Wade Hindes

Dynamical height growth: left, right, and total orbits.

Wade Hindes

(Texas State University)

Joint Mathematics Meetings 2020 Denver, CO. January 17, 2020.

・ロト ・同ト ・ヨト ・ヨト

Introduction: dynamics with multiple maps

Wade Hindes

Notation:

- $S = \{\phi_1, \dots, \phi_s\}$ is a set of dominant, rational self-maps on \mathbb{P}^N defined over $\overline{\mathbb{Q}}$.
- M_S is the monoid (semigroup) generated by S under composition.

•
$$\mathbb{P}^{N}(\overline{\mathbb{Q}})_{S} = \{P \in \mathbb{P}^{N}(\overline{\mathbb{Q}}) : f(P) \text{ is defined for all } f \in M_{S}\}.$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Introduction: dynamics with multiple maps

Wade Hindes

Notation:

- $S = \{\phi_1, \dots, \phi_s\}$ is a set of dominant, rational self-maps on \mathbb{P}^N defined over $\overline{\mathbb{Q}}$.
- M_S is the monoid (semigroup) generated by S under composition.
- $\mathbb{P}^{N}(\overline{\mathbb{Q}})_{S} = \{P \in \mathbb{P}^{N}(\overline{\mathbb{Q}}) : f(P) \text{ is defined for all } f \in M_{S}\}.$

Goals:

• Study the arithmetic properties of the dynamical system(s) generated by *S*.

・ロト ・回ト ・ヨト ・ヨト

2 Generalize known problems from when S is a singleton.

Introduction: dynamics with multiple maps

Wade Hindes

Notation:

- $S = \{\phi_1, \dots, \phi_s\}$ is a set of dominant, rational self-maps on \mathbb{P}^N defined over $\overline{\mathbb{Q}}$.
- M_S is the monoid (semigroup) generated by S under composition.
- $\mathbb{P}^{N}(\overline{\mathbb{Q}})_{S} = \{P \in \mathbb{P}^{N}(\overline{\mathbb{Q}}) : f(P) \text{ is defined for all } f \in M_{S}\}.$

Goals:

• Study the arithmetic properties of the dynamical system(s) generated by *S*.

Sac

2 Generalize known problems from when S is a singleton.

Examples: dynamical degrees, canonical heights, arboreal reps., integral points, primitive primes, DML, ...

Wade Hindes

Remark: To make these problems make sense, we need to consider various types of orbits: sequential and <u>total</u>.

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ξ

Wade Hindes

Remark: To make these problems make sense, we need to consider various types of orbits: sequential and <u>total</u>.

• The total orbit of $P \in \mathbb{P}^{N}(\overline{\mathbb{Q}})_{S}$ is the set

 $\operatorname{Orb}_{\mathcal{S}}(P) := \{f(P) : f \in M_{\mathcal{S}}\}.$

イロト イポト イヨト イヨト

3

Wade Hindes

Remark: To make these problems make sense, we need to consider various types of orbits: sequential and <u>total</u>.

• The total orbit of
$$P \in \mathbb{P}^{N}(\overline{\mathbb{Q}})_{S}$$
 is the set

$$\operatorname{Orb}_{\mathcal{S}}(P) := \{ f(P) : f \in M_{\mathcal{S}} \}.$$

• Given a sequence
$$\gamma = (heta_1, heta_2, \dots)$$
 with $heta_i \in S$, set

$$\gamma_n^- := \theta_n \circ \theta_{n-1} \circ \cdots \circ \theta_1$$

and

$$\gamma_n^+ := \theta_1 \circ \theta_2 \circ \cdots \circ \theta_n.$$

Ξ

Wade Hindes

Remark: To make these problems make sense, we need to consider various types of orbits: sequential and <u>total</u>.

