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Introduction: dynamics with multiple maps

Notation:
S “ tφ1, . . . , φsu is a set of dominant, rational self-maps
on PN defined over Q.

MS is the monoid (semigroup) generated by S under
composition.

PNpQqS “
 

P P PNpQq : f pPq is defined for all f P MS
(

.

Goals:
1 Study the arithmetic properties of the dynamical system(s)

generated by S.
2 Generalize known problems from when S is a singleton.

Examples: dynamical degrees, canonical heights, arboreal
reps., integral points, primitive primes, DML, . . .
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Remark: To make these problems make sense, we need to
consider various types of orbits: sequential and total.

The total orbit of P P PNpQqS is the set

OrbSpPq :“ tf pPq : f P MSu.

Given a sequence γ “ pθ1, θ2, . . . q with θi P S, set

γ´n :“ θn ˝ θn´1 ˝ ¨ ¨ ¨ ˝ θ1

and
γ`n :“ θ1 ˝ θ2 ˝ ¨ ¨ ¨ ˝ θn.

Then the left and right γ-orbits of P P PNpQqS are

Orb´γ pPq :“
 

γ´n pPq
(

ně0 and Orb`γ pPq :“
 

γ`n pPq
(

ně0

respectively.
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Features of various types of orbits

Each type of orbit has different uses/features:

Examples: (Vaguely)
Arithmetic properties of OrbSpPq for generic P can detect
(in practice) relations between the maps in S (e.g., if they
commute).

For critical points P, the right orbits Orb`γ pPq control the
ramification in some (generalized) dynamically generated
Galois extensions.

Left orbits define a (type of) random walk in PN . What
does it mean if these random walks return to a subvariety
i.o. with positive probability?

Philosophy: One way to understand a subset T of PN (like
T “ OrbSpPq, . . . ) is to find out many points T has.
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More precisely, to understand the arithmetic of various orbits,
we study the growth rates of the Weil height h : PNpQq Ñ R:

lim
BÑ8

#
 

Q P Orb´γ pPq : hpQq ď B
(

“?

lim
BÑ8

#
 

Q P Orb`γ pPq : hpQq ď B
(

“??

lim
BÑ8

#
 

Q P OrbSpPq : hpQq ď B
(

“???

A key fact (as in the case of a single function) is

hpf pPqq ď degpf qhpPq ` Cpf q ,

along with the corresponding lower bound for morphisms.

Heuristic: hpf pPqq grows like degpf q for “generic” P.
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Dynamical degrees for sequences

In particular, to study arithmetic properties of orbits, we can
try to understand the growth rate of degrees (as we iterate).

Remarks:
The case of sequences γ “ pθ1, θ2, . . . q is more naturally
analogous to the case of a single function.
Philosophy: by sampling “enough” γ-orbits, we uncover
properties of total orbits.

The degrees degpγ`n q and degpγ´n q tend to grow exponentially.
With this in mind, define

lim
nÑ8

degpγ´n q1{n and lim
nÑ8

degpγ`n q1{n,

called the left and right dynamical degrees of γ.
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Warning!!! These limits may not exist in general.

Example: Let φ1, φ2 : PN Ñ PN be morphisms of degree
d1 ‰ d2, let S “ tφ1, φ2u, and let

γ Ø p1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, . . . q;

Then, the limits defining the dynamical degrees do not exist:

degpγ´2k´1q “

$

’

’

&

’

’

%

d
2
3 2k´ 1

3
1 d

1
3 2k´ 2

3
2 if k is odd,

d
1
3 2k´ 2

3
1 d

2
3 2k´ 1

3
2 if k is even.

However, one expects that the limits exist for “most”
sequences γ.
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To make this guess precise, we use the language (and tools)
from probability.

Fix a probability measure ν on S.

Extend ν to a probability measure ν̄ on ΦS “ S8 “ Π8n“1S
via the product measure (i.i.d sequences).

Questions:
1 Do dynamical degrees exist almost surely?

