The inverse problem for arboreal Galois representations of index two

Andrea Ferraguti

Joint Mathematics Meeting 2020

18/1/2020

Andrea Ferraguti (Joint Mathematics Meeting 2020) The inverse problem for arboreal Galois representations

18/1/2020 1/1

< ロ > < 同 > < 回 > < 回 >

Quadratic arboreal Galois representations

Let K be a field of characteristic not 2, and let $f \in K[x]$ be a monic, quadratic polynomial with $f^{(n)}$ separable for every $n \ge 1$. We set $f^{(0)} := x$ by convention.

The set $T(f) \subseteq K^{sep}$ of the roots of all the $f^{(n)}$'s has a natural structure of infinite, regular, rooted binary tree.

The absolute Galois group $G_K := \text{Gal}(K^{\text{sep}}/K)$ acts on T(f) via its natural Galois action, yielding a continuous map of profinite groups $\rho_f : G_K \to \text{Aut}(T(f))$.

Definition

Such map is called the arboreal Galois representation attached to f.

Open Problem

How does one compute $Im(\rho_f)$? Or at least, how does one understand whether $[Aut(T(f)) : Im(\rho_f)] < \infty$ or not?

イロト イヨト イヨト イヨト

Surjective representations

Let $f = (x - a)^2 - b \in K[x]$. The adjusted post-critical orbit of f is the sequence defined by: $c_1 \coloneqq -f(a), \quad c_n \coloneqq f^{(n)}(a), n \ge 2$.

Throughout the talk, I will always assume that every $f^{(n)}$ is separable, i.e. that $c_n \neq 0$ for every n.

Let $\langle c_1, \ldots, c_n \rangle$ be the \mathbb{F}_2 -vector space generated by c_1, \ldots, c_n inside $K^{\times}/K^{\times 2}$.

Theorem (Stoll, 1992)

The arboreal representation $\rho_f \colon G_K \to \operatorname{Aut}(T(f))$ is surjective if and only if $\dim \langle c_1, \ldots, c_n \rangle = n$ for every n. This holds, for example, for $x^2 + a \in \mathbb{Q}[x]$ if $a \equiv 1 \mod 4$.

Theorem (F., Micheli, 2019)

Let k be a field of characteristic not 2 and t be transcendental over k. Then the polynomial $f = x^2 + t \in k(t)[x]$ has surjective representation.

・ロト ・回ト ・ヨト ・ヨト

Which representations have maximal image?

Stoll's theorem implies that linear relations (modulo squares) among the elements of the adjusted post-critical orbit decrease the size of the image of the representation.

Question

What type of linear relations in the post-critical orbit ensure that $Im(\rho_f)$ is a maximal subgroup of $\Omega_{\infty} := Aut(T(f))$?

Notice that Ω_{∞} is a pro-2-group. Hence, its maximal subgroups are exactly those of index two, i.e. they are kernels of maps $\Omega_{\infty} \to \mathbb{F}_2$.

< ロ > < 同 > < 回 > < 回 >

Understanding maximal subgroups of Ω_∞

Since $\Omega_{\infty} = \varprojlim_{n \ge 1} \underbrace{\mathbb{F}_2 \wr \ldots \wr \mathbb{F}_2}_{n \text{ times}}$, every $\sigma \in \Omega_{\infty}$ has an expression of the form $(\sigma_1, \ldots, \sigma_n, \ldots)$ where $\sigma_n \in \mathbb{F}_2^{2^{n-1}}$.

For every $n \ge 1$ there is a homomorphism $\phi_n \colon \Omega_\infty \to \mathbb{F}_2$ that sends σ to the sum of the coordinates of σ_n .

We let $\widehat{\phi} := \prod_n \phi_n \colon \Omega_\infty \to \prod_{n \ge 1} \mathbb{F}_2$. One can check that ker $\widehat{\phi} = [\Omega_\infty, \Omega_\infty]$. Hence, the dual group $\Omega_\infty^{\vee} := \hom(\Omega_\infty, \mathbb{Q}_2/\mathbb{Z}_2)$ is spanned by all the ϕ_n 's.

Proposition

There exists a bijection

$$\bigoplus_{n\geq 1} \mathbb{F}_2 \setminus \{\underline{0}\} \xrightarrow{\sim} \{\textit{maximal subgroups of } \Omega_\infty\}$$

$$\underline{a} = (a_n)_{n \ge 1} \mapsto M_{\underline{a}}$$

where $M_{\underline{a}} = \ker \sum_{n \ge 1} a_n \phi_n$.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・ ・

Understanding maximal subgroups of Ω_∞

Let K be a field of characteristic not 2 and $f \in K[x]$ be monic, quadratic with adjusted post-critical orbit $\{c_n\}_{n\geq 1}$ and arboreal representation ρ_f .