• The *total orbit* of
$$P \in \mathbb{P}^{N}(\overline{\mathbb{Q}})_{S}$$
 is the set

$$\operatorname{Orb}_{\mathcal{S}}(P) := \{ f(P) : f \in M_{\mathcal{S}} \}.$$

• Given a sequence
$$\gamma = (heta_1, heta_2, \dots)$$
 with $heta_i \in S$, set

$$\gamma_n^- := \theta_n \circ \theta_{n-1} \circ \cdots \circ \theta_1$$

and

1

$$\gamma_n^+ := \theta_1 \circ \theta_2 \circ \cdots \circ \theta_n.$$

Then the left and right γ -orbits of $P \in \mathbb{P}^{N}(\overline{\mathbb{Q}})_{S}$ are

$$\operatorname{Orb}_{\gamma}^{-}(P) := \left\{ \gamma_{n}^{-}(P) \right\}_{n \ge 0} \text{ and } \operatorname{Orb}_{\gamma}^{+}(P) := \left\{ \gamma_{n}^{+}(P) \right\}_{n \ge 0}$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

臣

respectively.

Features of various types of orbits

Wade Hindes

Each type of orbit has different uses/features:

Each type of orbit has different uses/features:

Examples: (Vaguely)

• Arithmetic properties of $\operatorname{Orb}_{S}(P)$ for generic P can detect (in practice) relations between the maps in S (e.g., if they commute).

同ト・モト・モー

Each type of orbit has different uses/features:

Examples: (Vaguely)

- Arithmetic properties of Orb_S(P) for generic P can detect (in practice) relations between the maps in S (e.g., if they commute).
- For critical points P, the right orbits $\operatorname{Orb}_{\gamma}^+(P)$ control the ramification in some (generalized) dynamically generated Galois extensions.

Each type of orbit has different uses/features:

Examples: (Vaguely)

- Arithmetic properties of $\operatorname{Orb}_{S}(P)$ for generic P can detect (in practice) relations between the maps in S (e.g., if they commute).
- For critical points P, the right orbits $\operatorname{Orb}^+_{\gamma}(P)$ control the ramification in some (generalized) dynamically generated Galois extensions.
- Left orbits define a (type of) random walk in P^N. What does it mean if these random walks return to a subvariety i.o. with positive probability?

<回とくほとくほう

Each type of orbit has different uses/features:

Examples: (Vaguely)

- Arithmetic properties of $\operatorname{Orb}_{\mathcal{S}}(P)$ for generic P can detect (in practice) relations between the maps in \mathcal{S} (e.g., if they commute).
- For critical points P, the right orbits $\operatorname{Orb}^+_{\gamma}(P)$ control the ramification in some (generalized) dynamically generated Galois extensions.
- Left orbits define a (type of) random walk in P^N. What does it mean if these random walks return to a subvariety i.o. with positive probability?

Philosophy: One way to understand a subset T of \mathbb{P}^N (like $T = \operatorname{Orb}_S(P), \ldots$) is to find out many points T has.

Wade Hindes

More precisely, to understand the arithmetic of various orbits, we study the growth rates of the Weil height $h : \mathbb{P}^{N}(\overline{\mathbb{Q}}) \to \mathbb{R}$:

$$\lim_{B \to \infty} \# \{ Q \in \operatorname{Orb}_{\gamma}^{-}(P) : h(Q) \leq B \} = ?$$
$$\lim_{B \to \infty} \# \{ Q \in \operatorname{Orb}_{\gamma}^{+}(P) : h(Q) \leq B \} = ??$$
$$\lim_{B \to \infty} \# \{ Q \in \operatorname{Orb}_{S}(P) : h(Q) \leq B \} = ???$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Ξ

Wade Hindes

More precisely, to understand the arithmetic of various orbits, we study the growth rates of the Weil height $h : \mathbb{P}^{N}(\overline{\mathbb{Q}}) \to \mathbb{R}$:

$$\lim_{B \to \infty} \# \{ Q \in \operatorname{Orb}_{\gamma}^{-}(P) : h(Q) \leq B \} = ?$$
$$\lim_{B \to \infty} \# \{ Q \in \operatorname{Orb}_{\gamma}^{+}(P) : h(Q) \leq B \} = ??$$
$$\lim_{B \to \infty} \# \{ Q \in \operatorname{Orb}_{\mathcal{S}}(P) : h(Q) \leq B \} = ???$$

A key fact (as in the case of a single function) is

$$h(f(P)) \leq \deg(f)h(P) + C(f)$$

along with the corresponding lower bound for morphisms.

