Higher Arithmetic Degrees

John Lesieutre
with:
Nguyen-Bac Dang
Dragos Ghioca
Fei Hu
Matthew Satriano

Set-up

- X projective over number field K
- $f: X \rightarrow X$ dominant rational map
- How to measure the "dynamical complexity" of f ?

First dynamical degree

- Measures growth rate of degrees of f^{n} :

$$
\lambda_{1}(f)=\lim _{n \rightarrow \infty}\left(\left(f^{n}\right)^{*} H \cdot H^{\operatorname{dim} X-1}\right)^{1 / n}
$$

First dynamical degree

- Measures growth rate of degrees of f^{n} :

$$
\lambda_{1}(f)=\lim _{n \rightarrow \infty}\left(\left(f^{n}\right)^{*} H \cdot H^{\operatorname{dim} X-1}\right)^{1 / n}
$$

- (Theorem: Limit exists.)

Height functions

- Suppose $P \in \mathbb{P}^{n}(\mathbb{Q})$.
- Write $P=\left[X_{0}, \ldots, X_{n}\right] \in \mathbb{P}^{n}(\mathbb{Q})$ with coprime integers.
- Set $h(P)=\log \left(\max \left|X_{i}\right|\right)$.
- (Similar for number fields.)

Arithmetic degree

- Suppose $P \in X$ has well defined forward orbit.
- Set

$$
\alpha_{f}(P)=\limsup _{n \rightarrow \infty} h\left(f^{n}(P)\right)^{1 / n}
$$

Arithmetic degree

- Suppose $P \in X$ has well defined forward orbit.
- Set

$$
\alpha_{f}(P)=\limsup _{n \rightarrow \infty} h\left(f^{n}(P)\right)^{1 / n}
$$

- (Question: Limit exists?)

Example

- Define $f: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ by $(x, y) \mapsto(y, x y)$.

$$
(x, y) \mapsto(y, x y)
$$

Example

- Define $f: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ by $(x, y) \mapsto(y, x y)$.

$$
(x, y) \mapsto(y, x y) \mapsto\left(x y, x y^{2}\right)
$$

Example

- Define $f: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ by $(x, y) \mapsto(y, x y)$.

$$
(x, y) \mapsto(y, x y) \mapsto\left(x y, x y^{2}\right) \mapsto\left(x y^{2}, x^{2} y^{3}\right)
$$

Example

- Define $f: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ by $(x, y) \mapsto(y, x y)$.

$$
\begin{aligned}
(x, y) & \mapsto(y, x y) \mapsto\left(x y, x y^{2}\right) \mapsto\left(x y^{2}, x^{2} y^{3}\right) \\
& \mapsto\left(x^{2} y^{3}, x^{3} y^{5}\right)
\end{aligned}
$$

Example

- Define $f: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ by $(x, y) \mapsto(y, x y)$.

$$
\begin{aligned}
(x, y) & \mapsto(y, x y) \mapsto\left(x y, x y^{2}\right) \mapsto\left(x y^{2}, x^{2} y^{3}\right) \\
& \mapsto\left(x^{2} y^{3}, x^{3} y^{5}\right) \mapsto\left(x^{3} y^{5}, x^{5} y^{8}\right)
\end{aligned}
$$

Example

- Define $f: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ by $(x, y) \mapsto(y, x y)$.

$$
\begin{aligned}
(x, y) & \mapsto(y, x y) \mapsto\left(x y, x y^{2}\right) \mapsto\left(x y^{2}, x^{2} y^{3}\right) \\
& \mapsto\left(x^{2} y^{3}, x^{3} y^{5}\right) \mapsto\left(x^{3} y^{5}, x^{5} y^{8}\right) \mapsto \cdots
\end{aligned}
$$

- f^{n} given by $\left(x^{F_{n}} y^{F_{n+1}}, x^{F_{n+1}} y^{F_{n+2}}\right)$.

Example

- $\lambda_{1}(f)=\phi$
- $\alpha_{P}(f)=\phi$ if $P=(3,5)$
- Coincidence?

