Problem 1. (10 points) Write the following iterated integral as a sum of one or more iterated integrals with the order of integration reversed, i.e., each inner integral should be with respect to x and each outer integral should be with respect to y.

$$
\int_{0}^{\pi} \int_{\sin x}^{2} f(x, y) d y d x .
$$

Also sketch the region.
Solution. The region lies over the curve $y=\sin x$ and under the curve $y=2$. In order to integrate in the other order, we split it into three regions. (Note that the values of $\sin ^{-1}(y)$ are between $-\frac{1}{2} \pi$ and $\frac{1}{2} \pi$.)

$$
\begin{aligned}
& D_{1}=\{(x, y): 1 \leq y \leq 2,0 \leq x \leq \pi\} \\
& D_{2}=\left\{(x, y): 0 \leq y \leq 1,0 \leq x \leq \sin ^{-1}(y)\right\} \\
& D_{3}=\left\{(x, y): 0 \leq y \leq 1, \pi-\sin ^{-1}(y) \leq x \leq \pi\right\}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \int_{0}^{\pi} \int_{\sin x}^{2} f(x, y) d y d x=\int_{1}^{2} \int_{0}^{\pi} f(x, y) d x d y \\
& \quad+\int_{0}^{1} \int_{0}^{\sin ^{-1}(y)} f(x, y) d x d y+\int_{0}^{1} \int_{\pi-\sin ^{-1}(y)}^{\pi} f(x, y) d x d y
\end{aligned}
$$

Problem 2. (10 points) Evaluate the following integral.

$$
\iint_{D} \cos \left(x^{2}+y^{2}\right) d A, \quad \text { where } D=\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 9\right\}
$$

Solution. We use polar coordinates, so

$$
x=r \cos \theta, \quad y=r \sin \theta, \quad d A=d x d y=r d r d \theta, \quad x^{2}+y^{2}=r^{2} .
$$

Also $D^{*}=\{(r, \theta): 1 \leq r \leq 3$ and $0 \leq \theta \leq 2 \pi\}$. So

$$
\begin{aligned}
\iint_{D} \cos \left(x^{2}+y^{2}\right) d x d y & =\iint_{D^{*}} \cos \left(r^{2}\right) r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{1}^{3} \cos \left(r^{2}\right) r d r d \theta \\
& =\left.\int_{0}^{2 \pi} \frac{1}{2} \sin \left(r^{2}\right)\right|_{r=1} ^{r=3} d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \frac{1}{2}(\sin (9)-\sin (1)) d \theta \\
& =\pi(\sin (9)-\sin (1))
\end{aligned}
$$

Problem 3. (10 points) The curve

$$
\boldsymbol{c}(t)=\left(t^{-3}, t^{-2}, t^{-1}\right)
$$

for $t>0$ is a flow line for the vector field

$$
\boldsymbol{F}(x, y, z)=\left(a x z+y^{2}, b y z-x, c y+z^{2}\right) .
$$

What are the values of a, b, and c ?
Solution. We set $\boldsymbol{F}(\boldsymbol{c}(t))=\boldsymbol{c}^{\prime}(t)$. We have

$$
\begin{aligned}
\boldsymbol{F}(\boldsymbol{c}(t)) & =\boldsymbol{F}\left(t^{-3}, t^{-2}, t^{-1}\right) \\
& =\left(a t^{-4}+t^{-4}, b t^{-3}-t^{-3}, c t^{-2}+t^{-2}\right) \\
& \left.=\left((a+1) t^{-4},(b-1) t^{-3},(c+1) t^{-2}\right)\right) \\
\boldsymbol{c}^{\prime}(t) & =\left(-3 t^{-4},-2 t^{-3},-t^{-2}\right)
\end{aligned}
$$

These need to be equal for all $t>0$, so we get

$$
a+1=-3, \quad b-1=-2, \quad c+1=-1,
$$

which gives

$$
a=-4, \quad b=-1, \quad c=-2
$$

Problem 4. (10 points)
NOTE: Grading for each part of this True/False question is +2 for the correct answer, 0 if left blank, and -1 if incorrect.

Indicate whether each of the following statements is true or false by circling the appropriate answer. You do not need to give a reason for your answer. For (a), (b), and (c), we write $\boldsymbol{F}(x, y, z)$ for a 3dimensional vector field that is assumed to be sufficiently differentiable.

Solution.