Wade Hindes

More precisely, to understand the arithmetic of various orbits, we study the growth rates of the Weil height $h : \mathbb{P}^{N}(\overline{\mathbb{Q}}) \to \mathbb{R}$:

$$\lim_{B \to \infty} \# \{ Q \in \operatorname{Orb}_{\gamma}^{-}(P) : h(Q) \leq B \} = ?$$
$$\lim_{B \to \infty} \# \{ Q \in \operatorname{Orb}_{\gamma}^{+}(P) : h(Q) \leq B \} = ??$$
$$\lim_{B \to \infty} \# \{ Q \in \operatorname{Orb}_{\mathcal{S}}(P) : h(Q) \leq B \} = ???$$

A key fact (as in the case of a single function) is

$$h(f(P)) \leq \deg(f)h(P) + C(f)$$

イロト イヨト イヨト

along with the corresponding lower bound for morphisms.

Heuristic: h(f(P)) grows like deg(f) for "generic" P.

Dynamical degrees for sequences

Wade Hindes

In particular, to study arithmetic properties of orbits, we can try to understand the growth rate of degrees (as we iterate).

伺 ト イ ヨ ト イ ヨ ト

Dynamical degrees for sequences

Wade Hindes

In particular, to study arithmetic properties of orbits, we can try to understand the growth rate of degrees (as we iterate).

Remarks:

- The case of sequences $\gamma = (\theta_1, \theta_2, ...)$ is more naturally analogous to the case of a single function.
- \bullet Philosophy: by sampling "enough" $\gamma\text{-orbits},$ we uncover properties of total orbits.

Dynamical degrees for sequences

Wade Hindes

In particular, to study arithmetic properties of orbits, we can try to understand the growth rate of degrees (as we iterate).

Remarks:

- The case of sequences $\gamma = (\theta_1, \theta_2, ...)$ is more naturally analogous to the case of a single function.
- \bullet Philosophy: by sampling "enough" $\gamma\text{-orbits},$ we uncover properties of total orbits.

The degrees $\deg(\gamma_n^+)$ and $\deg(\gamma_n^-)$ tend to grow exponentially. With this in mind, define

$$\lim_{n\to\infty} \deg(\gamma_n^-)^{1/n} \ \text{ and } \ \lim_{n\to\infty} \deg(\gamma_n^+)^{1/n},$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

called the left and right dynamical degrees of γ .

Wade Hindes

Warning!!! These limits may not exist in general.

・ロト ・回ト ・ヨト ・ヨト

E

Wade Hindes

Warning!!! These limits may not exist in general.

Example: Let $\phi_1, \phi_2 : \mathbb{P}^N \to \mathbb{P}^N$ be morphisms of degree $d_1 \neq d_2$, let $S = \{\phi_1, \phi_2\}$, and let

 $\gamma \leftrightarrow (1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, \dots);$

イロト イヨト イヨト イヨト 三日

Wade Hindes

Warning!!! These limits may not exist in general.

Example: Let $\phi_1, \phi_2 : \mathbb{P}^N \to \mathbb{P}^N$ be morphisms of degree $d_1 \neq d_2$, let $S = \{\phi_1, \phi_2\}$, and let

 $\gamma \leftrightarrow (1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, \dots);$

Then, the limits defining the dynamical degrees do not exist:

・ロト ・回ト ・ヨト ・ヨト

3

Wade Hindes

Warning!!! These limits may not exist in general.

Example: Let $\phi_1, \phi_2 : \mathbb{P}^N \to \mathbb{P}^N$ be morphisms of degree $d_1 \neq d_2$, let $S = \{\phi_1, \phi_2\}$, and let

$$\gamma \leftrightarrow (1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, \dots);$$

Then, the limits defining the dynamical degrees do not exist:

$$\deg(\gamma_{2^{k}-1}^{-}) = \begin{cases} d_{1}^{\frac{2}{3}2^{k}-\frac{1}{3}} d_{2}^{\frac{1}{3}2^{k}-\frac{2}{3}} & \text{if } k \text{ is odd,} \\ \\ d_{1}^{\frac{1}{3}2^{k}-\frac{2}{3}} d_{2}^{\frac{2}{3}2^{k}-\frac{1}{3}} & \text{if } k \text{ is even.} \end{cases}$$

However, one expects that the limits exist for "most" sequences γ .