Example

- $\lambda_{1}(f)=\phi$
- $\alpha_{P}(f)=\phi$ if $P=(3,5)$
- Coincidence?
- $\alpha_{P}(f)=1$ if $P=(1,1)$

The Kawaguchi-Silverman Conjecture

- Conj: If P has dense orbit, then limit defining $\alpha_{f}(P)$ exists and is equal to $\lambda_{1}(f)$.

Higher dynamical degrees

- Set

$$
\lambda_{k}(f)=\lim _{n \rightarrow \infty}\left(\left(f^{n}\right)^{*} H^{k} \cdot H^{\operatorname{dim} X-k}\right)^{1 / n}
$$

- Measures degree growth along orbit of a codimension- k cycle.

Properties of dynamical degrees

Limit exists:

Log concavity:
Inverses:
Product formula:
Biratl surface maps: Salem or Pisot

Goal: Arithmetic analogs

- Want to define higher arithmetic degrees measuring height growth of higher-dimensional cycles.
- Problem: What could log concavity even say in this case?
- Each of the numbers involved depends on a choice of cycle!

Plan

- Define $\alpha_{k}(f)$, independent of cycle, which we imagine as "generic" height growth.
- Use an intersection in Arakelov Chow formally identical to the one appearing in dynamicall degrees.
- Many proofs become a copy/paste, replacing inequalities on intersections with corresponding arithmetic results!

Definition

- If V has dimension k, set

$$
\alpha_{k+1}(f ; V)=\limsup _{n \rightarrow \infty}\left(\widehat{\operatorname{deg}}\left(\left(f^{n}\right)^{*} H \cdot V\right)\right)^{1 / n}
$$

- Set

$$
\alpha_{k}(f)=\underset{n \rightarrow \infty}{\limsup }\left(\widehat{\operatorname{deg}}\left(\left(f^{n}\right)^{*} H^{k} \cdot H^{\operatorname{dim} X+1-k}\right)\right)^{1 / n}
$$

- Note: growth of a 1-cycle is $\alpha_{2}(f ; V)$; awkward indexing.

KS conjecture: heuristic

- Consider the function field analog:
- X defined over $K(C)$
- Pick a model $\pi: \mathcal{X} \rightarrow C$
- $h(V)=(\mathcal{V} \cdot H)_{\mathcal{X}}$
- How do we expect $h\left(f^{n}(V)\right)$ to grow?

KS conjecture: heuristic

- V dimension $k+1$ in X, so \mathcal{V} dimension $k+2$ in \mathcal{X}

$$
\alpha_{k}(f ; V)=\lambda_{k}\left(f_{\mathcal{X}}\right)=\max \left(\lambda_{k}(f), \lambda_{k-1}(f)\right)
$$

by the product formula.

Higher codimension KS

- We split the conjecture into two parts:
- I: $\alpha_{k}(f)=\max \left(\lambda_{k}(f), \lambda_{k-1}(f)\right)$
- II: $\alpha_{k}(f ; V)=\alpha_{k}(f)$ for "general" V (dense orbit?)
- Expected height growth:

$$
\alpha_{k}(f ; V)=\max \left(\lambda_{k}(f), \lambda_{k-1}(f)\right)
$$

On a surface

- Growth rate of a curve should be

$$
\alpha_{2}(f)=\max \left(\lambda_{1}(f), \lambda_{2}(f)\right) .
$$

- Both can occur!
- If X is birational can have $\lambda_{1}>\lambda_{2}=1$
- If X monomial can have $\lambda_{2}>\lambda_{1}$.

What we know

- Thm: Limit defining α_{1} exists and is equal to λ_{1}.
- (Limit for α_{k} will be OK pending arithmetic version of an inequality of Siu.)
- Thm: The limsup defining $\alpha_{k}(f)$ is finite (bounded by $\lambda_{1}(f)^{k}$

What we know

- Thm: Log concavity holds (use arithmetic Teissier-Khovanskii inequalities of Ikoma, Yuan-Zhang)
- Thm: Inverse property for birational maps holds (it's just push/pull)

KS, part I

- Conjecture: $\alpha_{k+1}(f)=\max \left(\lambda_{k}(f), \lambda_{k+1}(f)\right)$.
- Theorem: $\lambda_{1}(f)=\alpha_{1}(f)$.
- Theorem: $\alpha_{k+1}(f) \geq \max \left(\lambda_{k}(f), \lambda_{k+1}(f)\right)$