2 It is known that when S “ tφu, or for constant sequences,
the dynamical degree bounds the arithmetic degree:

lim sup
nÑ8

hpφnpPqq1{n ď lim
nÑ8

degpφnq1{n .

Is there such a statement for random sequences?
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Yes, but we need a condition for rational maps:

Definition: The set S is called degree independent if
degpf q ě 2 for all f in the semigroup generated by S.

Theorem (WH 2019)
Let S be a finite set of dominant rational self-maps on PNpQq
and let ν be a probability measure on S. Then:

(1) There is a constant δS,ν such that the limits

lim
nÑ8

degpγ´n q1{n “ δS,ν “ lim
nÑ8

degpγ`n q1{n

hold (simultaneously) for ν̄-almost every γ P ΦS .
(2) If S is degree independent, then for ν̄-almost every γ P ΦS

the bounds
lim sup

nÑ8
hpγ˘n pPqq1{n ď δS,ν

hold (simultaneously) for all P P PNpQqS .
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Remarks:

The main tool is Kingman’s Subadditive Ergodic Theorem
(sort of strong law of large numbers for subadditive seq.).

If S is a set of morphisms, we can actually compute:

δS,ν “
ź

φPS
degpφqνpφq.

There are infinite sets of morphisms where Theorem holds:

|h ˝ φ´ degpφqh| ď Cφ,

need sup
φPS
tCφu ă 8 and degpφq ě 2 .

Example: S “
 

xd ` c : d ě 2, c P Z, |c| ď B
(

.
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lim sup
nÑ8

hpγ˘n pPqq1{n ď δS,ν palmost surelyq,

one would like to know if/when:

Replace ď with “

Replace lim sup
nÑ8

with lim
nÑ8

Note:
Some care must be taken (even for morphisms), since this
would imply a sort of independence of the direction of iteration.
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Limit failure and directional sensitivity

Example:
Let φ1 “ x2 ´ x and φ2 “ 3x2.
Let ν on S “ tφ1, φ2u be given by νpφ1q “ 1{2 “ νpφ2q.
Let P “ 1.

Then the growth rates below hold almost surely,

lim inf
nÑ8

hpγ`n pPqq1{n “ 0 and lim sup
nÑ8

hpγ`n pPqq1{n “ 2,

and the growth rates below hold with probability 1{2:

lim inf
nÑ8

hpγ´n pPqq1{n “ 0 and lim sup
nÑ8

hpγ´n pPqq1{n “ 0

lim inf
nÑ8

hpγ´n pPqq1{n “ 2 and lim sup
nÑ8

hpγ´n pPqq1{n “ 2

The direction of iteration may affect heights.

Wade Hindes Arithmetic Dynamics



Arithmetic
Dynamics

Wade Hindes

Limit failure and directional sensitivity

Example:
Let φ1 “ x2 ´ x and φ2 “ 3x2.
Let ν on S “ tφ1, φ2u be given by νpφ1q “ 1{2 “ νpφ2q.
Let P “ 1.

Then the growth rates below hold almost surely,

lim inf
nÑ8

hpγ`n pPqq1{n “ 0 and lim sup
nÑ8

hpγ`n pPqq1{n “ 2,

and the growth rates below hold with probability 1{2:

lim inf
nÑ8

hpγ´n pPqq1{n “ 0 and lim sup
nÑ8

hpγ´n pPqq1{n “ 0

lim inf
nÑ8

hpγ´n pPqq1{n “ 2 and lim sup
nÑ8

hpγ´n pPqq1{n “ 2

The direction of iteration may affect heights.

Wade Hindes Arithmetic Dynamics



Arithmetic
Dynamics

Wade Hindes

Limit failure and directional sensitivity

Example:
Let φ1 “ x2 ´ x and φ2 “ 3x2.
Let ν on S “ tφ1, φ2u be given by νpφ1q “ 1{2 “ νpφ2q.
Let P “ 1.

