Algebraic preperiodic points of entire transcendental functions

David Krumm

Reed College

Joint work with Diego Marques (U. de Brasília) and Carlos Gustavo Moreira (IMPA)

Let A denote the field of algebraic numbers, i.e., the algebraic closure of \mathbb{Q} in \mathbb{C} , and let $\mathbb{T} = \mathbb{C} \setminus \mathbb{A}$ be the set of transcendental numbers.

- Liouville, 1844: \mathbb{T} is nonempty. For example, $\sum_{n=1}^{\infty} 10^{-n!} \in \mathbb{T}$.
- Hermite, 1873: The number *e* is transcendental.
- Lindemann, 1882: if $x \in \mathbb{A}$ is nonzero, then $e^x \in \mathbb{T}$.

Some consequences of Lindemann's theorem:

- $\pi \in \mathbb{T}$. (If $\pi \in \mathbb{A}$, then $i\pi \in \mathbb{A}$, so $e^{i\pi} \in \mathbb{T}$.)
- If $x \in \mathbb{A}$ is nonzero, then $sin(x), cos(x) \in \mathbb{T}$.

Question (Weierstrass)

Is it the case that every entire transcendental function will map 'most' algebraic numbers to transcendental numbers?

(Recall that if $D \subseteq \mathbb{C}$, a map $f : D \to \mathbb{C}$ is called **algebraic** if there exists a nonzero polynomial $P \in \mathbb{C}[x, y]$ such that P(z, f(z)) = 0 for all $z \in D$. If f is not algebraic, it is called **transcendental**.)

- Weierstrass, 1886: There exists an entire transcendental function f such that f(Q) ⊆ Q.
- Stäckel, 1895: There exists an entire transcendental function f such that f(A) ⊆ A.

By a **Stäckel function** we mean an entire transcendental function f satisfying $f(\mathbb{A}) \subseteq \mathbb{A}$.

Let $\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3, \ldots$ be an enumeration of all the Galois orbits of nonzero algebraic numbers. Define polynomials $P_n(z)$ for $n \ge 1$ by

$$P_n(z) = \prod_{\alpha \in \mathcal{O}_1 \cup \mathcal{O}_2 \cup \cdots \cup \mathcal{O}_n} (z - \alpha).$$

Note that:

- $P_n \in \mathbb{Q}[z]$ and P_n divides P_{n+1} for all n.
- For every α ∈ A there exists M such that P_M(α) = 0, and thus P_n(α) = 0 for all n ≥ M.

Choose rational numbers $0 < \epsilon_n < \frac{1}{L(P_n)n!}$, where *L* represents length. Define $f(z) = \sum_{n=1}^{\infty} \epsilon_n \cdot z^{\delta_n} \cdot P_n(z)$ for appropriate δ_n . Then *f* is entire. Also, *f* is not a polynomial, so it is transcendental.

Finally, $f(\mathbb{A}) \subseteq \mathbb{A}$: given $\alpha \in \mathbb{A}$, we have $P_n(\alpha) = 0$ for $n \ge M$, so $f(\alpha) = \sum_{n=1}^{M-1} \epsilon_n \cdot \alpha^{\delta_n} \cdot P_n(\alpha) \in \mathbb{A}$.

If f is a Stäckel function, we can regard f as a dynamical system on \mathbb{A} .

Question

Let $\Pi(f)$ denote the directed graph of preperiodic points of f in \mathbb{A} ; we will call $\Pi(f)$ the **portrait** of f. What can the structure of $\Pi(f)$ be?

Restrictions in the case where $f(z) \in \mathbb{A}[z]$:

- For every positive integer n, the set of n-cycles in $\Pi(f)$ is finite.
- The set of indegrees of the vertices of $\Pi(f)$ is bounded.

In the transcendental case we are not aware of any such restrictions.

Conjecture

Let Γ be a countable directed graph such that every vertex in Γ has outdegree 1 and every vertex eventually reaches a cycle. Then there exists a Stäckel function f such that $\Pi(f) \cong \Gamma$.

