty)$ is the unique positive solution of

$$
\sum_{n \geq 1} \frac{\operatorname{deg} \tau^{j}}{\lambda(f)^{j}}=1
$$

Proof of transcendence

Write $\zeta=|\zeta| e^{2 \pi i \theta}$ for some $\theta \in(0,1)$, irrational by hypothesis;

Write $\zeta=|\zeta| e^{2 \pi i \theta}$ for some $\theta \in(0,1)$, irrational by hypothesis; let

- $\gamma(j) \in \Gamma$ be the element that maximizes $\operatorname{Re} \gamma \zeta^{j}$;
- $\alpha=\zeta / \lambda(f)$,
- $F(z)=\sum_{j \geq 1} \gamma(j) z^{j}$.

Write $\zeta=|\zeta| e^{2 \pi i \theta}$ for some $\theta \in(0,1)$, irrational by hypothesis; let

- $\gamma(j) \in \Gamma$ be the element that maximizes $\operatorname{Re} \gamma \zeta^{j}$;
- $\alpha=\zeta / \lambda(f)$,
- $F(z)=\sum_{j \geq 1} \gamma(j) z^{j}$.

Then $|\alpha|<1$ and $\operatorname{Re} F(\alpha)=1$. Assume, in hope of a contradiction, that α (and hence λ) is algebraic.

Write $\zeta=|\zeta| e^{2 \pi i \theta}$ for some $\theta \in(0,1)$, irrational by hypothesis; let

- $\gamma(j) \in \Gamma$ be the element that maximizes $\operatorname{Re} \gamma \zeta^{j}$;
- $\alpha=\zeta / \lambda(f)$,
- $F(z)=\sum_{j \geq 1} \gamma(j) z^{j}$.

Then $|\alpha|<1$ and $\operatorname{Re} F(\alpha)=1$. Assume, in hope of a contradiction, that α (and hence λ) is algebraic.

Main idea: if $n \theta$ is nearly an integer, then $\gamma(j)$ is nearly n-periodic in j. Hence $F(z)$ is nearly, but not exactly, equal to the rational function

$$
F_{n}(z):=\frac{1}{1-z^{n}} \sum_{j=1}^{n} \gamma(j) z^{n} .
$$

Proof of transcendence (cont)

Lemma
 For all $n \in \mathbf{N}$, we have $1=\operatorname{Re} F(\alpha)>\operatorname{Re} F_{n}(\alpha)$.

Proof of transcendence (cont)

Lemma

For all $n \in \mathbf{N}$, we have $1=\operatorname{Re} F(\alpha)>\operatorname{Re} F_{n}(\alpha)$.

Set

$$
E_{n}(z):=\left|1-z^{n}\right|^{2} \operatorname{Re}\left(F(z)-F_{n}(z)\right)=\operatorname{Re}(1-\bar{z})^{n} \sum_{j>n}(\gamma(j)-\gamma(j-n)) z^{j} .
$$

Then because $\operatorname{Re} F(\alpha)=1$, we have that $E_{n}(\alpha)$ is a non-zero polynomial in $\alpha, \bar{\alpha}$ with degree $2 n$ and coefficients in the (n-independent) finite set $\Gamma \subset \overline{\mathbf{Q}}$.

Proof of Transcendence (cont)

By a Diophantine approximation theorem of Evertse (descendent of the p-adic version of the Schmitt Subspace Theorem), we then get

Corollary

There exists $\delta>0$ such that $\left|E_{n}(\alpha)\right|>\delta^{2 n}$ for any $n \in \mathbf{N}$.

Proof of Transcendence (cont)

By a Diophantine approximation theorem of Evertse (descendent of the p-adic version of the Schmitt Subspace Theorem), we then get

Corollary

There exists $\delta>0$ such that $\left|E_{n}(\alpha)\right|>\delta^{2 n}$ for any $n \in \mathbf{N}$.

From here we seek to establish a contradictory bound in the other direction.

Proof of Transcendence (cont)

By a Diophantine approximation theorem of Evertse (descendent of the p-adic version of the Schmitt Subspace Theorem), we then get

Corollary

There exists $\delta>0$ such that $\left|E_{n}(\alpha)\right|>\delta^{2 n}$ for any $n \in \mathbf{N}$.

