Isolation of postcritically finite parameters in p-adic dynamical moduli spaces

> *Rob Benedetto, Amherst College Su-Ion Ih, University of Colorado

> > Friday, January 17, 2020

Notation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We say $x \in \mathbb{P}^1(K)$ is preperiodic if $f^n(x) = f^m(x)$ for some $n > m \ge 0$.

Postcritically Finite Maps

Definition

We say a separable map $f \in K(z)$ is *postcritically finite*, or *PCF*, if every critical point $c \in \mathbb{P}^1(K)$ of f is preperiodic under f.

Example.
$$f(z) = z^d$$
: $\infty \mapsto \infty \quad 0 \mapsto 0$
Example. $f(z) = z^2 - 1$: $\infty \mapsto \infty \quad 0 \mapsto -1 \mapsto 0$
Example. $f(z) = z^2 - 2$: $\infty \mapsto \infty \quad 0 \mapsto -2 \mapsto 2 \mapsto 2$
Example. $f(z) = z^2 + i$:
 $\infty \mapsto \infty \quad 0 \mapsto i \mapsto i - 1 \mapsto -i \mapsto i - 1$

Example. $f(z) = -2z^3 + 3z^2$: $\infty \mapsto \infty \quad 0 \mapsto 0 \quad 1 \mapsto 1$

Example.
$$f(z) = \frac{6z^2 + 16z + 16}{-3z^2 - 4z - 4}$$
:
 $0 \mapsto -4 \mapsto -\frac{4}{3} \mapsto -\frac{4}{3} \qquad -2 \mapsto -1 \mapsto -2$

Flexible Lattès Maps

Definition (Simplified)

Let E/K be an elliptic curve in Weierstrass form, and let $m \ge 2$. Then there exists $f \in K(x)$ of degree m^2 such that

commutes. We say f is a (flexible) Lattès map.

Fact: Every Lattès map is PCF.

Why should we care about PCF maps?

Many reasons, including:

- Interesting complex Julia sets.
- Thurston rigidity.
- Tower of preimage fields ··· K₃/K₂/K₁/K is ramified over only finitely many primes. (Aitken, Hajir, Maire 2005).
- and much much more.

Idea: PCF maps are special points in moduli spaces of dynamical systems, analogous to CM elliptic curves.

The Quadratic Polynomial Family

Define $f_c(z) = z^2 + c$. Critical points are ∞ (fixed) and 0.

$$0\mapsto c\mapsto c^2+c\mapsto (c^2+c)^2+c\mapsto\cdots$$

We say *c* is a **PCF parameter** if $f_c^n(0) = f_c^m(0)$ for some $n > m \ge 0$.

Example: $f(z) = z^2$ has m = 0, n = 1Example: $f(z) = z^2 - 1$ has m = 0, n = 2Example: $f(z) = z^2 - 2$ has m = 2, n = 3Example: $f(z) = z^2 + i$ has m = 2, n = 4

Lots of PCF parameters

Example. Fix a PCF map $\phi(z) \in K(z)$, let $h_t(z) \in PGL(2, K(t))$ be a one-parameter family of linear fractional transformations, and let $f_t = h_t \circ \phi \circ h_t^{-1}$.

Then f_t is PCF for all parameters t.

Example. Let E_t be a one-parameter family of elliptic curves, and let g_t be the Lattès map for $[m] : E_t \to E_t$.

Then g_t is PCF for all parameters t.

Example. Let $K = \mathbb{C}$ and let $f_c(z) = z^2 + c$.

Then the PCF parameters c are dense in the boundary of the Mandelbrot set.

p-adic Meromorphic Families of Good Reduction

For prime $p \ge 2$, \mathbb{C}_p =completion of algebraic closure of \mathbb{Q}_p . For r > 0 and $b \in \mathbb{C}_p$, let $D(b, r) := \{x \in \mathbb{C}_p : |x - b|_p < r\}$.

Fix $d \geq 2$, $b \in \mathbb{C}_p$, and S > 0.

Consider a one-parameter family of rational function $f_t(z)$, with coefficients meromorphic in $t \in D(b, S)$, such that for all $t \in D(b, S)$,

- $f_t(z) \in \mathbb{C}_p(z)$ with $\deg(f_t) = d$,
- *f_t* has good reduction, and
- ► the critical points of f_t are α₁(t),..., α_{2d-2}(t). (also meromorphic functions of t ∈ D(b, S))

We call f_t a meromorphic family of good reduction.

Example: Fix
$$d \ge 2$$
 and fix $b \in \mathbb{C}_p$ with $|b|_p \le 1$.
Let $f_t(z) = z^d + t$ for $t \in D(b, 1)$,
with $\alpha_1 = \ldots = \alpha_{d-1} = 0$, and $\alpha_d = \ldots = \alpha_{2d-2} = \infty$.

p-adic PCF parameters

Theorem (B-Ih 2019)

Let $f_t(z)$ be a meromorphic family of good reduction on $t \in D(b, S)$. Then either

- 1. f_t is conjugate to f_b for all $t \in D(b, S)$, or
- 2. f_t is flexible Lattès for all $t \in D(b, S)$, or
- 3. for any 0 < s < S, there are only finitely many $t \in D(b, s)$ for which f_t is PCF.

