Problem 1. (10 points) (a) Let A and B be the matrices

$$
A=\left(\begin{array}{cc}
3 & x \\
-2 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
6 & 6 \\
-8 & -2
\end{array}\right)
$$

Find all values of x for which $A B=B A$. $x=$
(b) Let \boldsymbol{a} and \boldsymbol{b} be the vectors

$$
\boldsymbol{a}=(1,-1,3) \quad \text { and } \quad \boldsymbol{b}=(2,1,-1) .
$$

Compute the cross product $\boldsymbol{a} \times \boldsymbol{b} . \boldsymbol{a} \times \boldsymbol{b}=\square$
Solution. (a) Compute

$$
A B=\left(\begin{array}{cc}
-8 x+18 & -2 x+18 \\
-20 & -14
\end{array}\right) \quad \text { and } \quad B A=\left(\begin{array}{cc}
6 & 6 x+6 \\
-20 & -8 x-2
\end{array}\right)
$$

Setting $A B=B A$ gives four equations

$$
\begin{aligned}
-8 x+18 & =6 \\
-2 x+18 & =6 x+6 \\
-20 & =-20 \\
-14 & =-8 x-2 .
\end{aligned}
$$

Solving the first equation for x gives $x=\frac{3}{2}$, and then one checks that $x=\frac{3}{2}$ is also a solution to the other three equations.
(b)

$$
\begin{aligned}
\boldsymbol{a} \times \boldsymbol{b} & =\operatorname{det}\left(\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
1 & -1 & 3 \\
2 & 1 & -1
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
-1 & 3 \\
1 & -1
\end{array}\right) \boldsymbol{i}-\operatorname{det}\left(\begin{array}{cc}
1 & 3 \\
2 & -1
\end{array}\right) \boldsymbol{j}+\operatorname{det}\left(\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right) \boldsymbol{k} \\
& =-2 \boldsymbol{i}+7 \boldsymbol{j}+3 \boldsymbol{k} .
\end{aligned}
$$

Problem 2. (10 points) (a) Let $F(x, y, z)=x^{5} e^{y^{2}} \cos (z)$. Compute

$$
\frac{\partial^{5} F}{\partial x^{2} \partial y \partial z^{2}}=\square
$$

(b) We consider two functions $f(u, v)$ and $g(x, y)$. The function g is given by the formula

$$
g(x, y)=\left(x^{2}+y, x-y^{2}\right) .
$$

The values of $f(u, v)$ and its partial derivatives at various points (u, v) are given in the following table:

(u, v)	$(1,1)$	$(2,1)$	$(3,1)$	$(4,1)$	$(5,1)$	$(6,1)$
$f(u, v)$	A	B	C	D	E	F
$\frac{\partial f}{\partial u}(u, v)$	G	H	I	J	K	L
$\frac{\partial f}{\partial v}(u, v)$	M	N	O	P	Q	R

Compute the value of

$$
\frac{\partial(f \circ g)}{\partial x}(2,1) .
$$

Express your answer in terms of the quantities $A, B, C, \ldots, Q, R . \frac{\partial(f \circ g)}{\partial x}(2,1)=$ \square

Solution. (a) We just need to differentiate twice for the x variable, once for the y variable, and twice for the z variable, so

$$
\begin{aligned}
\frac{\partial^{5} F}{\partial x^{2} \partial y \partial z^{2}} & =\frac{\partial^{5}}{\partial x^{2} \partial y \partial z^{2}}\left(x^{5} e^{y^{2}} \cos (z)\right) \\
& =20 x^{3} \cdot 2 y e^{y^{2}} \cdot(-\cos (z)) \\
& =-40 x^{3} y e^{y^{2}} \cos (z)
\end{aligned}
$$

(b) We write

$$
g(x, y)=(u(x, y), v(x, y))=\left(x^{2}+y, x-y^{2}\right) .
$$

Note that

$$
g(2,1)=(4+1,2-1)=(5,1) .
$$

We use the chain rule to compute

$$
\begin{aligned}
\frac{\partial(f \circ g)}{\partial x}(2,1) & =\frac{\partial f}{\partial u}(g(2,1)) \cdot \frac{\partial u}{\partial x}(2,1)+\frac{\partial f}{\partial v}(g(2,1)) \cdot \frac{\partial v}{\partial x}(2,1) \\
& =\frac{\partial f}{\partial u}(5,1) \cdot 4+\frac{\partial f}{\partial v}(5,1) \cdot 1 \\
& =4 K+Q
\end{aligned}
$$

Problem 3. (10 points) Suppose that we know that the level surface

$$
a x^{2}+b y^{3}+z^{4}=k
$$

goes through the point $(1,1,1)$, and we also know that the tangent plane at $(1,1,1)$ is orthogonal to the vector $-2 \boldsymbol{i}+2 \boldsymbol{j}+2 \boldsymbol{k}$. What are the values of a and b and k ? (Hint: First find a and b, then k.) $a=\square \quad$ and $\quad b=\square \quad$ and $\quad k=\square$

