New types of heights with connections to the Batyrev–Manin and Malle Conjectures

Matthew Satriano (joint with Jordan Ellenberg and David Zureick-Brown)

JMM, Arithmetic Dynamics Denver, January 2020

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Let k be a global field and Y a normal variety.

$$N_{Y,D,k}(B) = \#\{y \in Y(k) \mid H_D(y) \le B\}.$$

(ロト (個) (E) (E) (E) (E) (O) (O)

Let k be a global field and Y a normal variety.

$$N_{Y,D,k}(B) = \#\{y \in Y(k) \mid H_D(y) \le B\}.$$

Weak Manin Conjecture

If X is Fano and D is ample, then there exists an open subset $U \subseteq X$ such that for all $\epsilon > 0$,

$$N_{U,D,k}(B) = O(B^{a(D)+\epsilon})$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

where $a(D) = \inf\{t \mid tD + K_X \text{ effective}\}\$

Let k be a global field and Y a normal variety.

$$N_{Y,D,k}(B) = \#\{y \in Y(k) \mid H_D(y) \le B\}.$$

Weak Manin Conjecture

If X is Fano and D is ample, then there exists an open subset $U \subseteq X$ such that for all $\epsilon > 0$,

$$N_{U,D,k}(B) = O(B^{a(D)+\epsilon})$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

where $a(D) = \inf\{t \mid tD + K_X \text{ effective}\}\$

Batyrev–Manin Philosophy

One expects $N_{U,D,k}(B) \sim cB^{a(D)}(\log B)^{b(D,k)}$.

Let k be a global field and Y a normal variety.

$$N_{Y,D,k}(B) = \#\{y \in Y(k) \mid H_D(y) \le B\}.$$

Weak Manin Conjecture

If X is Fano and D is ample, then there exists an open subset $U \subseteq X$ such that for all $\epsilon > 0$,

$$N_{U,D,k}(B) = O(B^{a(D)+\epsilon})$$

where $a(D) = \inf\{t \mid tD + K_X \text{ effective}\}\$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

If $G \subseteq S_n$ is a transitive subgroup, let $N_{G,k}(B)$ be the number of L/k such that:

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

$$\blacktriangleright$$
 [L : k] = n

►
$$N_{k/\mathbb{Q}}(\operatorname{disc}_{L/k}) \leq B$$

• Galois group of Galois closure of L/k is G.

If $G \subseteq S_n$ is a transitive subgroup, let $N_{G,k}(B)$ be the number of L/k such that:

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

$$\blacktriangleright [L:k] = n$$

►
$$N_{k/\mathbb{Q}}(\operatorname{disc}_{L/k}) \leq B$$

• Galois group of Galois closure of L/k is G.

Malle Philosophy

One expects $N_{G,k}(B) \sim cB^{a(G)}(\log B)^{b(G,k)}$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Ellenberg-S-Zureick-Brown

Developed a theory of heights on stacks $\mathcal{X} = [X/G]$

4 日 > 4 H > 4 H > 4 H > 4 H > 4 H > 4 H > 4 H >

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Ellenberg-S-Zureick-Brown

Developed a theory of heights on stacks $\mathcal{X} = [X/G]$

• When G = 1, $\mathcal{X} = X$, we recover usual Weil heights

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Ellenberg-S-Zureick-Brown

Developed a theory of heights on stacks $\mathcal{X} = [X/G]$

• When G = 1, $\mathcal{X} = X$, we recover usual Weil heights

• When
$$X = pt$$
, $\mathcal{X} = BG$, we recover disc

(ロト (個) (E) (E) (E) (E) (O) (O)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Weil height machine fails

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Weil height machine fails: L universal on B(Z/2), then L^{⊗2} = O, so h_L = 0.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

- Weil height machine fails: L universal on B(Z/2), then L^{⊗2} = O, so h_L = 0.
- Need heights of vector bundles

- Cannot use projective embeddings to define heights: X ⊆ Pⁿ implies X is a variety.
- Weil height machine fails: L universal on B(Z/2), then L^{⊗2} = O, so h_L = 0.
- Need heights of vector bundles otherwise can't distinguish between BG and BG^{ab}.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Failure of the valuative criterion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Failure of the valuative criterion

Really, one defines heights of *integral points*: $h_{\mathcal{L}}(x) := \deg(\overline{x}^*\mathcal{L})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Failure of the valuative criterion

Really, one defines heights of *integral points*: $h_{\mathcal{L}}(x) := \deg(\overline{x}^*\mathcal{L})$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

ヘロト 人間 とくほ とくほ とう

æ

590

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … のへで

C is a "stacky ring of integers": C is normal, π is a birational coarse space map.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 ${\mathcal C}$ is a "stacky ring of integers": ${\mathcal C}$ is normal, π is a birational coarse space map.

Definition

 $h_{\mathcal{V}}(x) := -\deg(\pi_*\overline{x}^*\mathcal{V}^{\vee}).$

 ${\mathcal C}$ is a "stacky ring of integers": ${\mathcal C}$ is normal, π is a birational coarse space map.

Definition

 $h_{\mathcal{V}}(x) := -\deg(\pi_*\overline{x}^*\mathcal{V}^{\vee}).$

Example ($\mathcal{X} = BG$, x is the Galois extension L/k)

 ${\mathcal C}$ is a "stacky ring of integers": ${\mathcal C}$ is normal, π is a birational coarse space map.

Definition

 $h_{\mathcal{V}}(x) := -\deg(\pi_*\overline{x}^*\mathcal{V}^{\vee}).$

Example ($\mathcal{X} = BG$, x is the Galois extension L/k)

•
$$\mathcal{V} = \text{regular rep: } h_{\mathcal{V}}(x) = \frac{1}{2} \log |N_{k/\mathbb{Q}} \operatorname{disc}(L/k)|$$

 ${\mathcal C}$ is a "stacky ring of integers": ${\mathcal C}$ is normal, π is a birational coarse space map.

Definition

 $h_{\mathcal{V}}(x) := -\deg(\pi_*\overline{x}^*\mathcal{V}^{\vee}).$

Example ($\mathcal{X} = BG$, x is the Galois extension L/k)

- $\mathcal{V} = \text{regular rep: } h_{\mathcal{V}}(x) = \frac{1}{2} \log |N_{k/\mathbb{Q}} \operatorname{disc}(L/k)|$
- ▶ For Malle, use $\mathcal{V} = \text{permutation rep of } G \subseteq S_n$.

In Weak Manin Conjecture, $a(D) = \inf\{t \mid tD + K_X \text{ effective}\}.$

(ロト (個) (E) (E) (E) (E) (O) (O)

In Weak Manin Conjecture, $a(D) = \inf\{t \mid tD + K_X \text{ effective}\}$. But for $\mathcal{X} = BG$, $K_{\mathcal{X}} = \mathcal{O}_{\mathcal{X}}$.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

In Weak Manin Conjecture, $a(D) = \inf\{t \mid tD + K_X \text{ effective}\}$. But for $\mathcal{X} = BG$, $K_{\mathcal{X}} = \mathcal{O}_{\mathcal{X}}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Definition

 $\operatorname{edd}(x) := \operatorname{deg}(\overline{x}^* T_{\mathcal{X}}) - \operatorname{deg}(T_{\mathcal{C}})$, where \overline{x} is representable.

Stacky Batyrev–Manin–Malle Conjecture

Definition

 \mathcal{V} is generically semipositive if there is a closed substack $\mathcal{Z} \subsetneq \mathcal{X}$ such that for all B and every extension finite L/k,

$$\{x \in \mathcal{X}(L) : h_{\mathcal{V}}(x) < B\}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

has only finitely many points not contained in \mathcal{Z} .

Stacky Batyrev–Manin–Malle Conjecture

Definition

 \mathcal{V} is generically semipositive if there is a closed substack $\mathcal{Z} \subsetneq \mathcal{X}$ such that for all B and every extension finite L/k,

$$\{x \in \mathcal{X}(L) : h_{\mathcal{V}}(x) < B\}$$

has only finitely many points not contained in \mathcal{Z} .

Definition

A function $f: \mathcal{X}(\overline{k}) \to \mathbb{R}$ is generically bounded below if for all $d \in \mathbb{Z}^+$, there is a constant B_d such that

$$\bigcup_{[L:k]=d} \{x \in \mathcal{X}(L) : h_{\mathcal{V}}(x) < B_d\}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

is not Zariski dense.

Stacky Batyrev-Manin-Malle Conjecture

Let \mathcal{X} be a smooth proper stack such that edd is generically bounded below. If \mathcal{V} is a generically semipositive vector bundle, then there exists $\mathcal{U} \subseteq \mathcal{X}$ open dense such that for all $\epsilon > 0$,

$$N_{\mathcal{U},\mathcal{V},k}(B) = O(B^{a(\mathcal{V})+\epsilon})$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

where $a(\mathcal{V}) = \inf\{t \mid th_{\mathcal{V}} - \text{edd generically bounded below}\}.$

Thank you.

