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Problem 1. (10 points) (a) Compute the line integral∫
C

F · ds

for the path c(t) = (t2, t3, t) with 0 ≤ t ≤ 1 and the vector field
F (x, y, z) = xi+ zj + xk.
(b) Compute the line integral∫

C

z dx+ y dy + x dz

for the path c(t) =
(
et

2
, ln(t+ 1), cos(t)

)
) with 0 ≤ t ≤ 1.

Solution. (a) We have c′(t) = (2t, 3t2, 1), so∫
C

F · ds =

∫ 1

0

F (t2, t3, t) · c′(t) dt

=

∫ 1

0

(t2, t, t2) · (2t, 3t2, 1) dt

=

∫ 1

0

2t3 + 3t3 + t2 dt

=
5

4
t4 +

1

3
t3
∣∣∣∣t=1

t=0

=
5

4
+

1

3
=

19

12

(b) This is the integral of the vector field

F (x, y, z) = zi+ yj + xk.

This vector field satisfies the conditions to be a gradient field, and it’s
easy enough to find that

F = ∇f for the function f(x, y, z) = xz +
1

2
y2.

The fundamental theorem of calculus for line integrals says that the
value of the integral is given by the difference of the values of f at the
endpoints of the curve. So∫

C

z dx+ y dy + x dz =

∫
C

F · ds

=

∫
C

(∇f) · ds

= f
(
c(1)

)
− f

(
c(0)

)
= f

(
e, ln(2), cos(1)

)
− f(1, 0, 1)
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= e cos(1) +
1

2
(ln 2)2 − 1

Problem 2. (15 points) Let D be the region

D =
{
(x, y) : 0 ≤ x ≤ 2 and y ≥ 0 and 1 ≤ x2 + y2 ≤ 9

}
.

(a) Sketch the region D.

(b) Write the integral ∫
D

f(x, y) dx dy

as a sum of one or more iterated integrals in xy-coordinates.

(c) Write the integral ∫
D

f(x, y) dx dy

as a sum of one or more iterated integrals in polar coordinates.

Solution. (b) For 0 ≤ x ≤ 1, the region is
√
1− x2 ≤ y ≤

√
9− x2,

while for 1 ≤ x ≤ 2, the region is 0 ≤ y ≤
√
9− x2. So∫

D

f(x, y) dx dy =

∫ 1

0

∫ √
9−x2

√
1−x2

f(x, y) dx dy +

∫ 2

1

∫ √
9−x2

0

f(x, y) dx dy

(c) The vertical line x = 2 intersects the circle x2+y2 = 9 at the point
whose angle θ is cos−1(2/3). So for 0 ≤ θ ≤ cos−1(−2/3), the values
of r go from r = 1 to the line x = 2. Since x = r cos θ, that means that
r goes from 1 to 2/ cos θ. Then, for cos−1(2/3) ≤ θ ≤ π/2, the value
of r goes from 1 to 3. Hence∫

D

f(x, y) dx dy =

∫ cos−1(2/3)

0

∫ 2/ cos θ

1

f(r cos θ, r sin θ) r dr dθ

+

∫ π/2

cos−1(2/3)

∫ 3

1

f(r cos θ, r sin θ) r dr dθ.

Problem 3. (10 points) Find all of the critical points of the function

f(x, y) =
1

3
x3 +

1

3
y3 − 1

2
x2 − 5

2
y2 + 6y + 10

and classify the critical points as local maxima, local minima, and
saddle points.
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Solution. We have

fx(x, y) = x2 − x = x(x− 1),

fy(x, y) = y2 − 5y + 6 = (y − 2)(y − 3).

So there are four critical points:

(0, 2), (0, 3), (1, 2), (1, 3).

For each one we need to compute

D = fxxfyy − f 2
xy = (2x− 1)(2y − 5)− 02 = (2x− 1)(2y − 5).

