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The Main Questions

Question 1
Describe the locus Ad ⊂Md of conjugacy classes of morphisms of
degree d which have a non-trivial automorphism group.

Question 2
Which finite subgroups Γ ⊆ PGL2 occur as the automorphism group of
some f : P1 → P1?
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Moduli Space of Dynamical Systems

Definition
Define Homd to be the set of degree d endomorphisms of the
projective line.

Definition

Given f ∈ Homd we can conjugate by an element α ∈ PGL2 = Aut(P1)

fα = α−1 ◦ f ◦ α.

This preserves the dynamical properties of f : (f n)α = (fα)n.

Definition
We define the moduli space of degree d morphisms as the quotient
Md = Homd /PGL2.

Benjamin Hutz Automorphisms Background 4 / 24



Automorphisms

Definition

For f : P1 → P1 define the automorphism group of f as

Aut(f ) = {α ∈ PGL2 | fα = f}.

Definition
Given the set of n-periodic points {P1, . . . ,Pnd} and their multipliers
Λn = {λ1, . . . , λnd}.

Theorem (Milnor (1993), Silverman (1998))
The elementary symmetric polynomials evaluated on Λn are invariants
of Md .
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Automorphisms

Theorem (Milnor (1993), Silverman (1998))

There is an isomorphismM2 ∼= A2 given by [f ] 7→ (σ1, σ2).

Theorem (Milnor (1993), Fujimura-Nishizawa (2007))

A2(Q) is the cuspidal cubic

2σ3
1 + σ2

1σ2 − σ2
1 − 4σ2

2 − 8σ1σ2 + 12σ1 + 12σ2 − 36 = 0.

Theorem (CHMW)

A2(F2) is a line missing a point given by {σ1 = 0 : σ2 6= 1}. In
particular, A2(F2) is not Zariski closed.
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Degree 3 and 4

Related
West (2014) - Parametrization ofM3 from which the maps with
non-trivial automorphisms could be extracted.

Tools
Doyle-McMullen (1989) - invariant theory and automorphisms
Miasnikov-Stout-Williams (2014) - Dimensions of Ad (Γ)

de Faria-Hutz (2015) - invariant theory and automorphisms
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A3 - Miasnikov-Stout-Williams

Group Dimension Family
A4 0
C4 0
D4 0
C3 1
D2 1
C2 2
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A3 - GHJSX

Group Dimension Family

A4 0 to be revealed

C4 0 1
z3

D4 0 1
z3

C3 1 z3+a
az2

D2 1 az2−1
z3−az

1 az2+1
z3+az

C2 2 az2+1
z3+bz

2 z3+az
bz2+1
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A4 - Miasnikov-Stout-Williams

Group Dimension Family
D5 0
C5 0
C4 1
D3 1
C3 2
C2 3
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A4 - GHJSX

Group Dimension Family

D5 0 1
z4

C5 0 1
z4

C4 1 z4+1
az3

D3 1 z4+az
az3+1

C3 2 z4+az
bz3+1

C2 3 z4+az2+1
bz3+cz
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Application to Uniform-Boundedness

Theorem (GHJSX)
Assuming a specific upper bound on the period of a Q-rational periodic
point for each family, then

# PrePer(f ) ≤ 8, ∀f ∈ A3(Q)

with A3 represented as above.

A similar theorem for A4...
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Existence of Automorphisms in Characteristic 0

Theorem (deFaria-H, 2015)
For any representation of a finite subgroup Γ ⊂ PGL2, there are
infinitely many maps whose automorphism group contains Γ.

Proof.
The proof is constructive and relies on the invariant theory of finite
groups.

deFaria-H were also able to find a Q-rational map for all finite
subgroups of PGL2 except for the tetrahedral group.
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Field of Definition

Theorem (GHJSX)
Every finite subgroup of PGL2 can be realized as the (exact)
automorphism group of a map defined over Q.

Proof.
The map

f (z) =
z3 − 3
−3z2

has tetrahedral automorphism group.
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Sigma Invariants

Theorem (McMullen, 1987)
The multiplier map is finite-to-one away from the locus of Lattès maps.

Theorem (H.-Tepper, 2013)
The multiplier map onM3 is at most 12-to-1.

Open Problem
Exhibit an explicit 12-to-one example.
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Interesting Family

The family of maps

fa(z) =
az2 − 1
z3 − az

has the following properties.
Aut(fa) ⊂ D2 for all a
Λ1(fa) does not depend on a
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Characteristic p > 0

Complications
1 PGL2(Fq) is a finite group whereas PGL2(Fp) is not. However,

every element of PGL2(Fp) lives in some PGL2(Fq), so we will
consider each of these finite groups.

2 Invariant theory is more complicated when the characteristic
divides the order of the group.

3 The constructive theorems in char 0 do not necessarily still work
in char p.

4 There are additional conjugacy classes of representations.

Benjamin Hutz Automorphisms Existence of Automorphisms 17 / 24



Classification of finite subgroups

Theorem (Faber, 2012)

The conjugacy classes of finite subgroups of PGL2(Fp) are as follows.
The p-regular case: Cn, D2n, A4, A5, S4, except when p divides
the corresponding group order. Each occurs as just one
conjugacy class.
The p-irregular case: PGL2(Fq), PSL2(Fq), subgroups of B(Fq).
The first two occur in just one conjugacy class, but the others
sometimes occur with multiple conjugacy classes
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PGL(Fq)

Theorem (CHMW)
The map f (z) = zq has automorpism group PGL2(Fq). This is the
unique conjuacy class of degree q which is rational over Fq with this
automorphism group. This is also the minimal degree of such a map.

So the char 0 questions about the realizability of Γ ⊆ Aut(f ) are now
fully answered as “yes!” We look next at the more difficult question of
(rational) realizability of exact automorphism groups.
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One Example

Example

# PSL2(Fq) = (q+1)q(q−1)
2 , p > 2, PSL2(Fq) ∼=

〈(
1 1
0 1

)
,

(
1 0
1 1

)〉
.

With an ad hoc brute force type approach the following were the
(minimal) degrees of maps which had PSL2(Fq) as exact
automorphism group

q Degree
3 7
5 41
7 127
11 551
13 937

which seemed to be

deg(f ) = (q + 1)

(
1
2

q2 − 3
2

q + 2
)
− 1
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Better!

Theorem (CHMW)
Let u and c1 be the fundamental invariants of PSL2(Fq) of degree q + 1
and q2 − q, respectively

u = xqy + xyq

c1 =

q∑
n=0

x (q−1)(q−n)y (q−1)n.

Define

f : P1 → P1

f (x , y) =

[
−x

cb
1
2

+
∂ua

∂y
, y

cb
1
2
− ∂ua

∂x

]
,

where b = q−1
2 and a = q(q−3)+4

2 . Then Aut(f ) = PSL2(Fq).
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Some open questions

1 Properties of these families!
1 Unconditional uniform boundedness for Ad
2 How automorphisms affect the “randomness” of the map
3 Geometry of the families that have dimension > 1

2 Why are we seeing a symmetry disappear in the limit for A2(Fp)?
3 Description and geometry of A3(Fp).
4 What is the appropriate reformulation for characteristic p of the

theorem that Ad (C) is Zariski closed?
5 As the map fc varies, so does the nontrivial automorphism it

carries. Can we create a moduli space which parameterizes
rational maps with a choice of automorphism, and would the
analogue of Ad in this moduli space be a Zariski closed set?
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Thanks for Listening!

Questions?
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