・ロト ・回ト ・ヨト ・ヨト

Wade Hindes

To make this guess precise, we use the language (and tools) from probability.

・ロト ・回ト ・ヨト ・ヨト

Ξ

Wade Hindes

To make this guess precise, we use the language (and tools) from probability.

- Fix a probability measure ν on S.
- Extend ν to a probability measure $\bar{\nu}$ on $\Phi_S = S^{\infty} = \prod_{n=1}^{\infty} S$ via the product measure (i.i.d sequences).

(4月) トイヨト イヨト

Wade Hindes

To make this guess precise, we use the language (and tools) from probability.

- Fix a probability measure ν on S.
- Extend ν to a probability measure $\bar{\nu}$ on $\Phi_S = S^{\infty} = \prod_{n=1}^{\infty} S$ via the product measure (i.i.d sequences).

Questions:

• Do dynamical degrees exist almost surely?

Wade Hindes

To make this guess precise, we use the language (and tools) from probability.

- Fix a probability measure ν on S.
- Extend ν to a probability measure $\bar{\nu}$ on $\Phi_S = S^{\infty} = \prod_{n=1}^{\infty} S$ via the product measure (i.i.d sequences).

Questions:

- Do dynamical degrees exist almost surely?
- 2 It is known that when $S = \{\phi\}$, or for constant sequences, the dynamical degree bounds the arithmetic degree:

$$\limsup_{n\to\infty} h(\phi^n(P))^{1/n} \leqslant \lim_{n\to\infty} \deg(\phi^n)^{1/n}$$

イロト イポト イヨト イヨト

Is there such a statement for random sequences?

Arithmetic	
Dynamics	

Yes, but we need a condition for rational maps:

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

Ð.

Wade Hindes

Yes, but we need a condition for rational maps:

Definition: The set *S* is called *degree independent* if $deg(f) \ge 2$ for all *f* in the semigroup generated by *S*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

臣

Wade Hindes

Yes, but we need a condition for rational maps:

Definition: The set *S* is called *degree independent* if $deg(f) \ge 2$ for all *f* in the semigroup generated by *S*.

Theorem (WH 2019)

Let S be a finite set of dominant rational self-maps on $\mathbb{P}^{N}(\overline{\mathbb{Q}})$ and let ν be a probability measure on S. Then:

Wade Hindes

Yes, but we need a condition for rational maps:

Definition: The set *S* is called *degree independent* if $deg(f) \ge 2$ for all *f* in the semigroup generated by *S*.

Theorem (WH 2019)

Let S be a finite set of dominant rational self-maps on $\mathbb{P}^{N}(\overline{\mathbb{Q}})$ and let ν be a probability measure on S. Then:

(1) There is a constant $\delta_{S,\nu}$ such that the limits

$$\lim_{n \to \infty} \deg(\gamma_n^-)^{1/n} = \delta_{\mathcal{S},\nu} = \lim_{n \to \infty} \deg(\gamma_n^+)^{1/n}$$

hold (simultaneously) for $\bar{\nu}$ -almost every $\gamma \in \Phi_S$.

Wade Hindes

Yes, but we need a condition for rational maps:

Definition: The set *S* is called *degree independent* if $deg(f) \ge 2$ for all *f* in the semigroup generated by *S*.

Theorem (WH 2019)

Let S be a finite set of dominant rational self-maps on $\mathbb{P}^{N}(\overline{\mathbb{Q}})$ and let ν be a probability measure on S. Then:

(1) There is a constant $\delta_{S,\nu}$ such that the limits

$$\lim_{n\to\infty} \deg(\gamma_n^-)^{1/n} = \delta_{\mathcal{S},\nu} = \lim_{n\to\infty} \deg(\gamma_n^+)^{1/n}$$

hold (simultaneously) for $\bar{\nu}$ -almost every $\gamma \in \Phi_S$.

