
Algebraic preperiodic points of entire transcendental functions

David Krumm

Reed College

Joint work with Diego Marques (U. de Braśılia) and Carlos Gustavo Moreira (IMPA)



History

Let A denote the field of algebraic numbers, i.e., the algebraic closure of

Q in C, and let T = C \ A be the set of transcendental numbers.

• Liouville, 1844: T is nonempty. For example,
∞∑
n=1

10−n! ∈ T.

• Hermite, 1873: The number e is transcendental.

• Lindemann, 1882: if x ∈ A is nonzero, then ex ∈ T.

Some consequences of Lindemann’s theorem:

• π ∈ T. (If π ∈ A, then iπ ∈ A, so e iπ ∈ T.)

• If x ∈ A is nonzero, then sin(x), cos(x) ∈ T.



Stäckel functions

Question (Weierstrass)

Is it the case that every entire transcendental function will map ‘most’

algebraic numbers to transcendental numbers?

(Recall that if D ⊆ C, a map f : D → C is called algebraic if there exists

a nonzero polynomial P ∈ C[x , y ] such that P(z , f (z)) = 0 for all z ∈ D.

If f is not algebraic, it is called transcendental.)

• Weierstrass, 1886: There exists an entire transcendental function f

such that f (Q) ⊆ Q.

• Stäckel, 1895: There exists an entire transcendental function f such

that f (A) ⊆ A.

By a Stäckel function we mean an entire transcendental function f

satisfying f (A) ⊆ A.



Construction of Stäckel functions

Let O1,O2,O3, . . . be an enumeration of all the Galois orbits of nonzero

algebraic numbers. Define polynomials Pn(z) for n ≥ 1 by

Pn(z) =
∏

α∈O1∪O2∪···∪On

(z − α).

Note that:

• Pn ∈ Q[z ] and Pn divides Pn+1 for all n.

• For every α ∈ A there exists M such that PM(α) = 0, and thus

Pn(α) = 0 for all n ≥ M.

Choose rational numbers 0 < εn <
1

L(Pn)n! , where L represents length.

Define f (z) =
∑∞

n=1 εn · zδn · Pn(z) for appropriate δn. Then f is entire.

Also, f is not a polynomial, so it is transcendental.

Finally, f (A) ⊆ A: given α ∈ A, we have Pn(α) = 0 for n ≥ M, so

f (α) =
∑M−1

n=1 εn · αδn · Pn(α) ∈ A.



Dynamics of Stäckel functions

If f is a Stäckel function, we can regard f as a dynamical system on A.

Question

Let Π(f ) denote the directed graph of preperiodic points of f in A; we

will call Π(f ) the portrait of f . What can the structure of Π(f ) be?

Restrictions in the case where f (z) ∈ A[z ]:

• For every positive integer n, the set of n-cycles in Π(f ) is finite.

• The set of indegrees of the vertices of Π(f ) is bounded.

In the transcendental case we are not aware of any such restrictions.

Conjecture

Let Γ be a countable directed graph such that every vertex in Γ has

outdegree 1 and every vertex eventually reaches a cycle. Then there

exists a Stäckel function f such that Π(f ) ∼= Γ.



Dynamics of Stäckel functions

Example: Suppose Γ is a graph consisting of infinitely many n-cycles for

every n ≥ 1. We can construct a Stäckel function f such that Π(f ) ∼= Γ.

Let g be any Stäckel function constructed as shown earlier.

Theorem (Bergweiler, 1991)

If g is an entire transcendental function, then g has infinitely many

complex points of period n for every n ≥ 2.

Step 1: Using the Great Picard Theorem we can also obtain infinitely

many fixed points by modifying g slightly: for some c ∈ A, the equation

g(z)− z = c will have infinitely many solutions. Hence the function

f0(z) := g(z)− c has infinitely many fixed points. Note that f0 is a

Stäckel function, so Bergweiler’s theorem applies to f0, and therefore f0
has infinitely many complex points of every period.



Dynamics of Stäckel functions

Step 2: Modify f0 so that its n-periodic points will be algebraic. The

main tool used for this is Rouché’s theorem, the key idea being that if f0
has some number of n-cycles inside a disk D, then a slight perturbation

of f0 will have the same number of n-cycles in D ∩ A.)

Using this idea we construct a sequence of functions f0, f1, f2, . . . , and we

show that the limit function f (z) = lim
n→∞

fn(z) is a Stäckel function

having infinitely many n-cycles in A for every n ≥ 1. Thus Π(f ) ∼= Γ.

Conjecture

Let Γ be a countable directed graph such that every vertex in Γ has

outdegree 1 and every vertex eventually reaches a cycle. Then there

exists a Stäckel function f such that Π(f ) ∼= Γ.



Quasi-polynomial functions

Stäckel (1902) also constructed a transcendental function f , analytic on

a disk D centered at 0, such that f (A ∩ D) ⊆ A and f (T ∩ D) ⊆ T.

Question (Mahler, 1976)

Can we replace D with C?

Theorem (Marques–Moreira, 2016)

There exist uncountably many entire transcendental functions f such

that f (A) = A and f (T) = T.

Note the similarity with polynomial functions: if f (z) ∈ A[z ] \ A, then f

has all of the above properties except that it is algebraic.

An additional similarity: for both types of functions, if the coefficients of

the Taylor series of f (z) lie in a field K ⊆ A, then σ(f (x)) = f (σ(x)) for

every σ ∈ Gal(A/K ) and every x ∈ A.

For these reasons, functions f as in the theorem will be called

quasi-polynomial.



Dynamics of quasi-polynomial functions

If f is a quasi-polynomial function, we can regard f as a dynamical

system on either A or T.

Question

With Π(f ) defined as before, what can the structure of Π(f ) be?

(It would also be interesting to study the dynamics on T.)

Conjecture

Let Γ be a countable directed graph such that every vertex in Γ has

outdegree 1 and every vertex eventually reaches a cycle. Then there

exists a quasi-polynomial map f such that Π(f ) ∼= Γ.



Main result

Theorem (K.–Marques–Moreira)

Let Γ be a countable graph consisting of only cycles. Then there exists

a quasi-polynomial function f such that Π(f ) ∼= Γ.

In fact, we prove a stronger result: starting with any entire

transcendental function g , we can construct a “nearby” quasi-polynomial

function f with the required property. More precisely, given ε > 0, if

g(z) =
∞∑
n=0

anz
n,

we construct

f (z) =
∞∑
n=0

bnz
n

such that f is quasi-polynomial, Π(f ) ∼= Γ, and |an − bn| < ε for all n.


