Arboreal Galois representations of PCF quadratic polynomials

Jamie Juul

University of British Columbia

jjuul@math.ubc.ca

Joint w/ Rob Benedetto, Dragos Ghioca, Tom Tucker

JMM

January 18, 2020

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

Arboreal Galois Representations

Let

▶
$$f(x) \in K(x)$$
 with degree $d > 1$ and $\alpha \in K$,

•
$$f^n(x) = \underbrace{f \circ f \circ \cdots \circ f}_n(x)$$
, the *n*-th iterate of *f*,

•
$$f^{-n}(\alpha) = \{\beta \in \overline{K} : f^n(\beta) = \alpha\},\$$

•
$$K_n = K(f^{-n}(\alpha))$$
, and $K_{\infty} = \lim_{\leftarrow} K_n$.

• Suppose
$$f^n(x) - \alpha$$
 is separable $\forall n \in \mathbb{N}$, and consider

$$G_n = \operatorname{Gal}(K_n/K), \qquad G_\infty = \operatorname{Gal}(K_\infty/K).$$

We can see G_{∞} can be embedded in Aut(T_d), the automorphism group of a rooted tree.

Tree Diagram for Roots of $f^n(x) - \alpha$, $d = \deg f(x)$

- Draw roots of $f^n(x) \alpha$ at *n*-th level.
- Connect β and γ if $f(\beta) = \gamma$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目▶ ● のへで

Tree Diagram for Roots of $f^n(x) - \alpha$, $d = \deg f(x)$

- Draw roots of $f^n(x) \alpha$ at *n*-th level.
- Connect β and γ if $f(\beta) = \gamma$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Tree Diagram for Roots of $f^n(x) - \alpha$, $d = \deg f(x)$

• Draw roots of $f^n(x) - \alpha$ at *n*-th level.

• Connect
$$\beta$$
 and γ if $f(\beta) = \gamma$.

Tree Diagram for Roots of $f^n(x) - \alpha$

- ► G_n = Gal (K_n/Q) acts on the tree up to the *n*-th level by permuting the branches.
- G_n is isomorphic to a subgroup of $Aut(T_{d,n}) \cong [S_d]^n$.

Arithmetic and Geometric Iterated Monodromy Groups

Let

•
$$t$$
 be transcendental over K ,

►
$$f(x) \in K(x)$$
,

•
$$K_{\infty,t} = \lim_{\leftarrow} K(f^{-n}(t))$$
, and

•
$$G^{arith} = Gal(K_{\infty,t}/K(t)).$$

Note, for any $\alpha \in K$, G_{∞} is a subgroup of G^{arith} .

• Let
$$L = \overline{K} \cap K_{\infty}$$
 and

•
$$G^{geom} = \operatorname{Gal}(K_{\infty}/L(t))$$

Then G^{geom} is a normal subgroup of G^{arith} , and

$$G^{arith}/G^{geom} \cong \operatorname{Gal}(L/K).$$

Our Focus: PCF Quadratic Polynomials

We say f is **post-critically finite** (PCF) if $\bigcup_{\substack{n \ge 1 \\ f'(c) = 0}} f^n(c)$ is finite.

If f is PCF, then $[Aut(T_d): G^{arith}] = \infty$.

Two natural questions arise:

- ► For any PCF polynomial *f* defined over a number field *K*, can we describe G^{arith} , G^{geom} , $L = K_{\infty,t} \cap \overline{K}$?
- Further, for α in K, can we give sufficient conditions ensuring G_∞ ≅ G^{arith}?

We consider these questions for quadratic polynomials.

Previous Results

- ▶ In 2013, Pink gave description of G^{arith} , G^{geom} , $L = K_{\infty,t} \cap \overline{K}$ for any PCF quadratic polynomial using theory of self similar groups and algebraic geometry.
- In 2019, Ahmad, Benedetto, Cain, Carroll, Fang gave another (very explicit) description of G^{arith} (the arithmetic basilica group), G^{geom}, L = K_{∞,t} ∩ K̄ for f(x) = x² − 1 and sufficient conditions on α ensuring G_∞ ≅ G^{arith}.

We want to give unified explicit descriptions for all PCF quadratic polynomials.

Some details...

Let
$$f(x) = x^2 + c \in K$$
.

Consider the geometric case

$$G_n^{geom} = \operatorname{Gal}(\bar{K}(f^{-n}(t))/\bar{K}(t)).$$

• Primes of $\bar{K}[t]$ that ramify in $\bar{K}(f^n(t))$ have the form

$$f^{m}(0) - t$$

for $m \leq n$.

Suppose the forward orbit of 0 has total length r and tail length s.

$$0 \longrightarrow f(0) \longrightarrow \cdots \longrightarrow f^{s}(0) \rightarrow f^{s+1}(0) \longrightarrow \cdots \longrightarrow f^{r}(0)$$

Inertia Groups

What do the inertia groups look like?

Let
$$q_i$$
 be any prime lying above $(f^i(0) - t)$. Let $\langle \sigma_i \rangle = I(q_i | (f^i(0) - t))$.