Example: Suppose Γ is a graph consisting of infinitely many *n*-cycles for every $n \ge 1$. We can construct a Stäckel function f such that $\Pi(f) \cong \Gamma$.

Let g be any Stäckel function constructed as shown earlier.

Theorem (Bergweiler, 1991)

If g is an entire transcendental function, then g has infinitely many complex points of period n for every $n \ge 2$.

Step 1: Using the Great Picard Theorem we can also obtain infinitely many fixed points by modifying g slightly: for some $c \in \mathbb{A}$, the equation g(z) - z = c will have infinitely many solutions. Hence the function $f_0(z) := g(z) - c$ has infinitely many fixed points. Note that f_0 is a Stäckel function, so Bergweiler's theorem applies to f_0 , and therefore f_0 has infinitely many complex points of every period.

Step 2: Modify f_0 so that its *n*-periodic points will be algebraic. The main tool used for this is Rouché's theorem, the key idea being that if f_0 has some number of *n*-cycles inside a disk *D*, then a slight perturbation of f_0 will have the same number of *n*-cycles in $D \cap \mathbb{A}$.)

Using this idea we construct a sequence of functions f_0, f_1, f_2, \ldots , and we show that the limit function $f(z) = \lim_{n \to \infty} f_n(z)$ is a Stäckel function having infinitely many *n*-cycles in \mathbb{A} for every $n \ge 1$. Thus $\Pi(f) \cong \Gamma$.

Conjecture

Let Γ be a countable directed graph such that every vertex in Γ has outdegree 1 and every vertex eventually reaches a cycle. Then there exists a Stäckel function f such that $\Pi(f) \cong \Gamma$.

Quasi-polynomial functions

Stäckel (1902) also constructed a transcendental function f, analytic on a disk D centered at 0, such that $f(\mathbb{A} \cap D) \subseteq \mathbb{A}$ and $f(\mathbb{T} \cap D) \subseteq \mathbb{T}$.

Question (Mahler, 1976)

Can we replace D with \mathbb{C} ?

Theorem (Marques–Moreira, 2016)

There exist uncountably many entire transcendental functions f such that $f(\mathbb{A}) = \mathbb{A}$ and $f(\mathbb{T}) = \mathbb{T}$.

Note the similarity with polynomial functions: if $f(z) \in \mathbb{A}[z] \setminus \mathbb{A}$, then f has all of the above properties except that it is algebraic.

An additional similarity: for both types of functions, if the coefficients of the Taylor series of f(z) lie in a field $K \subseteq \mathbb{A}$, then $\sigma(f(x)) = f(\sigma(x))$ for every $\sigma \in \text{Gal}(\mathbb{A}/K)$ and every $x \in \mathbb{A}$.

For these reasons, functions f as in the theorem will be called **quasi-polynomial**.

If f is a quasi-polynomial function, we can regard f as a dynamical system on either A or $\mathbb{T}.$

Question

With $\Pi(f)$ defined as before, what can the structure of $\Pi(f)$ be?

(It would also be interesting to study the dynamics on \mathbb{T} .)

Conjecture

Let Γ be a countable directed graph such that every vertex in Γ has outdegree 1 and every vertex eventually reaches a cycle. Then there exists a quasi-polynomial map f such that $\Pi(f) \cong \Gamma$.

Theorem (K.–Marques–Moreira)

Let Γ be a countable graph consisting of only cycles. Then there exists a quasi-polynomial function f such that $\Pi(f) \cong \Gamma$.

In fact, we prove a stronger result: starting with any entire transcendental function g, we can construct a "nearby" quasi-polynomial function f with the required property. More precisely, given $\epsilon > 0$, if

$$g(z)=\sum_{n=0}^{\infty}a_nz^n,$$

we construct

$$f(z)=\sum_{n=0}^{\infty}b_nz^n$$

such that f is quasi-polynomial, $\Pi(f) \cong \Gamma$, and $|a_n - b_n| < \epsilon$ for all n.