The inverse problem for arboreal Galois representations of index two

Andrea Ferraguti

Joint Mathematics Meeting 2020

$$
18 / 1 / 2020
$$

Quadratic arboreal Galois representations

Let K be a field of characteristic not 2 , and let $f \in K[x]$ be a monic, quadratic polynomial with $f^{(n)}$ separable for every $n \geq 1$. We set $f^{(0)}:=x$ by convention.

The set $T(f) \subseteq K^{\text {sep }}$ of the roots of all the $f^{(n)}$'s has a natural structure of infinite, regular, rooted binary tree.

The absolute Galois group $G_{K}:=\mathrm{Gal}\left(K^{\text {sep }} / K\right)$ acts on $T(f)$ via its natural Galois action, yielding a continuous map of profinite groups $\rho_{f}: G_{K} \rightarrow \operatorname{Aut}(T(f))$.

Definition

Such map is called the arboreal Galois representation attached to f.

Open Problem

How does one compute $\operatorname{Im}\left(\rho_{f}\right)$? Or at least, how does one understand whether $\left[\operatorname{Aut}(T(f)): \operatorname{Im}\left(\rho_{f}\right)\right]<\infty$ or not?

Surjective representations

Let $f=(x-a)^{2}-b \in K[x]$. The adjusted post-critical orbit of f is the sequence defined by: $c_{1}:=-f(a), \quad c_{n}:=f^{(n)}(a), n \geq 2$.
Throughout the talk, I will always assume that every $f^{(n)}$ is separable, i.e. that $c_{n} \neq 0$ for every n.

Let $\left\langle c_{1}, \ldots, c_{n}\right\rangle$ be the \mathbb{F}_{2}-vector space generated by c_{1}, \ldots, c_{n} inside $K^{\times} / K^{\times 2}$.

Theorem (Stoll, 1992)

The arboreal representation $\rho_{f}: G_{K} \rightarrow \operatorname{Aut}(T(f))$ is surjective if and only if $\operatorname{dim}\left\langle c_{1}, \ldots, c_{n}\right\rangle=n$ for every n.
This holds, for example, for $x^{2}+a \in \mathbb{Q}[x]$ if $a \equiv 1 \bmod 4$.

Theorem (F., Micheli, 2019)
Let k be a field of characteristic not 2 and t be transcendental over k. Then the polynomial $f=x^{2}+t \in k(t)[x]$ has surjective representation.

Which representations have maximal image?

Stoll's theorem implies that linear relations (modulo squares) among the elements of the adjusted post-critical orbit decrease the size of the image of the representation.

Question

What type of linear relations in the post-critical orbit ensure that $\operatorname{Im}\left(\rho_{f}\right)$ is a maximal subgroup of $\Omega_{\infty}:=\operatorname{Aut}(T(f))$?

Notice that Ω_{∞} is a pro-2-group. Hence, its maximal subgroups are exactly those of index two, i.e. they are kernels of maps $\Omega_{\infty} \rightarrow \mathbb{F}_{2}$.

Understanding maximal subgroups of Ω_{∞}

Since $\Omega_{\infty}=\varliminf_{n \geq 1} \underbrace{\mathbb{F}_{2} \ell \ldots \imath \mathbb{F}_{2}}_{n \text { times }}$, every $\sigma \in \Omega_{\infty}$ has an expression of the form
$\left(\sigma_{1}, \ldots, \sigma_{n}, \ldots\right)$ where $\sigma_{n} \in \mathbb{F}_{2}^{2^{n-1}}$.
For every $n \geq 1$ there is a homomorphism $\phi_{n}: \Omega_{\infty} \rightarrow \mathbb{F}_{2}$ that sends σ to the sum of the coordinates of σ_{n}.
We let $\widehat{\phi}:=\prod_{n} \phi_{n}: \Omega_{\infty} \rightarrow \prod_{n \geq 1} \mathbb{F}_{2}$. One can check that $\operatorname{ker} \widehat{\phi}=\left[\Omega_{\infty}, \Omega_{\infty}\right]$. Hence, the dual group $\Omega_{\infty}^{\vee}:=\operatorname{hom}\left(\Omega_{\infty}, \mathbb{Q}_{2} / \mathbb{Z}_{2}\right)$ is spanned by all the ϕ_{n} 's.

Proposition

There exists a bijection

$$
\begin{gathered}
\bigoplus_{n \geq 1} \mathbb{F}_{2} \backslash\{\underline{0}\} \xrightarrow{\sim}\left\{\text { maximal subgroups of } \Omega_{\infty}\right\} \\
\underline{a}=\left(a_{n}\right)_{n \geq 1} \mapsto M_{\underline{a}}
\end{gathered}
$$

where $M_{\underline{a}}=\operatorname{ker} \sum_{n \geq 1} a_{n} \phi_{n}$.

Understanding maximal subgroups of Ω_{∞}

Let K be a field of characteristic not 2 and $f \in K[x]$ be monic, quadratic with adjusted post-critical orbit $\left\{c_{n}\right\}_{n \geq 1}$ and arboreal representation ρ_{f}.