Then the growth rates below hold almost surely,

lim inf
nÑ8

hpγ`n pPqq1{n “ 0 and lim sup
nÑ8

hpγ`n pPqq1{n “ 2,

and the growth rates below hold with probability 1{2:

lim inf
nÑ8

hpγ´n pPqq1{n “ 0 and lim sup
nÑ8

hpγ´n pPqq1{n “ 0

lim inf
nÑ8

hpγ´n pPqq1{n “ 2 and lim sup
nÑ8

hpγ´n pPqq1{n “ 2

The direction of iteration may affect heights.

Wade Hindes Arithmetic Dynamics



Arithmetic
Dynamics

Wade Hindes

Limit failure and directional sensitivity

Example:
Let φ1 “ x2 ´ x and φ2 “ 3x2.
Let ν on S “ tφ1, φ2u be given by νpφ1q “ 1{2 “ νpφ2q.
Let P “ 1.

Then the growth rates below hold almost surely,

lim inf
nÑ8

hpγ`n pPqq1{n “ 0 and lim sup
nÑ8

hpγ`n pPqq1{n “ 2,

and the growth rates below hold with probability 1{2:

lim inf
nÑ8

hpγ´n pPqq1{n “ 0 and lim sup
nÑ8

hpγ´n pPqq1{n “ 0

lim inf
nÑ8

hpγ´n pPqq1{n “ 2 and lim sup
nÑ8

hpγ´n pPqq1{n “ 2

The direction of iteration may affect heights.

Wade Hindes Arithmetic Dynamics



Arithmetic
Dynamics

Wade Hindes

However, we can improve the upper bound to an equality and
the limsup to a limit for points of sufficiently large height.

Theorem (WH 2019)
Let S be a finite set of endomorphisms of PNpQq all of degree
at least 2. Then there exists a constant BS such that the
following statements hold:

(1) The dynamical degree is given by δS,ν “
ź

φPS
degpφqνpφq.

(2) For ν̄-almost every γ P ΦS , the limits

lim
nÑ8

hpγ´n pPqq1{n “ δS,ν “ lim
nÑ8

hpγ`n pPqq1{n

hold (simultaneously) for all P with hpPq ą BS .
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Application: height counting in orbits.

Height growth rates are independent of direction, “generically”.

Corollary (WH 2019)
Let S be a finite set of endomorphisms all of degree at least 2.
Then, outside of a set of points P of bounded height,

lim
BÑ8

#tQ P Orb´γ pPq : hpQq ď Bu
logpBq “

“
1

logpδS,νq

lim
BÑ8

#tW P Orb`γ pPq : hpW q ď Bu
logpBq “

hold ν̄-almost surely.
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Open problems

Questions:

1 Given S, is there a reasonable way to ensure that S is
degree independent?

2 Amerik type result: is PNpQqS Zariski dense in PNpQq?

3 Given a finite set of monomial maps, can you compute
δS,ν? (Random matrix theory problem)

4 Suppose V ‰ PN . Can you prove δS,ν exists and prove

lim sup
nÑ8

hpγ˘n pPqq ď δS,ν

almost surely (like we did for PN)?
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Back to total orbits (for morphisms)

Given S and P, we can ask about the growth rate of

#
 

Q P OrbSpPq : hpQq ď B
(

.

Intuitively, this should (at least for generic P) depend on the
Monoid MS , i.e., the relations between the maps in S.

Idea: Since, hpf pPqq behaves like degpf q, we are in some sense
counting the number of f ’s in MS of bounded degree.

Formally, log degpf q defines a “length” on MS , and the orbit
count above is related to a growth rate (of “lengths”) on MS .

Some work on this type of problem has been done by group
theorists.
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lim
BÑ8

#
!

f P MS : h
`

f pPq
˘

ď B
)

plog Bqs “
1

s! ¨
śs

i“1 log degpφiq
,

when S is a free basis for the commutative monoid MS and P
has sufficiently large height.

Remark: Work is ongoing to compute this growth rate for free
(non-commutative) monoids. Others?
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Thank you!!

Questions or comments? Please send them to:

wmh33@txstate.edu
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