(2) If S is degree independent, then for $\bar{\nu}$ -almost every $\gamma \in \Phi_S$ the bounds

$$\limsup_{n\to\infty} h(\gamma_n^{\pm}(P))^{1/n} \leqslant \delta_{S,\nu}$$

hold (simultaneously) for all $P \in \mathbb{P}^{N}(\overline{\mathbb{Q}})_{S}$.

Wade Hindes

Remarks:

• The main tool is Kingman's Subadditive Ergodic Theorem (sort of strong law of large numbers for subadditive seq.).

イロト イポト イヨト イヨト

Э

Wade Hindes

Remarks:

- The main tool is Kingman's Subadditive Ergodic Theorem (sort of strong law of large numbers for subadditive seq.).
- If S is a set of **morphisms**, we can actually compute:

$$\delta_{\mathcal{S},\nu} = \prod_{\phi \in \mathcal{S}} \deg(\phi)^{\nu(\phi)}.$$

(4月) トイヨト イヨト

Э

Remarks:

Wade Hindes

- The main tool is Kingman's Subadditive Ergodic Theorem (sort of strong law of large numbers for subadditive seq.).
- If S is a set of **morphisms**, we can actually compute:

$$\delta_{\mathcal{S},\nu} = \prod_{\phi \in \mathcal{S}} \deg(\phi)^{\nu(\phi)}.$$

There are infinite sets of morphisms where Theorem holds:

Wade Hindes

- <u>Remarks:</u>
 - The main tool is Kingman's Subadditive Ergodic Theorem (sort of strong law of large numbers for subadditive seq.).
 - If S is a set of **morphisms**, we can actually compute:

$$\delta_{\mathcal{S},\nu} = \prod_{\phi \in \mathcal{S}} \deg(\phi)^{\nu(\phi)}.$$

There are infinite sets of morphisms where Theorem holds:

$$|h \circ \phi - \deg(\phi)h| \leqslant C_{\phi},$$

Remarks:

Wade Hindes

- The main tool is Kingman's Subadditive Ergodic Theorem (sort of strong law of large numbers for subadditive seq.).
- If S is a set of **morphisms**, we can actually compute:

$$\delta_{\mathcal{S},\nu} = \prod_{\phi \in \mathcal{S}} \deg(\phi)^{\nu(\phi)}.$$

There are infinite sets of morphisms where Theorem holds:

$$|h \circ \phi - \deg(\phi)h| \leqslant C_{\phi},$$

need
$$\sup_{\phi \in S} \{C_{\phi}\} < \infty$$
 and $\deg(\phi) \ge 2$.

Vade Hindes

Remarks:

- The main tool is Kingman's Subadditive Ergodic Theorem (sort of strong law of large numbers for subadditive seq.).
- If S is a set of **morphisms**, we can actually compute:

$$\delta_{\mathcal{S},\nu} = \prod_{\phi \in \mathcal{S}} \deg(\phi)^{\nu(\phi)}.$$

There are infinite sets of morphisms where Theorem holds:

$$|h \circ \phi - \deg(\phi)h| \leqslant C_{\phi},$$

need
$$\sup_{\phi \in S} \{C_{\phi}\} < \infty$$
 and $\deg(\phi) \ge 2$.

Example: $S = \{x^d + c : d \ge 2, c \in \mathbb{Z}, |c| \le B\}.$

イロト イポト イヨト イヨト

Wade Hindes

Since the expected bound(s) hold,

$$\limsup_{n \to \infty} h(\gamma_n^{\pm}(P))^{1/n} \leq \delta_{\mathcal{S},\nu}$$

(almost surely),

イロト イヨト イヨト イヨト

Ξ

Wade Hindes

Since the expected bound(s) hold,

$$\limsup_{n \to \infty} h(\gamma_n^{\pm}(P))^{1/n} \leq \delta_{\mathcal{S},\nu}$$

(almost surely),

・ロト ・回ト ・ヨト ・ヨト

Ξ

one would like to know if/when:

- Replace \leq with =
- Replace $\limsup_{n \to \infty}$ with $\lim_{n \to \infty}$

Wade Hindes

Since the expected bound(s) hold,

$$\limsup_{n \to \infty} h(\gamma_n^{\pm}(P))^{1/n} \leq \delta_{\mathcal{S},\nu}$$

(almost surely),

(4月) トイラト イラト

one would like to know if/when:

- Replace \leq with =
- Replace $\limsup_{n \to \infty}$ with $\lim_{n \to \infty}$

Note:

Some care must be taken (even for morphisms), since this would imply a sort of independence of the direction of iteration.