Lemma

Let $\underline{a}=\left(a_{n}\right)_{n \geq 1} \in \bigoplus_{n \geq 1} \mathbb{F}_{2}$. Then $\operatorname{Im}\left(\rho_{f}\right) \subseteq M_{\underline{a}} \Longleftrightarrow \prod_{n \geq 1} c_{n}^{a_{n}} \in K^{2}$.

Stoll's theorem follows immediately!

Corollary

If f is post-critically finite or $K^{\times} / K^{\times 2}$ is finite dimensional, then $\left[\Omega_{\infty}: \operatorname{Im}\left(\rho_{f}\right)\right]=\infty$.

Representations with (transitive) maximal image

Theorem (F., Pagano, Casazza)

Let $\underline{a}=\left(a_{n}\right)_{n \geq 1} \in \bigoplus_{n \geq 1} \mathbb{F}_{2}$ be such that $\underline{a} \neq \underline{0},(1,0, \ldots, 0, \ldots)$. Let $f \in K[x]$ be irreducible.
Then $\operatorname{Im}\left(\rho_{f}\right)=M_{\underline{a}}$ if and only if

$$
\prod_{i \geq 1} c_{i}^{a_{i}} \in\left(K^{\times}\right)^{2}, \quad \prod_{i \geq 1} c_{i}^{b_{i}} \notin K^{2} \text { for every } \underline{b}=\left(b_{n}\right)_{n \geq 1} \in \bigoplus_{i \geq 1} \mathbb{F}_{2} \text { with } \underline{b} \neq \underline{0}, \underline{a}
$$

and one of the following two conditions is satisfied:
(D) $a_{1}=1$;
(2) $a_{1}=0$ and $h\left(c_{1}, \ldots, c_{n-1}, \sqrt{\prod_{i \geq 1} c_{i}^{a_{i}}}\right)$ is linearly independent from $\left\{c_{1}, \ldots, c_{n-1}, c_{n+1}, c_{n+2}, \ldots\right\}$ in $K^{\times} / K^{\times 2}$, where $h\left(X_{1}, \ldots, X_{n-1}, Y\right) \in \mathbb{Z}\left[X_{1}, \ldots, X_{n-1}, Y\right]$ depends only on \underline{a}, and n is the largest index with $a_{n}=1$.
If one of these conditions is sastisfied, then f is stable, i.e. $f^{(n)}$ is irreducible for every n.

A sketch of the proof

The idea is study, for a non-zero $\underline{a}=\left(a_{n}\right)_{n \geq 1} \in \bigoplus_{n \geq 1} \mathbb{F}_{2}$, the maximal subgroups of $M_{\underline{a}}$.
The most delicate step of the proof is to show that if $\varphi: M_{\underline{a}}^{\mathrm{ab}} \rightarrow \Omega_{\infty}^{\mathrm{ab}}$ is the natural map, then $|\operatorname{ker} \phi|=2$.

This is done by first noticing that $\operatorname{ker} \varphi=\left[\Omega_{\infty}, \Omega_{\infty}\right] /\left[M_{\underline{a}}, M_{\underline{a}}\right]$, and then proving that elements of $\operatorname{ker} \varphi$ can be represented as elements in $I_{\Omega_{\infty}} \mathbb{F}_{2}^{2^{n-1}} / I_{\Omega_{\infty}}^{2} \mathbb{F}_{2}^{2^{n-1}}$, for n the largest integer such that $a_{n}=1$.

One then uses this fact to prove the following:

- If $a_{1}=1$, then the maximal subgroups of $M_{\underline{a}}$ all arise as intersections of the maximal subgroups of Ω_{∞} with $M_{\underline{a}}$.
- If $a_{0}=0$, then there is an additional character $M_{\underline{a}} \rightarrow \mathbb{F}_{2}$ which maps $\sigma=\left(\sigma_{n}\right)_{n \geq 1}$ to $\sum_{n \geq 2} a_{n} \widetilde{\phi}_{n}(\sigma)$, where $\widetilde{\phi}_{n}(\sigma)$ is the sum of the first half of the coordinates of σ_{n}.
Finally, one computes the function $h\left(X_{1}, \ldots, X_{n-1}, Y\right) \in \mathbb{Z}\left[X_{1}, \ldots, X_{n-1}, Y\right]$ in terms of \underline{a}.

Representations with (non-transitive) maximal image

Theorem (F., Pagano, Casazza)
We have that $\operatorname{Im}\left(\rho_{f}\right)=M_{(1,0, \ldots, 0, \ldots)}$ if and only if $f=(x-a)^{2}-u^{2}$ for some $a, u \in K$ and

$$
\left\{c_{1} \pm u, c_{2} \pm u, \ldots, c_{n} \pm u, \ldots\right\} \text { is linearly independent in } K^{\times} /\left(K^{\times}\right)^{2}
$$

If these conditions hold, then $f=g_{1} g_{2}$ in $K[x]$, where g_{1}, g_{2} are f-stable linear polynomials, i.e. $g_{i} \circ f^{(n)}$ is irreducible for every $i \in\{1,2\}$ and every $n \geq 1$.