Lemma

Let
$$\underline{a} = (a_n)_{n \ge 1} \in \bigoplus_{n \ge 1} \mathbb{F}_2$$
. Then $\operatorname{Im}(\rho_f) \subseteq M_{\underline{a}} \iff \prod_{n \ge 1} c_n^{a_n} \in K^2$.

Stoll's theorem follows immediately!

Corollary

If f is post-critically finite or $K^{\times}/K^{\times 2}$ is finite dimensional, then $[\Omega_{\infty} : Im(\rho_f)] = \infty$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Representations with (transitive) maximal image

Theorem (F., Pagano, Casazza)

Let $\underline{a} = (a_n)_{n \ge 1} \in \bigoplus_{n \ge 1} \mathbb{F}_2$ be such that $\underline{a} \neq \underline{0}, (1, 0, \dots, 0, \dots)$. Let $f \in K[x]$ be irreducible. Then $\operatorname{Im}(\rho_f) = M_a$ if and only if

 $\prod_{i\geq 1} c_i^{a_i} \in (K^{\times})^2, \quad \prod_{i\geq 1} c_i^{b_i} \notin K^2 \text{ for every } \underline{b} = (b_n)_{n\geq 1} \in \bigoplus_{i\geq 1} \mathbb{F}_2 \text{ with } \underline{b} \neq \underline{0}, \underline{a}$

and one of the following two conditions is satisfied:

a₁ = 1;
a₁ = 0 and h (c₁,..., c_{n-1}, √∏_{i≥1} c_i^{a_i}) is linearly independent from {c₁,..., c_{n-1}, c_{n+1}, c_{n+2},...} in K×/K×², where h(X₁,..., X_{n-1}, Y) ∈ ℤ[X₁,..., X_{n-1}, Y] depends only on <u>a</u>, and n is the largest index with a_n = 1.
If one of these conditions is sastisfied, then f is stable, i.e. f⁽ⁿ⁾ is irreducible for every n.

・ロト ・四ト ・ヨト ・ヨト

A sketch of the proof

The idea is study, for a non-zero $\underline{a} = (a_n)_{n \ge 1} \in \bigoplus_{n \ge 1} \mathbb{F}_2$, the maximal subgroups of $M_{\underline{a}}$.

The most delicate step of the proof is to show that if $\varphi \colon M_{\underline{a}}^{\mathrm{ab}} \to \Omega_{\infty}^{\mathrm{ab}}$ is the natural map, then $|\ker \phi| = 2$.

This is done by first noticing that ker $\varphi = [\Omega_{\infty}, \Omega_{\infty}]/[M_{\underline{a}}, M_{\underline{a}}]$, and then proving that elements of ker φ can be represented as elements in $I_{\Omega_{\infty}} \mathbb{F}_2^{2^{n-1}}/I_{\Omega_{\infty}}^2 \mathbb{F}_2^{2^{n-1}}$, for *n* the largest integer such that $a_n = 1$.

One then uses this fact to prove the following:

- If a₁ = 1, then the maximal subgroups of M_a all arise as intersections of the maximal subgroups of Ω_∞ with M_a.
- If a₀ = 0, then there is an additional character M_a → F₂ which maps σ = (σ_n)_{n≥1} to Σ_{n≥2} a_nφ̃_n(σ), where φ̃_n(σ) is the sum of the first half of the coordinates of σ_n.

Finally, one computes the function $h(X_1, \ldots, X_{n-1}, Y) \in \mathbb{Z}[X_1, \ldots, X_{n-1}, Y]$ in terms of <u>a</u>.

・ロト ・四ト ・ヨト ・ ヨト

Representations with (non-transitive) maximal image

Theorem (F., Pagano, Casazza)

We have that $Im(\rho_f) = M_{(1,0,...,0,...)}$ if and only if $f = (x - a)^2 - u^2$ for some $a, u \in K$ and

 $\{c_1 \pm u, c_2 \pm u, \dots, c_n \pm u, \dots\}$ is linearly independent in $K^{\times}/(K^{\times})^2$.

If these conditions hold, then $f = g_1g_2$ in K[x], where g_1, g_2 are f-stable linear polynomials, i.e. $g_i \circ f^{(n)}$ is irreducible for every $i \in \{1, 2\}$ and every $n \ge 1$.

イロン イロン イヨン イヨン

Examples over the rationals

Let $f := x^2 + t \in \mathbb{Q}(t)[x]$. Then $\text{Im}(\rho_f) = \Omega_{\infty}$. Are there any specializations of f whose representations have maximal image?