Solution. Let $f(x, y, z)=a x^{2}+b y^{3}+z^{4}$. The gradient vector

$$
\begin{aligned}
\nabla f(1,1,1) & =f_{x}(1,1,1) \boldsymbol{i}+f_{y}(1,1,1) \boldsymbol{j}+f_{z}(1,1,1) \boldsymbol{k} \\
& =2 a \boldsymbol{i}+3 b \boldsymbol{j}+4 \boldsymbol{k}
\end{aligned}
$$

is orthogonal to the tangent plane to the level surface at the point $(1,1,1)$, so the gradient vector and $-2 \boldsymbol{i}+2 \boldsymbol{j}+2 \boldsymbol{k}$ are parallel. That means that $2 a \boldsymbol{i}+3 b \boldsymbol{j}+4 \boldsymbol{k}$ and $-2 \boldsymbol{i}+2 \boldsymbol{j}+2 \boldsymbol{k}$ are scalar multiples of one another, so there is some number t so that

$$
2 a \boldsymbol{i}+3 b \boldsymbol{j}+4 \boldsymbol{k}=t(-2 \boldsymbol{i}+2 \boldsymbol{j}+2 \boldsymbol{k})=-2 t \boldsymbol{i}+2 t \boldsymbol{j}+2 t \boldsymbol{k} .
$$

Looking at the \boldsymbol{k} coordinate, we see that $4=2 t$, so $t=2$. Then the first and second coordinates say that $2 a=-4$ and $3 b=4$, and hence $a=-2$ and $b=\frac{4}{3}$. Finally, we know that the point $(1,1,1)$ is on the surface $a x^{2}+b y^{3}+z^{4}=k$, and we know the values of a and b, so

$$
k=a \cdot 1^{2}+b \cdot 1^{3}+1^{4}=a+b+1=-2+\frac{4}{3}+1=\frac{1}{3}
$$

Problem 4. (10 points)
NOTE: Grading for each part of this True/False question is +2 for the correct answer, 0 if left blank, and -1 if incorrect.

The values of a (twice differentiable) function f and its partial derivatives at various points are given in the following table.

	P	Q	R
f	3	-7	2
f_{x}	0	0	0
f_{y}	0	1	0
$f_{x x}$	-2	3	-2
$f_{x y}$	3	2	3
$f_{y y}$	-5	4	5
Midtem			

Midterm \#1
Weds. Oct. 8, 2014

Indicate whether each of the following statements is true or false by circling the appropriate answer. You do not need to give a reason for your answer.

Solution.

(a) P is a critical point True
(b) Q is a local minimum False
(c) Q is a saddle point False
(d) R is a saddle point True
(e) P is a local maximum True

I didn't ask you to give reasons for your answers, but here are the reasons.
(a) P is a critical point because $f_{x}(P)=0$ and $f_{y}(P)=0$.
(b) Q is not a local minimum, since it is not even a critical point, since $f_{y}(Q)=1 \neq 0$.
(c) Q is also not a saddle point, since it is not a critical point, since $f_{y}(Q)=1 \neq 0$.
(d) R is a saddle point since

$$
f_{x x}(R) f_{y y}(R)-f_{x y}(R)^{2}=(-2) \cdot 5-3^{2}=-19<0
$$

(e) P is a local maximum since

$$
f_{x x}(P) f_{y y}(P)-f_{x y}(P)^{2}=(-2) \cdot(-5)-3^{2}=1>0
$$

and $f_{x x}(P)=-2<0$. (These are the conditions for the 2nd derivative test.)

Problem 5. (10 points) Write down the second order Taylor expansion of the function

$$
f(x, y)=x e^{3 x y} \quad \text { around the point }(1,0)
$$

To help, I've computed some of the partial derivatives for you, and you can fill in the others:

$$
\begin{aligned}
f_{x}(x, y) & =e^{3 x y}+3 x y e^{3 x y} \\
f_{y}(x, y) & = \\
f_{x x}(x, y) & =6 y e^{3 x y}+9 x y^{2} e^{3 x y} \\
f_{x y}(x, y) & =6 x e^{3 x y}+3 x^{2} y e^{3 x y} \\
f_{y y}(x, y) & =
\end{aligned}
$$

Solution. First we compute the partial derivatives:

$$
\begin{aligned}
f(x, y) & =x e^{3 x y} \\
f_{x}(x, y) & =e^{3 x y}+3 x y e^{3 x y} \\
f_{y}(x, y) & =3 x^{2} e^{3 x y} \\
f_{x x}(x, y) & =3 y e^{3 x y}+3 y e^{3 x y}+9 x y^{2} e^{3 x y}=6 y e^{3 x y}+9 x y^{2} e^{3 x y} \\
f_{x y}(x, y) & =f_{x y}(x, y)=6 x e^{3 x y}+3 x^{2} y e^{3 x y} \\
f_{y y}(x, y) & =9 x^{3} e^{3 x y}
\end{aligned}
$$

Then we evaluate the derivatives at the point $(1,0)$.

$$
\begin{aligned}
f(x, y) & =1 \\
f_{x}(x, y) & =1 \\
f_{y}(x, y) & =3 \\
f_{x x}(x, y) & =0 \\
f_{x y}(x, y) & =f_{x y}(x, y)=6 \\
f_{y y}(x, y) & =9
\end{aligned}
$$

Finally, we use these values in Taylor's formula:

$$
f\left(1+h_{1}, h_{2}\right)=1+h_{1}+3 h_{2}+\frac{1}{2}\left(0 h_{1}^{2}+6 h_{1} h_{2}+6 h_{2} h_{1}+9 h_{2}^{2}\right)
$$

Simplifying this last expression gives

$$
f\left(1+h_{1}, h_{2}\right)=1+h_{1}+3 h_{2}+6 h_{1} h_{2}+\frac{9}{2} h_{2}^{2}
$$

