Higher Arithmetic Degrees

John Lesieutre

with: Nguyen-Bac Dang Dragos Ghioca Fei Hu Matthew Satriano

Set-up

- X projective over number field K
- $f: X \dashrightarrow X$ dominant rational map
- How to measure the "dynamical complexity" of f?

First dynamical degree

• Measures growth rate of degrees of f^n :

$$\lambda_1(f) = \lim_{n \to \infty} \left((f^n)^* H \cdot H^{\dim X - 1} \right)^{1/n}$$

First dynamical degree

• Measures growth rate of degrees of f^n :

$$\lambda_1(f) = \lim_{n \to \infty} \left((f^n)^* H \cdot H^{\dim X - 1} \right)^{1/n}$$

• (Theorem: Limit exists.)

Height functions

- Suppose $P \in \mathbb{P}^n(\mathbb{Q})$.
- Write $P = [X_0, \dots, X_n] \in \mathbb{P}^n(\mathbb{Q})$ with coprime integers.
- Set $h(P) = \log(\max |X_i|)$.
- (Similar for number fields.)

Arithmetic degree

- Suppose $P \in X$ has well defined forward orbit.
- Set

$$\alpha_f(P) = \limsup_{n \to \infty} h(f^n(P))^{1/n}.$$

Arithmetic degree

- Suppose $P \in X$ has well defined forward orbit.
- Set

$$\alpha_f(P) = \limsup_{n \to \infty} h(f^n(P))^{1/n}.$$

• (Question: Limit exists?)

• Define $f : \mathbb{A}^2 \to \mathbb{A}^2$ by $(x, y) \mapsto (y, xy)$.

 $(x,y)\mapsto (y,xy)$

$$(x,y)\mapsto (y,xy)\mapsto (xy,xy^2)$$

$$(x,y)\mapsto (y,xy)\mapsto (xy,xy^2)\mapsto (xy^2,x^2y^3)$$

$$\begin{split} (x,y) &\mapsto (y,xy) \mapsto (xy,xy^2) \mapsto (xy^2,x^2y^3) \\ &\mapsto (x^2y^3,x^3y^5) \end{split}$$

$$\begin{split} (x,y) &\mapsto (y,xy) \mapsto (xy,xy^2) \mapsto (xy^2,x^2y^3) \\ &\mapsto (x^2y^3,x^3y^5) \mapsto (x^3y^5,x^5y^8) \end{split}$$

• Define $f : \mathbb{A}^2 \to \mathbb{A}^2$ by $(x, y) \mapsto (y, xy)$.

$$\begin{aligned} (x,y) &\mapsto (y,xy) \mapsto (xy,xy^2) \mapsto (xy^2,x^2y^3) \\ &\mapsto (x^2y^3,x^3y^5) \mapsto (x^3y^5,x^5y^8) \mapsto \cdots \end{aligned}$$

• f^n given by $(x^{F_n}y^{F_{n+1}}, x^{F_{n+1}}y^{F_{n+2}})$.

•
$$\lambda_1(f) = \phi$$

•
$$\alpha_P(f) = \phi$$
 if $P = (3, 5)$

• Coincidence?

- $\lambda_1(f) = \phi$
- $\alpha_P(f) = \phi$ if P = (3, 5)
- Coincidence?
- $\alpha_P(f) = 1$ if P = (1, 1)

The Kawaguchi–Silverman Conjecture

• Conj: If P has dense orbit, then limit defining $\alpha_f(P)$ exists and is equal to $\lambda_1(f)$.

Higher dynamical degrees

$$\lambda_k(f) = \lim_{n \to \infty} \left((f^n)^* H^k \cdot H^{\dim X - k} \right)^{1/n}$$

• Measures degree growth along orbit of a codimension-k cycle.

Properties of dynamical degrees

Limit exists:Use Fekete's lemmaLog concavity: $\lambda_{k-1}(f)\lambda_{k+1}(f) \leq \lambda_k(f)^2$ Inverses: $\lambda_k(f) = \lambda_{\dim X-k}(f^{-1})$ Product formula: $\lambda_k(f) = \max(\lambda_i(\text{base})\lambda_{k-i}(\text{fibers}))$ Biratl surface maps:Salem or Pisot

Goal: Arithmetic analogs

- Want to define higher arithmetic degrees measuring height growth of higher-dimensional cycles.
- Problem: What could log concavity even say in this case?
- Each of the numbers involved depends on a choice of cycle!

Plan

- Define $\alpha_k(f)$, independent of cycle, which we imagine as "generic" height growth.
- Use an intersection in Arakelov Chow formally identical to the one appearing in dynamicall degrees.
- Many proofs become a copy/paste, replacing inequalities on intersections with corresponding arithmetic results!

Definition

• If V has dimension k, set

$$\alpha_{k+1}(f;V) = \limsup_{n \to \infty} \left(\widehat{\operatorname{deg}}\left((f^n)^* H \cdot V\right)\right)^{1/n}$$

• Set

$$\alpha_k(f) = \limsup_{n \to \infty} \left(\widehat{\deg} \left((f^n)^* H^k \cdot H^{\dim X + 1 - k} \right) \right)^{1/n}$$

• Note: growth of a 1-cycle is $\alpha_2(f; V)$; awkward indexing.

KS conjecture: heuristic

- Consider the function field analog:
- X defined over K(C)
- Pick a model $\pi : \mathcal{X} \to C$
- $h(V) = (\mathcal{V} \cdot H)_{\mathcal{X}}$
- How do we expect $h(f^n(V))$ to grow?

KS conjecture: heuristic

• V dimension k+1 in X, so \mathcal{V} dimension k+2 in \mathcal{X}

$$\alpha_k(f;V) = \lambda_k(f_{\mathcal{X}}) = \max(\lambda_k(f), \lambda_{k-1}(f))$$

by the product formula.

Higher codimension KS

- We split the conjecture into two parts:
- I: $\alpha_k(f) = \max(\lambda_k(f), \lambda_{k-1}(f))$
- II: $\alpha_k(f; V) = \alpha_k(f)$ for "general" V (dense orbit?)
- Expected height growth:

$$\alpha_k(f;V) = \max(\lambda_k(f), \lambda_{k-1}(f))$$

On a surface

• Growth rate of a curve should be

$$\alpha_2(f) = \max(\lambda_1(f), \lambda_2(f)).$$

- Both can occur!
- If X is birational can have $\lambda_1 > \lambda_2 = 1$
- If X monomial can have $\lambda_2 > \lambda_1$.

What we know

- Thm: Limit defining α_1 exists and is equal to λ_1 .
- (Limit for α_k will be OK pending arithmetic version of an inequality of Siu.)
- Thm: The limsup defining $\alpha_k(f)$ is finite (bounded by $\lambda_1(f)^k$

What we know

- Thm: Log concavity holds (use arithmetic Teissier–Khovanskii inequalities of Ikoma, Yuan–Zhang)
- Thm: Inverse property for birational maps holds (it's just push/pull)

KS, part I

- Conjecture: $\alpha_{k+1}(f) = \max(\lambda_k(f), \lambda_{k+1}(f)).$
- Theorem: $\lambda_1(f) = \alpha_1(f)$.
- Theorem: $\alpha_{k+1}(f) \ge \max(\lambda_k(f), \lambda_{k+1}(f))$