Key Fact: The cycle type of the action of σ_i on the roots of $f^n(x) - t$ corresponds to the factorization of

$$f^{n}(x) - f^{i}(0) \equiv f^{n}(x) - t \mod (f^{i}(0) - t).$$

Note: $f(x) - f(0) = x^2$ and

$$f^{n}(x) - f^{i}(0) = (f^{n-1}(x)^{2} + c) - (f^{i-1}(0)^{2} + c)$$

= $(f^{n-1}(x) - f^{i-1}(0))(f^{n-1}(x) + f^{i-1}(0))$

$$0 \longrightarrow f(0) \longrightarrow f^{2}(0) \longrightarrow f^{3}(0) \longrightarrow f^{4}(0)$$

One can quickly check:

►
$$f^4(0) = -f^2(0)$$

• $f^{j}(x)$, $f^{j}(x) + f(0)$, $f^{j}(x) + f^{3}(0)$ are separable for every j

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

• $f^j(x) + f^2(0)$ is separable for $j \leq 3$

$$<\sigma_1>= I(q_1|(f(0) - t))$$

 $f(x) - f(0) = x^2$
 $f^2(x) - f(0) = (f(x))^2$
 $f^n(x) - f(0) = (f^{n-1}(x))^2$

▲ロト ▲ 課 ト ▲ 語 ト ▲ 語 ト ● 回 ● の < @

$$<\sigma_{2} >= I(q_{2}|(f^{2}(0) - t))$$

$$f(x) - f^{2}(0) = (x - f(0))(x + f(0))$$

$$f^{2}(x) - f^{2}(0) = x^{2}(f(x) + f(0))$$

$$f^{n}(x) - f^{2}(0) = (f^{n-2}(x))^{2}(f^{n-1}(x) + f(0))$$

<ロト < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example:
$$s = 2$$
, $r = 4$
 $< \sigma_3 >= I(q_3|(f^3(0) - t))$
 $f^3(x) - f^3(0) = x^2(f(x) + f(0))(f^2(x) + f^2(0))$
 $f^4(x) - f^3(0) = (f(x))^2(f^2(x) + f(0))(f^3(x) + f^2(0))$
 $f^5(x) - f^3(0) = (f^2(x))^2(f^3(x) + f(0))(f^4(x) + f^2(0))$
 $= (f^2(x))^2(f^3(x) + f(0))(f^4(x) - f^4(0))$

 σ_3 acts on the r.h.s like σ_4 acts on the whole tree.

Example:
$$s = 2, r = 4$$

 $< \sigma_4 >= I(q_4|(f^4(0) - t))$
 $f^4(x) - f^4(0) = x^2(f(x) + f(0))(f^2(x) + f^2(0))(f^3(x) + f^3(0))$
 $f^5(x) - f^4(0) = (f(x))^2(f^2(x) + f(0))(f^3(x) + f^2(0))(f^4(x) + f^3(0))$
 $f^6(x) - f^4(0) = (f^2(x))^2(f^3(x) + f(0))(f^4(x) + f^2(0))(f^5(x) + f^3(0))$
 $= (f^2(x))^2(f^3(x) + f(0))(f^4(x) - f^4(0))(f^5(x) + f^3(0))$

Example:
$$s = 2$$
, $r = 4$

Let $\tau \in G^{geom}$ and y be any node in the tree. The actions of τ on $f^{-2}(y)$ and $f^{-4}(-y)$ have the same parity. This condition completely describes G^{geom} .

What about G^{arith} ?

Using self-similarity and a size argument,

$$|G_4^{arith}/G_4^{geom}| = 1$$

$$|G^{arith}/G^{geom}| \leq 2$$
 for $n \geq 5$

Further, for any node y in the tree let $f^{-2}(y) = \{\pm \alpha_1, \pm \alpha_2\}$ and $f^{-4}(-y) = \{\pm \beta_1, \pm \beta_2, \dots \pm \beta_8\}$. Then

$$\left(\frac{\alpha_1\alpha_2}{\beta_1\beta_2\dots\beta_8}\right)^2 = \frac{f^2(0)-y}{f^4(0)+y} = -1,$$

SO

$$\frac{\alpha_1\alpha_2}{\beta_1\beta_2\dots\beta_8}=i$$

Hence, $i \in K(f^{-5}(t))$ and if $\tau(i) = -i$ the actions of τ on $f^{-2}(y)$ and $f^{-4}(-y)$ have opposite parity.

What about algebraic base points?

Let $\alpha \in K$, then G_{∞} is isomorphic to a subgroup of G^{arith} .

Idea:

If $[K(i, \sqrt{f(0) - \alpha}, ..., \sqrt{f^4(0) - \alpha}) : K] = 2^5$, we have primes ramifying whose inertia groups are similar to the geometric case so

$$G_{\infty}\cong G^{\operatorname{arith}}.$$

- コント 4 日 > ト 4 日 > ト 4 日 > - シックク

Thank you