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Example to get started

Classify degree-2 morphisms on P1 realizing the following portrait:

P : γβα

This portrait is realized by

(f ; α, β, γ) = (x2 − 1; 1, 0,−1),

(x2 − 2x + 1; 2, 1, 0),

(x2 − 3; −1,−2, 1),(
z − 1

2z2 − 1
; ∞, 0, 1

)
, . . .



Parameter space of endomorphisms

EndN
d := {degree-d morphisms f : PN → PN}
f = (f0(X0, . . . ,XN) : · · · : fN(X0, . . . ,XN))
fi : homogeneous, degree d , no common (nontrivial) zeroes

Setting M = M(N, d) = #(coefficients of f )− 1, we embed

EndN
d ↪→ PM .

More precisely,

EndN
d = PM \ (Resultant = 0)

is an affine variety.



Moduli space of endomorphisms

Morphisms f , g : PN → PN are equivalent if there exists
γ ∈ PGLN+1 = Aut(PN) such that

g = f γ := γ−1 ◦ f ◦ γ.

The moduli space of degree-d endomorphisms on PN , denoted
MN

d , is the space of equivalence classes of endomorphisms.

Theorem (Silverman, 1998; Petsche-Szpiro-Tepper, 2007;
Levy, 2010)

The moduli space MN
d = EndN

d � PGLN+1 exists as a geometric
quotient (in the sense of GIT).



Portraits

Informally, a portrait is a directed graph whose vertices have
outdegree 0 or 1 and whose edges have positive integer weights.
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Formally, a portrait is a tuple (V,W,Φ, ε) such that

• V is a finite set; (vertices)

• W ⊆ V; (vertices with out-edges)

• Φ :W → V; (directed edges)

• ε :W → N. (multiplicities)



Parameter space of morphisms with level structure

Let P = (V,W,Φ, ε) be a portrait. Write V = {1, . . . , n}.

EndN
d [P]: the space of tuples

(f ; P1, . . . ,Pn) ∈ EndN
d ×

(
PN

)n

such that

• f (Pi ) = PΦ(i) for all i ∈ W;

(closed condition)

• ef (Pi ) ≥ ε(i) for all i ∈ W; and

(closed condition)

• Pi 6= Pj for all 1 ≤ i < j ≤ n.

(open condition)

Thus EndN
d [P] is naturally a subvariety of

EndN
d ×

(
PN

)n
⊂ PM ×

(
PN

)n
.
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Moduli space of morphisms with level structure

PGLN+1 acts on EndNd [P]:

(f ; P1, . . . ,Pn)γ :=
(
f γ ; γ−1(P1), . . . , γ−1(Pn)

)
.

Theorem (D-Silverman, 2019)

The moduli space MN
d [P] = EndNd [P] � PGLN+1 exists as a

geometric quotient (in the sense of GIT).



Moduli space of morphisms with level structure

Proof idea.

(a) The closure of EndN
d [P] ⊂ EndN

d ×
(
PN

)n
admits a finite

morphism onto EndN
d ×

(
PN

)m
for some m.

• •

m = 2

n = 14

•

• • •

•

•

•

•

• •

••

(b) Using Mumford’s numerical criterion, show that
EndN

d ×
(
PN

)m
is in the GIT stable locus of PM ×

(
PN

)m
for

an appropriate line bundle.



Moduli space of morphisms with level structure

Proof idea.

(a) The closure of EndN
d [P] ⊂ EndN

d ×
(
PN

)n
admits a finite

morphism onto EndN
d ×

(
PN

)m
for some m.

• •m = 2

n = 14

•

• • •

•

•

•

•

• •

••

(b) Using Mumford’s numerical criterion, show that
EndN

d ×
(
PN

)m
is in the GIT stable locus of PM ×

(
PN

)m
for

an appropriate line bundle.



Moduli space of morphisms with level structure

Proof idea.

(a) The closure of EndN
d [P] ⊂ EndN

d ×
(
PN

)n
admits a finite

morphism onto EndN
d ×

(
PN

)m
for some m.

• •m = 2

n = 14

•

• • •

•

•

•

•

• •

••

(b) Using Mumford’s numerical criterion, show that
EndN

d ×
(
PN

)m
is in the GIT stable locus of PM ×

(
PN

)m
for

an appropriate line bundle.



Dimension

Theorem (DS)

Suppose that P is unweighted or that P is weighted and N = 1.

If EndN
d [P] 6= ∅, then EndN

d [P] and MN
d [P] have the expected

dimension.

The proof uses a result of Fakhruddin on generic morphisms on PN ;
for weighted portraits and N = 1 we use Thurston transversality.

Note: For unweighted portraits, there is a simple condition on P
to determine whether EndN

d [P] 6= ∅.



Uniform boundedness

A point P is preperiodic for f if the sequence

P, f (P), f (f (P)), . . .

is eventually periodic.

Uniform Boundedness Conjecture (Morton-Silverman, 1994)

Let d ≥ 2 and n,N ≥ 1.

There is a bound B(N, d , n) such that if f : PN → PN is a
degree-d morphism defined over a degree-n number field K, then

#{K-rational preperiodic points for f } ≤ B(N, d , n).



Uniform boundedness

A portrait P is preperiodic if every vertex has an out-edge (i.e., if
W = V).

Moduli Boundedness Conjecture

Let d ≥ 2 and n,N ≥ 1.

There is a bound C (N, d , n) such that if P is a preperiodic portrait
with |V| ≥ C (N, d , n) and K is a number field of degree n, then

MN
d [P](K ) = ∅.

Theorem (DS)

UBC ⇐⇒ MBC.
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Uniform boundedness: z2 + c

Let f (z) = z2 + c with c ∈ Q.

Theorem (Morton, 1998)

f has no rational points of period 4.

Theorem (Flynn-Poonen-Schaefer, 1997)

f has no rational points of period 5.

Theorem (Stoll, 2008)

f has no rational points of period 6, assuming standard conjectures
for the Jacobian of a certain genus 4 curve.

Theorem (Poonen, 1998)

If f has no rational points of period greater than 3, then f has at
most 9 rational preperiodic points.



Uniform boundedness: z4 + c
(Joint work with Grip, Rachfal, Schwager, Torrence; Summer@ICERM 2019)

Question: Which portraits can be realized by z4 + c over Q?

Infinitely many c ∈ Q Finitely many c ∈ Q



Uniform boundedness: z4 + c
(Joint work with Grip, Rachfal, Schwager, Torrence; Summer@ICERM 2019)

Question: Which portraits can be realized by z4 + c over Q?

No c ∈ Q No c ∈ Q up to large height



Multi-portraits for dynamical semigroups
(Joint work with Blum, Hyde, Kelln, Talbott, Weinreich; Summer@ICERM 2019)

Example:

f (z) = 2z2 − 3z + 1

g(z) = −2z2 + 3z + 1
2

3
2

1
20

1

If P is a multi-portrait with an m-edge-coloring, then one can
construct the appropriate moduli space

MN
d [P] = EndN

d [P] � PGLN+1

as a geometric quotient.



Thank you!