Wade Hindes

Example:

- Let $\phi_1 = x^2 x$ and $\phi_2 = 3x^2$.
- Let ν on $S = \{\phi_1, \phi_2\}$ be given by $\nu(\phi_1) = 1/2 = \nu(\phi_2)$.

• Let
$$P = 1$$
.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Wade Hindes

Example:

- Let $\phi_1 = x^2 x$ and $\phi_2 = 3x^2$.
- Let ν on $S = \{\phi_1, \phi_2\}$ be given by $\nu(\phi_1) = 1/2 = \nu(\phi_2)$.
- Let P = 1.

Then the growth rates below hold almost surely,

$$\liminf_{n\to\infty} h(\gamma_n^+(P))^{1/n} = 0 \quad \text{and} \quad \limsup_{n\to\infty} h(\gamma_n^+(P))^{1/n} = 2,$$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶

Wade Hindes

Example:

- Let $\phi_1 = x^2 x$ and $\phi_2 = 3x^2$.
- Let ν on $S = \{\phi_1, \phi_2\}$ be given by $\nu(\phi_1) = 1/2 = \nu(\phi_2)$. • Let P = 1.

Then the growth rates below hold almost surely,

$$\liminf_{n\to\infty} h(\gamma_n^+(P))^{1/n} = 0 \quad \text{and} \quad \limsup_{n\to\infty} h(\gamma_n^+(P))^{1/n} = 2,$$

and the growth rates below hold with probability 1/2:

$$\begin{split} & \liminf_{n \to \infty} h(\gamma_n^-(P))^{1/n} = 0 \quad \text{and} \quad \limsup_{n \to \infty} h(\gamma_n^-(P))^{1/n} = 0 \\ & \liminf_{n \to \infty} h(\gamma_n^-(P))^{1/n} = 2 \quad \text{and} \quad \limsup_{n \to \infty} h(\gamma_n^-(P))^{1/n} = 2 \end{split}$$

・ 同 ト ・ 三 ト ・ 三 ト

Wade Hindes

Example:

- Let $\phi_1 = x^2 x$ and $\phi_2 = 3x^2$.
- Let ν on $S = \{\phi_1, \phi_2\}$ be given by $\nu(\phi_1) = 1/2 = \nu(\phi_2)$. • Let P = 1.

Then the growth rates below hold almost surely,

$$\liminf_{n\to\infty} h(\gamma_n^+(P))^{1/n} = 0 \quad \text{and} \quad \limsup_{n\to\infty} h(\gamma_n^+(P))^{1/n} = 2,$$

and the growth rates below hold with probability 1/2:

$$\begin{split} & \liminf_{n \to \infty} h(\gamma_n^-(P))^{1/n} = 0 \quad \text{and} \quad \limsup_{n \to \infty} h(\gamma_n^-(P))^{1/n} = 0 \\ & \liminf_{n \to \infty} h(\gamma_n^-(P))^{1/n} = 2 \quad \text{and} \quad \limsup_{n \to \infty} h(\gamma_n^-(P))^{1/n} = 2 \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The direction of iteration may affect heights.

Wade Hindes

However, we can improve the upper bound to an equality and the limsup to a limit for points of sufficiently large height.

イロト イヨト イヨト イヨト

Э

Wade Hindes

However, we can improve the upper bound to an equality and the limsup to a limit for points of sufficiently large height.

Theorem (WH 2019)

Let S be a finite set of endomorphisms of $\mathbb{P}^{N}(\overline{\mathbb{Q}})$ all of degree at least 2. Then there exists a constant B_{S} such that the following statements hold:

(1) The dynamical degree is given by $\delta_{S,\nu} = \prod_{\phi \in S} \deg(\phi)^{\nu(\phi)}$.