Examples over the rationals

Let $f:=x^{2}+t \in \mathbb{Q}(t)[x]$. Then $\operatorname{Im}\left(\rho_{f}\right)=\Omega_{\infty}$. Are there any specializations of f whose representations have maximal image?

Proposition

There are exactly 5 maximal subgroups of Ω_{∞} that can appear as $\operatorname{Im}\left(\rho_{f_{t_{0}}}\right)$ for infinitely many $t_{0} \in \mathbb{Q}$. These correspond to the vectors:

$$
\begin{gathered}
v_{1}=(1,1,0, \ldots, 0, \ldots), \quad v_{2}=(0,1,0, \ldots, 0, \ldots), \quad v_{3}=(1,0,1,0, \ldots, 0, \ldots), \\
v_{4}=(0,1,1,0, \ldots, 0 \ldots), \quad v_{5}=(1,0, \ldots, 0, \ldots)
\end{gathered}
$$

Theorem (F., Pagano, Casazza)

Let $u \in 2 \mathbb{Z} \backslash\{0\}$. The the following hold:
(1) if $t_{0}=-1-u^{2}$, then $\operatorname{lm}\left(\rho_{f_{t_{0}}}\right)=M_{v_{1}}$;
(2) if $t_{0}=\frac{1}{u^{2}-1}$, then $\operatorname{Im}\left(\rho_{t_{0}}\right)=M_{v_{2}}$.

Examples over the rationals

Conjecture (Vojta)

Let $d \in \mathbb{Z}_{\geq 5}$ and $g \in \mathbb{Q}[x]$ a polynomial of degree d with non-zero discriminant. Then there exist constants $C_{1}(d), C_{2}(d)$ such that if $x_{0}, y_{0} \in \mathbb{Q}$ satisfy $y_{0}^{2}=f\left(x_{0}\right)$, then:

$$
h\left(x_{0}\right) \leq C_{1} \cdot h(f)+C_{2} .
$$

Theorem (F., Pagano, Casazza)

Assume Vojta's conjecture, and let $i \in\{3,4,5\}$. Then there exists an infinite, thin set $E_{i} \subseteq \mathbb{Q}$ such that for all but finitely many $t_{0} \in E_{i}$ we have $\operatorname{Im}\left(\rho_{t_{0}}\right)=M_{v_{i}}$.

Remark

If $g_{1}=x^{2}-1-t^{2}, g_{2}=x^{2}+\frac{1}{t^{2}-1}$ and $g_{5}=x^{2}-t^{2}$ are seen as polynomials with coefficients in $\mathbb{Q}(t)$, then $\operatorname{Im}\left(\rho_{g_{i}}\right)=M_{v_{i}}$.
On the other hand, there are no polynomials $\psi=x^{2}+h(t) \in \mathbb{Q}(t)$ with $\operatorname{Im}\left(\rho_{\psi}\right) \in\left\{M_{v_{3}}, M_{v_{4}}\right\}$.

A reconstruction theorem

Finally, one can ask if any two maximal subgroups $M_{\underline{\underline{a}}}$ and $M_{\underline{b}}$ are isomorphic whenever $\underline{a} \neq \underline{b}$.

Theorem (F., Pagano, Casazza)

If $\underline{a}, \underline{b} \in \bigoplus_{n>1} \mathbb{F}_{2}$ are distinct vectors (possibly null), then $M_{\underline{a}}$ and $M_{\underline{b}}$ are non-isomorphic as topological groups.

The proof makes use of the following object.

Definition

Let G be a topological group and S a set of topological generators. The graph of commutativity of (G, S) has the elements of S as nodes, and two nodes g, h are connected if and only if $g h \neq h g$.

The proof method

The proof is quite involved. First, we studied in deep the descending central series of each $M_{\underline{a}}$, i.e. the sequence defined by

$$
M_{\underline{a}}^{(0)}:=M_{\underline{a}}, \quad M_{\underline{a}}^{(n)}:=\left[M_{\underline{a}}, M_{\underline{a}}^{(n-1)}\right]
$$

These subgroups are defined in terms of certain maximal subgroups of $\Omega_{\infty}^{(n)}$, for a suitable n.

Next, one defines the following invariant of a graph Γ with at least two vertices:

$$
d_{\Gamma}:=\min _{g \in \Gamma} \max _{g^{\prime} \in \Gamma \backslash\{g\}} \operatorname{dist}_{\Gamma}\left(g, g^{\prime}\right) .
$$

The final step is to show that if $\underline{a} \neq \underline{b}$, then there exist $n \geq 0$ and sets of topological generators S, S^{\prime} for $M_{\underline{a}}^{(n)}, M_{\underline{b}}^{(n)}$ such that if Γ, Γ^{\prime} are the graphs of commutativity of $\left(M_{\underline{a}}^{(n)}, S\right),\left(M_{\underline{b}}^{(n)}, S^{\prime}\right)$ then $d_{\Gamma} \neq d_{\Gamma^{\prime}}$.

Thank you for your attention!