(a) $\operatorname{curl}(\operatorname{curl}(\boldsymbol{F}))=\mathbf{0}$ for all \boldsymbol{F}

FALSE
(b) $\operatorname{curl}(\operatorname{div}(\boldsymbol{F}))=\mathbf{0}$ for all \boldsymbol{F}

FALSE
(c) $\operatorname{div}(\operatorname{curl}(\boldsymbol{F}))=0$ for all \boldsymbol{F}

TRUE
(d) $\boldsymbol{F}=(y, x, z)$ is a gradient vector field

TRUE
(e) $\boldsymbol{F}=(z, x, y)$ is a gradient vector field

FALSE

Here are the reasons.
(a) For cross products of vectors, $\boldsymbol{a} \times(\boldsymbol{a} \times \boldsymbol{b})$ is a vector in the plane spanned by \boldsymbol{a} and \boldsymbol{b} and perpendicular to \boldsymbol{a}, but it won't in general be zero. Similarly for the curl of a curl. It's easy enough to find an example that gives a non-zero result. For example,

$$
\boldsymbol{F}(x, y, z)=\left(y^{2}, 0,0\right)
$$

has

$$
\operatorname{curl} \boldsymbol{F}=(0,0,-2 y)
$$

so

$$
\operatorname{curl}(\operatorname{curl}(\boldsymbol{F}))=(-2,0,0)
$$

is non-zero.
(b) The quantity $\operatorname{curl}(\operatorname{div}(\boldsymbol{F}))$ isn't even defined, since the divergence $\operatorname{div}(\boldsymbol{F})$ is a real-valued function, not a vector field, so you can't take its curl.
(c) This one is true, as is the fact that the curl of a gradient is zero.
(d) This passes the partial derivative tests. And it's easy enough to find that \boldsymbol{F} is the gradient of the function $f(x, y, z)=x y+\frac{1}{2} z^{2}$.
(e) This is not a gradient, since for example,

$$
\frac{\partial F_{1}}{\partial z}=\frac{\partial z}{\partial z}=1
$$

is not equal to

$$
\frac{\partial F_{3}}{\partial x}=\frac{\partial y}{\partial x}=0
$$

Problem 5. (10 points) Let D^{*} be the square $[0,1] \times[0,1]$ in the $u v$-plane, and let T be the function

$$
T(u, v)=\left(u^{2}-v^{2}, 2 u v\right) .
$$

(a) Sketch the region $T\left(D^{*}\right)$ in the $x y$-plane. (Hint. Figure out where the sides of the square are sent.)
(b) If

$$
\iint_{T\left(D^{*}\right)} \frac{1}{\sqrt{x^{2}+y^{2}}} d x d y \iint_{D^{*}} f(u, v) d u d v
$$

what is the function $f(u, v)$? (You may assume that $T: D^{*} \rightarrow \mathbb{R}^{2}$ is one-to-one.)
(c) Evaluate the integral in (b).

Solution. (b) The Jacobian is

Math 350

$$
\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left(\begin{array}{cc}
2 u & -2 v \\
2 v & 2 u
\end{array}\right)=4 u^{2}+4 v^{2},
$$

Weds. Nov. 5, 2014
so

$$
\begin{aligned}
& \iint_{T\left(D^{*}\right)} \frac{1}{\sqrt{x^{2}+y^{2}}} d x d y \\
&=\iint_{D^{*}} \frac{1}{\sqrt{\left(u^{2}-v^{2}\right)^{2}+(2 u v)^{2}}}\left(4 u^{2}+4 v^{2}\right) d u d v
\end{aligned}
$$

This gives an answer to (b) with

$$
f(u, v)=\frac{4 u^{2}+4 v^{2}}{\sqrt{\left(u^{2}-v^{2}\right)^{2}+(2 u v)^{2}}} .
$$

However, for answering (c), we should simplify by noticing that

$$
\begin{aligned}
\left(u^{2}-v^{2}\right)^{2}+(2 u v)^{2} & =u^{4}-2 u^{2} v^{2}+v^{4}+4 u^{2} v^{2} \\
& =u^{4}+2 u^{2} v^{2}+v^{4} \\
& =\left(u^{2}+v^{2}\right)^{2}
\end{aligned}
$$

So

$$
f(u, v)=\frac{4 u^{2}+4 v^{2}}{\sqrt{\left(u^{2}+v^{2}\right)^{2}}}=4 .
$$

(c)

$$
\iint_{T\left(D^{*}\right)} \frac{1}{\sqrt{x^{2}+y^{2}}} d x d y=\iint_{D^{*}} 4 d u d v=4 \operatorname{Area}\left(D^{*}\right)=4 .
$$