Proposition

There are exactly 5 maximal subgroups of Ω_{∞} that can appear as $Im(\rho_{f_{t_0}})$ for infinitely many $t_0 \in \mathbb{Q}$. These correspond to the vectors:

$$v_1 = (1, 1, 0, \dots, 0, \dots), \quad v_2 = (0, 1, 0, \dots, 0, \dots), \quad v_3 = (1, 0, 1, 0, \dots, 0, \dots),$$

$$v_4 = (0, 1, 1, 0, \dots, 0 \dots), \quad v_5 = (1, 0, \dots, 0, \dots).$$

Theorem (F., Pagano, Casazza)

Let $u \in 2\mathbb{Z} \setminus \{0\}$. The the following hold: if $t_0 = -1 - u^2$, then $Im(\rho_{f_{t_0}}) = M_{v_1}$; if $t_0 = \frac{1}{u^2 - 1}$, then $Im(\rho_{f_{t_0}}) = M_{v_2}$.

・ロト ・回ト ・ヨト ・ヨト

Examples over the rationals

Conjecture (Vojta)

Let $d \in \mathbb{Z}_{\geq 5}$ and $g \in \mathbb{Q}[x]$ a polynomial of degree d with non-zero discriminant. Then there exist constants $C_1(d)$, $C_2(d)$ such that if $x_0, y_0 \in \mathbb{Q}$ satisfy $y_0^2 = f(x_0)$, then:

$$h(x_0) \leq C_1 \cdot h(f) + C_2.$$

Theorem (F., Pagano, Casazza)

Assume Vojta's conjecture, and let $i \in \{3,4,5\}$. Then there exists an infinite, thin set $E_i \subseteq \mathbb{Q}$ such that for all but finitely many $t_0 \in E_i$ we have $Im(\rho_{f_{t_0}}) = M_{v_i}$.

Remark

If $g_1 = x^2 - 1 - t^2$, $g_2 = x^2 + \frac{1}{t^2 - 1}$ and $g_5 = x^2 - t^2$ are seen as polynomials with coefficients in $\mathbb{Q}(t)$, then $\operatorname{Im}(\rho_{g_i}) = M_{v_i}$. On the other hand, there are no polynomials $\psi = x^2 + h(t) \in \mathbb{Q}(t)$ with $\operatorname{Im}(\rho_{\psi}) \in \{M_{v_3}, M_{v_4}\}$.

・ロト ・回ト ・ヨト ・ヨト

A reconstruction theorem

Finally, one can ask if any two maximal subgroups $M_{\underline{a}}$ and $M_{\underline{b}}$ are isomorphic whenever $\underline{a} \neq \underline{b}$.

Theorem (F., Pagano, Casazza)

If $\underline{a}, \underline{b} \in \bigoplus_{n \ge 1} \mathbb{F}_2$ are distinct vectors (possibly null), then $M_{\underline{a}}$ and $M_{\underline{b}}$ are non-isomorphic as topological groups.

The proof makes use of the following object.

Definition

Let G be a topological group and S a set of topological generators. The graph of commutativity of (G, S) has the elements of S as nodes, and two nodes g, h are connected if and only if $gh \neq hg$.

・ロト ・回 ト ・ヨト ・ヨト

The proof method

The proof is quite involved. First, we studied in deep the descending central series of each M_a , i.e. the sequence defined by

$$M^{(0)}_{\underline{a}} := M_{\underline{a}}, \quad M^{(n)}_{\underline{a}} := [M_{\underline{a}}, M^{(n-1)}_{\underline{a}}]$$

These subgroups are defined in terms of certain maximal subgroups of $\Omega_{\infty}^{(n)}$, for a suitable *n*.

Next, one defines the following invariant of a graph Γ with at least two vertices:

$$d_{\Gamma} \coloneqq \min_{g \in \Gamma} \max_{g' \in \Gamma \setminus \{g\}} \operatorname{dist}_{\Gamma}(g, g').$$

The final step is to show that if $\underline{a} \neq \underline{b}$, then there exist $n \geq 0$ and sets of topological generators S, S' for $M_{\underline{a}}^{(n)}, M_{\underline{b}}^{(n)}$ such that if Γ, Γ' are the graphs of commutativity of $(M_{\underline{a}}^{(n)}, S), (M_{\underline{b}}^{(n)}, S')$ then $d_{\Gamma} \neq d_{\Gamma'}$.

(日)

Thank you for your attention!

Andrea Ferraguti (Joint Mathematics Meeting 2020) The inverse problem for arboreal Galois representations

< □ > < □ > < □ > < □ > < □ >