From here we seek to establish a contradictory bound in the other direction.

Definition

An index $j>n$ is n-irregular if $\gamma(j) \neq \gamma(j-n)$.

The well-approximable case

Definition

θ is well-approximable if it admits successive continued fraction approximations $m / n, m^{\prime} / n^{\prime}$ with n^{\prime} / n arbitrarily large.

The well-approximable case

Definition

θ is well-approximable if it admits successive continued fraction approximations $m / n, m^{\prime} / n^{\prime}$ with n^{\prime} / n arbitrarily large.

Note: most irrational numbers are well-approximable, but we don't know about θ in particular.

The well-approximable case

Definition

θ is well-approximable if it admits successive continued fraction approximations $m / n, m^{\prime} / n^{\prime}$ with n^{\prime} / n arbitrarily large.

Note: most irrational numbers are well-approximable, but we don't know about θ in particular.

Lemma

If θ is well-approximable, then for any $C>1$ there exist $n \in \mathbf{N}$ such that there is no n-irregular index $j \in(n, C n]$.

The well-approximable case

Definition

θ is well-approximable if it admits successive continued fraction approximations $m / n, m^{\prime} / n^{\prime}$ with n^{\prime} / n arbitrarily large.

Note: most irrational numbers are well-approximable, but we don't know about θ in particular.

Lemma

If θ is well-approximable, then for any $C>1$ there exist $n \in \mathbf{N}$ such that there is no n-irregular index $j \in(n, C n]$.

For such n, we have $\left|E_{n}(\alpha)\right| \leq M|\alpha|^{C n}$ for some M independent of n, contrary (for large C and n) to our previous bound.

If θ is badly approximable and m / n is a continued fraction approximation of θ, then we can still control the number and spacing of n-irregular indices $j \in(n, C n]$.

If θ is badly approximable and m / n is a continued fraction approximation of θ, then we can still control the number and spacing of n-irregular indices $j \in(n, C n]$.
Hence a (different) theorem of Evertse, Schlickewei and Schmidt guarantees that no subsum vanishes in

$$
E_{n}(\alpha)+\operatorname{Re}\left(1-\bar{\alpha}^{n}\right) \sum_{j \in(n, C n]}(\gamma(j)-\gamma(j-n)) \alpha^{n}
$$

The badly approximable case

If θ is badly approximable and m / n is a continued fraction approximation of θ, then we can still control the number and spacing of n-irregular indices $j \in(n, C n]$.

Hence a (different) theorem of Evertse, Schlickewei and Schmidt guarantees that no subsum vanishes in

$$
E_{n}(\alpha)+\operatorname{Re}\left(1-\bar{\alpha}^{n}\right) \sum_{j \in(n, C n]}(\gamma(j)-\gamma(j-n)) \alpha^{n}
$$

This allows us to again apply Evertse's Theorem. We get (almost as before) $m, \delta>0$ such that the magnitude of the above expression is bounded below by $m \delta^{2 n}$.

The badly approximable case

If θ is badly approximable and m / n is a continued fraction approximation of θ, then we can still control the number and spacing of n-irregular indices $j \in(n, C n]$.

Hence a (different) theorem of Evertse, Schlickewei and Schmidt guarantees that no subsum vanishes in

$$
E_{n}(\alpha)+\operatorname{Re}\left(1-\bar{\alpha}^{n}\right) \sum_{j \in(n, C n]}(\gamma(j)-\gamma(j-n)) \alpha^{n}
$$

This allows us to again apply Evertse's Theorem. We get (almost as before) $m, \delta>0$ such that the magnitude of the above expression is bounded below by $m \delta^{2 n}$.

Crucially, δ does not depend on C.

Conclusion

We have an upper bound $M|\alpha|^{C n}$ as in the well-approximable case. Upper and lower bounds again conflict for large C and n.

Conclusion

We have an upper bound $M|\alpha|^{C n}$ as in the well-approximable case. Upper and lower bounds again conflict for large C and n.

Thank You!