(2) For $\bar{\nu}$ -almost every $\gamma \in \Phi_S$, the limits

$$\lim_{n\to\infty} h(\gamma_n^-(P))^{1/n} = \delta_{\mathcal{S},\nu} = \lim_{n\to\infty} h(\gamma_n^+(P))^{1/n}$$

イロト イポト イヨト イヨト

hold (simultaneously) for all P with $h(P) > B_S$.

Application: height counting in orbits.

Wade Hindes

Height growth rates are independent of direction, "generically".

(日) (モー・モー・

Application: height counting in orbits.

Wade Hindes

Height growth rates are independent of direction, "generically".

Corollary (WH 2019)

Let S be a finite set of endomorphisms all of degree at least 2. Then, outside of a set of points P of bounded height,

$$\begin{split} \lim_{B \to \infty} \frac{\#\{Q \in \operatorname{Orb}_{\gamma}^{-}(P) \ : \ h(Q) \leqslant B\}}{\log(B)} &= \\ &= \frac{1}{\log(\delta_{S,\nu})} \\ \lim_{B \to \infty} \frac{\#\{W \in \operatorname{Orb}_{\gamma}^{+}(P) \ : \ h(W) \leqslant B\}}{\log(B)} &= \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

hold $\bar{\nu}$ -almost surely.

Open problems

Wade Hindes

Questions:

- Given *S*, is there a reasonable way to ensure that *S* is degree independent?
- **2** Amerik type result: is $\mathbb{P}^{N}(\overline{\mathbb{Q}})_{S}$ Zariski dense in $\mathbb{P}^{N}(\overline{\mathbb{Q}})$?
- Given a finite set of monomial maps, can you compute $\delta_{S,\nu}$? (Random matrix theory problem)
- **9** Suppose $V \neq \mathbb{P}^N$. Can you prove $\delta_{S,\nu}$ exists and prove

$$\limsup_{n \to \infty} h(\gamma_n^{\pm}(P)) \leq \delta_{S,\nu}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

almost surely (like we did for \mathbb{P}^N)?

Back to total orbits (for morphisms)

Wade Hindes

Given S and P, we can ask about the growth rate of

$$\#\big\{Q\in \operatorname{Orb}_{\mathcal{S}}(P) \ : \ h(Q)\leqslant B\big\}.$$

Intuitively, this should (at least for generic P) depend on the Monoid M_S , i.e., the relations between the maps in S.

Back to total orbits (for morphisms)

Wade Hindes

Given S and P, we can ask about the growth rate of

$$\#\big\{Q\in \operatorname{Orb}_{\mathcal{S}}(P) \ : \ h(Q)\leqslant B\big\}.$$

Intuitively, this should (at least for generic P) depend on the Monoid M_S , i.e., the relations between the maps in S.

Idea: Since, h(f(P)) behaves like $\deg(f)$, we are in some sense counting the number of f's in M_S of bounded degree.

Back to total orbits (for morphisms)

Wade Hindes

Given S and P, we can ask about the growth rate of

$$\#\big\{Q\in \operatorname{Orb}_{\mathcal{S}}(P) \ : \ h(Q)\leqslant B\big\}.$$

Intuitively, this should (at least for generic P) depend on the Monoid M_S , i.e., the relations between the maps in S.

Idea: Since, h(f(P)) behaves like deg(f), we are in some sense counting the number of f's in M_S of bounded degree.

Formally, $\log \deg(f)$ defines a "length" on M_S , and the orbit count above is related to a growth rate (of "lengths") on M_S .

Some work on this type of problem has been done by group theorists.

Example:

$$\lim_{B \to \infty} \frac{\# \left\{ f \in M_{\mathcal{S}} : h(f(P)) \leq B \right\}}{(\log B)^{s}} = \frac{1}{s! \cdot \prod_{i=1}^{s} \log \deg(\phi_i)},$$

when S is a free basis for the commutative monoid M_S and P has sufficiently large height.

Remark: Work is ongoing to compute this growth rate for free (non-commutative) monoids. Others?

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

Э

Thank you!!

Questions or comments? Please send them to:

wmh33@txstate.edu

・ロト ・日ト ・ヨト ・ヨト

Э