Corollary Let $f_t(z) = z^d + t$. Let

$$T = \left\{ t \in \mathbb{C}_p \middle| f_t \text{ is PCF} \right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Then every point of T is isolated.

Sketch of proof: Setup

Let $\alpha = \alpha(t)$ be a critical point of f_t . Replacing f_t by f_t^N and changing coordinates, we can assume that:

$$f_t(lpha(t))=0, \quad ext{and} \quad f_t^2(lpha(t))\in D(0,1) \quad ext{for all } t\in D(b,S).$$

Note: this implies $f_t(D(0,1)) = D(0,1)$.

We must show either

- 1. there are integers $n > m \ge 0$ such that $f_t^n(0) = f_t^m(0)$ for all $t \in D(b, S)$, (i.e., $\alpha(t)$ is *persistently preperiodic*), or
- 2. for any 0 < s < S, there are only finitely many $t \in D(b, s)$ for which 0 and every critical point of f_t in D(0, 1) are all preperiodic.

Case 1: $|f'_b(0)|_p < 1$ Case 2: $|f'_b(0)|_p = 1$

Case 1: $|f_b'(0)|_p < 1$

Then we can show f_t has an attracting fixed point $\beta(t) \in D(0, 1)$ for every $t \in D(b, S)$.

For any 0 < s < S, then a *p*-adic analysis argument (similar to that in B-Ingram-Jones-Levy 2014) shows there is an integer $n \ge 0$ (**independent of** *t*) so that for all $t \in D(b, s)$, either

1.
$$f_t^n(0) = \beta(t)$$
, or

2.
$$f_t^n(0) \neq \beta(t)$$
 but is very close, or

3. $f_t^n(c_t) \neq \beta(t)$ but is very close, for some critical point c_t .

When (2) or (3) happens, either $\alpha(t)$ or c_t has infinite forward orbit under f_t . Thus, f_t is not PCF.

If (1) happens infinitely often on D(b, s), then the power series $f_t^n(0) - \beta(t) \in \mathbb{C}_p[[t-b]]$ has infinitely many zeros in a proper subdisk of D(b, S) and hence is trivial. Thus, if (1) happens infinitely often on D(b, s), then $\alpha(t)$ is persistently preperiodic on D(b, S).

Case 2: $|f'_b(0)|_p = 1$

Choose $e \ge 1$ so that $|f_b'(0)^e - 1|_p < 1$.

Then we can show $|(f_t^e)'(0) - 1|_p < 1$, and f_t^e maps D(0, 1) bijectively onto itself, for **every** $t \in D(b, S)$.

The *iterative logarithm* of f_t is

$$\Lambda_t(z) := \lim_{n \to \infty} p^{-n} \big(f_t^{ep^n}(z) - z \big),$$

which is a (two-variable) power series converging on $(t, z) \in D(b, S) \times D(0, 1)$, following Rivera-Letelier 2003.

Idea: $\Lambda_t(z)$ measures how close $f_t^{ep^n}(z)$ is to z, relative to p^n .

Define $F(t) := \Lambda_t(0) \in \mathbb{C}_p[[t-b]]$, which is a power series converging on D(b, S).

Case 2: $|f'_b(0)|_p = 1$: continued

$$\Lambda_t(z) = \lim_{n \to \infty} p^{-n} (f_t^{ep^n}(z) - z), \quad \text{and} \quad F(t) = \Lambda_t(0)$$

By results of Rivera-Letelier, *Astérisque* 2003 (Section 3.2) on the iterative logarithm,

F(t) = 0 iff z = 0 is periodic under f_t ,

i.e., iff $\alpha(t)$ is preperiodic under f_t .

If F is identically zero, then for each $t \in D(b, S)$, there are integers $n(t) > m(t) \ge 0$ so that $f_t^{n(t)}(\alpha(t)) = f_t^{m(t)}(\alpha(t))$.

Some such pair n > m occurs uncountably often, so $f_t^n(\alpha(t)) = f_t^m(\alpha(t))$ for all $t \in D(b, S)$.

Otherwise, for any 0 < s < S, there are only finitely many $t \in D(b, s)$ for which $\alpha(t)$ is preperiodic under f_t .

Conclusion of the Proof

Applying the preceding arguments to each critical point $\alpha_i(t)$ of $f_t(z)$, then either

- 1. For every i = 1, ..., 2d 2, there are integers $n_i > m_i \ge 0$ such that $f_t^{n_i}(\alpha_i(t)) = f_t^{m_i}(\alpha_i(t))$ for all $t \in D(b, S)$, or
- 2. For every 0 < s < S, there are only finitely many $t \in D(b, s)$ for which f_t is PCF.

If (1) happens, Thurston Rigidity (Douady and Hubbard, 1993) says that either

- Every f_t is Lattès, or
- ▶ f_t is conjugate to f_u for uncountably many distinct t, u, and hence for all $t, u \in D(b, S)$.

(2) and the two above possibilities for (1) are the three outcomes stated in the Theorem. QED

Main Theorem, again

Theorem

Let $f_t(z)$ be a meromorphic family of good reduction on $t \in D(b, S)$. Then either

- 1. f_t is conjugate to f_b for all $t \in D(b, S)$, or
- 2. f_t is flexible Lattès for all $t \in D(b, S)$, or
- 3. for any 0 < s < S, there are only finitely many $t \in D(b, s)$ for which f_t is PCF.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで