Automorphism loci for endomorphisms of \mathbb{P}^1

Benjamin Hutz

Department of Mathematics and Statistics Saint Louis University

January 16–19, 2020 JMM Denver, CO Special Session on Arithmetic Dynamics

Summer@ICERM 2019 - Computational Arithmetic Dynamics

Char 0

- Brandon Gontmacher Stony Brook University
- Grayson Jorgenson Florida State University
- Srinjoy Srimani Brown University
- Simon Xu Colby College

Char p > 0

- Julia Cai Yale University
- Leo Mayer Lawrence University
- Max Weinreich Brown University

Thanks to ICERM for supporting the program and the other faculty mentors and research assistants who made it possible!

Question 1

Describe the locus $A_d \subset M_d$ of conjugacy classes of morphisms of degree *d* which have a non-trivial automorphism group.

Question 2

Which finite subgroups $\Gamma \subseteq PGL_2$ occur as the automorphism group of some $f : \mathbb{P}^1 \to \mathbb{P}^1$?

Definition

Define Hom_d to be the set of degree *d* endomorphisms of the projective line.

Definition

Given $f \in \text{Hom}_d$ we can conjugate by an element $\alpha \in \text{PGL}_2 = \text{Aut}(\mathbb{P}^1)$

$$f^{\alpha} = \alpha^{-1} \circ f \circ \alpha.$$

This preserves the dynamical properties of $f: (f^n)^{\alpha} = (f^{\alpha})^n$.

Definition

We define the moduli space of degree *d* morphisms as the quotient $M_d = \text{Hom}_d / \text{PGL}_2$.

Definition

For $f : \mathbb{P}^1 \to \mathbb{P}^1$ define the automorphism group of f as

$$\mathsf{Aut}(f) = \{ \alpha \in \mathsf{PGL}_2 \mid f^\alpha = f \}.$$

Definition

Given the set of *n*-periodic points $\{P_1, \ldots, P_{n_d}\}$ and their multipliers $\Lambda_n = \{\lambda_1, \ldots, \lambda_{n_d}\}.$

Theorem (Milnor (1993), Silverman (1998))

The elementary symmetric polynomials evaluated on Λ_n are invariants of M_d .

Theorem (Milnor (1993), Silverman (1998))

There is an isomorphism $\mathcal{M}_2 \cong \mathbb{A}^2$ given by $[f] \mapsto (\sigma_1, \sigma_2)$.

Theorem (Milnor (1993), Fujimura-Nishizawa (2007))

 $\mathcal{A}_2(\overline{\mathbb{Q}})$ is the cuspidal cubic

$$2\sigma_1^3 + \sigma_1^2\sigma_2 - \sigma_1^2 - 4\sigma_2^2 - 8\sigma_1\sigma_2 + 12\sigma_1 + 12\sigma_2 - 36 = 0.$$

Theorem (CHMW)

 $\mathcal{A}_2(\overline{\mathbb{F}}_2)$ is a line missing a point given by $\{\sigma_1 = 0 : \sigma_2 \neq 1\}$. In particular, $\mathcal{A}_2(\overline{\mathbb{F}}_2)$ is not Zariski closed.

Related

• West (2014) - Parametrization of \mathcal{M}_3 from which the maps with non-trivial automorphisms could be extracted.

Tools

- Doyle-McMullen (1989) invariant theory and automorphisms
- Miasnikov-Stout-Williams (2014) Dimensions of A_d(Γ)
- de Faria-Hutz (2015) invariant theory and automorphisms

Group	Dimension	Family
A ₄	0	
<i>C</i> ₄	0	
<i>D</i> ₄	0	
<i>C</i> ₃	1	
D ₂	1	
<i>C</i> ₂	2	

\mathcal{A}_3 - GHJSX

Group	Dimension	Family
A ₄	0	to be revealed
<i>C</i> ₄	0	$\frac{1}{z^3}$
<i>D</i> ₄	0	$\frac{1}{z^3}$
<i>C</i> ₃	1	$\frac{z^3+a}{az^2}$
<i>D</i> ₂	1	$\frac{az^2-1}{z^3-az}$
	1	$\frac{az^2+1}{z^3+az}$
<i>C</i> ₂	2	$\frac{az^2+1}{z^3+bz}$
	2	$\frac{z^3+az}{bz^2+1}$

Group	Dimension	Family
D ₅	0	
<i>C</i> ₅	0	
<i>C</i> ₄	1	
<i>D</i> ₃	1	
<i>C</i> ₃	2	
<i>C</i> ₂	3	

Group	Dimension	Family
D ₅	0	$\frac{1}{z^4}$
<i>C</i> ₅	0	$\frac{1}{z^4}$
<i>C</i> ₄	1	$\frac{z^4+1}{az^3}$
<i>D</i> ₃	1	$\frac{z^4+az}{az^3+1}$
<i>C</i> ₃	2	$\frac{z^4+az}{bz^3+1}$
<i>C</i> ₂	3	$\frac{z^4+az^2+1}{bz^3+cz}$

Theorem (GHJSX)

Assuming a specific upper bound on the period of a \mathbb{Q} -rational periodic point for each family, then

$$\#\operatorname{\mathsf{PrePer}}(f) \leq \mathbf{8}, \quad \forall f \in \mathcal{A}_{\mathbf{3}}(\mathbb{Q})$$

with A_3 represented as above.

A similar theorem for A_4 ...

Theorem (deFaria-H, 2015)

For any representation of a finite subgroup $\Gamma \subset PGL_2$, there are infinitely many maps whose automorphism group contains Γ .

Proof.

The proof is constructive and relies on the invariant theory of finite groups.

deFaria-H were also able to find a \mathbb{Q} -rational map for all finite subgroups of PGL₂ except for the tetrahedral group.

Theorem (GHJSX)

Every finite subgroup of PGL_2 can be realized as the (exact) automorphism group of a map defined over \mathbb{Q} .

Proof.

The map

$$f(z)=\frac{z^3-3}{-3z^2}$$

has tetrahedral automorphism group.

Theorem (McMullen, 1987)

The multiplier map is finite-to-one away from the locus of Lattès maps.

Theorem (H.-Tepper, 2013)

The multiplier map on \mathcal{M}_3 is at most 12-to-1.

Open Problem Exhibit an explicit 12-to-one example. The family of maps

$$f_a(z) = \frac{az^2 - 1}{z^3 - az}$$

1

has the following properties.

- Aut $(f_a) \subset D_2$ for all a
- $\Lambda_1(f_a)$ does not depend on a

Complications

- PGL₂(𝔽_q) is a finite group whereas PGL₂(𝔽_p) is not. However, every element of PGL₂(𝔽_p) lives in some PGL₂(𝔽_q), so we will consider each of these finite groups.
- Invariant theory is more complicated when the characteristic divides the order of the group.
- The constructive theorems in char 0 do not necessarily still work in char p.
- There are additional conjugacy classes of representations.

Theorem (Faber, 2012)

The conjugacy classes of finite subgroups of $PGL_2(\overline{\mathbb{F}}_p)$ are as follows.

- The p-regular case: C_n, D_{2n}, A₄, A₅, S₄, except when p divides the corresponding group order. Each occurs as just one conjugacy class.
- The p-irregular case: PGL₂(F_q), PSL₂(F_q), subgroups of B(F_q). The first two occur in just one conjugacy class, but the others sometimes occur with multiple conjugacy classes

Theorem (CHMW)

The map $f(z) = z^q$ has automorphism group $PGL_2(\mathbb{F}_q)$. This is the unique conjuacy class of degree q which is rational over \mathbb{F}_q with this automorphism group. This is also the minimal degree of such a map.

So the char 0 questions about the realizability of $\Gamma \subseteq Aut(f)$ are now fully answered as "yes!" We look next at the more difficult question of (rational) realizability of exact automorphism groups.

One Example

Example

$$\#\operatorname{PSL}_2(\mathbb{F}_q) = \frac{(q+1)q(q-1)}{2}, \ p > 2, \ \operatorname{PSL}_2(\mathbb{F}_q) \cong \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \right\rangle.$$

With an ad hoc brute force type approach the following were the (minimal) degrees of maps which had $PSL_2(\mathbb{F}_q)$ as exact automorphism group

q	Degree
3	7
5	41
7	127
11	551
13	937

which seemed to be

$$\deg(f) = (q+1)\left(\frac{1}{2}q^2 - \frac{3}{2}q + 2\right) - 1$$

Benjamin Hutz

Better!

Theorem (CHMW)

Let u and c_1 be the fundamental invariants of $PSL_2(\mathbb{F}_q)$ of degree q + 1and $q^2 - q$, respectively

$$u = x^{q}y + xy^{q}$$

$$c_{1} = \sum_{n=0}^{q} x^{(q-1)(q-n)} y^{(q-1)n}$$

Define

$$f: \mathbb{P}^1 \to \mathbb{P}^1$$
$$f(x, y) = \left[-x \frac{c_1^b}{2} + \frac{\partial u^a}{\partial y}, y \frac{c_1^b}{2} - \frac{\partial u^a}{\partial x} \right],$$

where $b = \frac{q-1}{2}$ and $a = \frac{q(q-3)+4}{2}$. Then $\operatorname{Aut}(f) = \operatorname{PSL}_2(\mathbb{F}_q)$.

Properties of these families!

- Unconditional uniform boundedness for A_d
- 2 How automorphisms affect the "randomness" of the map
- Geometry of the families that have dimension > 1
- 2 Why are we seeing a symmetry disappear in the limit for $\mathcal{A}_2(\overline{\mathbb{F}}_p)$?
- O Description and geometry of $\mathcal{A}_3(\overline{\mathbb{F}}_p)$.
- What is the appropriate reformulation for characteristic p of the theorem that A_d(C) is Zariski closed?
- S As the map f_c varies, so does the nontrivial automorphism it carries. Can we create a moduli space which parameterizes rational maps with a choice of automorphism, and would the analogue of A_d in this moduli space be a Zariski closed set?

Questions?

References

- P. Doyle and C. McMullen, Solving the quintic by iteration, Acta Arith. 163 (1989), no. 3–4, 151–180.
- Xander Faber, Finite p-irregular subgroups of PGL2(k), arxiv.org/1112.1999 (2012).
- Masayo Fujimura and Kiyoko Nishizawa, The real multiplier coordinate space of the quartic polynomials, pp. 61–69, Yokohama Publ., 2007.
- Benjamim Hutz and Michael Tepper, Multiplier spectra and the moduli space of degree 3 morphisms on P1, JP Journal of Algebra, Number Theory and Applications 29 (2013), no. 2, 189–206.
- Curtis McMullen, Families of rational maps and iterative root-finding algorithms, Ann. of Math. 125 (1987), no. 3, 467–493.
- J. Milnor, *Geometry and dynamics of quadratic rational maps*, Experiment. Math. **2** (1993), no. 1, 37–83.
- Nikita Miasnikov, Brian Stout, and Phillip Williams, Automorphism loci for the moduli space of rational maps, arxiv:1408.5655 (2014).
- Joseph H. Silverman, The space of rational maps on P1, Duke Math. J. 94 (1998), 41–118.
- Llyod W. West, *The moduli space of cubic rational maps*, arXiv:1408.3247 (2014).

Benjamin Hutz

Automorphisms