Then a point is a local minimum if D > 0 and fxx > 0, it is a local
maximum if D > 0 and fxx < 0, and it is a saddle point if D < 0. Note
that fxx = 2x− 1. We make a little table:

Point (0, 2) (0, 3) (1, 2) (1, 3)
Value of D 1 −1 −1 1
Value of fxx −1 1
Type of point Max Saddle Saddle Min

Problem 4. (10 points) Let f(x, y) be defined by

f(x, y) =


2x3 − 3y3

x2 + y2
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

(a) Calculate
∂f

∂x
(0, 0) and

∂f

∂y
(0, 0) directly from the definition.

(b) Let a and b be non-zero constants, and define a function

g(t) = f(at, bt). Calculate
dg

dt
(0).

(c) Let h(t) = (at, bt), so the function g(t) in (b) is g(t) = f(h(t)).
The chain rule would say that

dg

dt
(0) = ∇f(0, 0) · h′(0) =

∂f

∂x
(0, 0)a+

∂f

∂y
(0, 0)b.

Does this agree with your answers from parts (a) and (b)? If not,
explain what is going wrong.

Solution. (a) We compute

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h
definition of partial derivative,

= lim
h→0

2h3/h2

h
definition of f ,
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= 2 .

Similarly,

∂f

∂y
(0, 0) = lim

k→0

f(0, k)− f(0, 0)

h
definition of partial derivative,

= lim
k→0

−3k3/k2

k
definition of f ,

= −3 .

(b) For t ̸= 0 we have

g(t) = f(at, bt) =
2(at)3 − 3(bt)3

(at)2 + (bt)2
=

2a3 − 3b3

a2 + b2
t.

This formula is also true for t = 0, since g(0) = f(0, 0) = 0. Hence

g′(0) =
2a3 − 3b3

a2 + b2

(In fact, this is g′(t) for every value of t.)
(c) From (b) we have

g′(0) =
2a3 − 3b3

a2 + b2
.

But using (a) we have

∂f

∂x
(0, 0) · a+ ∂f

∂y
(0, 0) · b = 2a− 3b.

These are not the same in general. Indeed, their difference is

2a3 − 3b3

a2 + b2
− (2a− 3b) =

−2ab2 + 3a2b

a2 + b2
=

ab(−2b+ 3a)

a2 + b2
,

so they are the same only if a = 0, b = 0, or 3a = 2b. The reason
that this does not contradict the chain rule is because the chain rule
only applies if the partial derivatives are continuous. In this example,
the partial derivatives of f , although they do exist at (0, 0), are not
continuous.

Problem 5. (15 points) For each of the following vector fields F ,
check whether F is conservative.1 If it is conservative, find a potential
function. If it is not conservative, explain why not.
(a) F = zi+

(
x2 + 1

2
z2
)
j + (x+ yz)k.

(b) F = (2xy + 1
2
x)i+ (x2 + sin2 3y)j.

1Note: Despite the new majorities in the House and the Senate, there is not yet
a law saying that all (American) vector fields are conservative!
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(c) Let a be a non-zero constant vector, let r = xi + yj + zk, and
let F = a× r.

Solution. By definition, a vector field F is conservative if it is the
gradient of a function F = ∇f .
(a) A vector field F = P i + Qj + Rk defined everywhere on a solid
region (or even defined everywhere except for a finite set of points) is
conservative if and only if its curl is zero, or equivalently, if

Py = Qx and Pz = Rx and Qz = Ry.

In this case we have

Py = 0 and Qx = 2x,

Pz = 1 and Rx = 1,

Qz = z and Ry = z.

The first line shows that F is not conservative . Alternatively, one
computes curl(F ) = 2xi is nonzero.
(b) Similarly, a vector field F = P i+Qj in the plane that is defined
everywhere in a region is conservative if and only if Qx = Py. In this
case

Qx(x, y) = 2x = Py(x, y),

so F is conservative . We can find an f(x, y) by inspection, or more
systematically by integration. Thus if F = ∇f , then

fx(x, y) = P (x, y) = 2xy +
1

2
x.

Integrating with respect to x gives

f(x, y) = x2y +
1

4
x2 + g(y)

for some function g(y) depending only on y. Then we use

x2 + g′(y) = fy(x, y) = Q(x, y) = x2 + sin2(3y)

to find that g′(y) = sin2(3y). So now we just need to integrate

g(y) =

∫
sin2(3y) dy =

∫
1− cos(6y)

2
dy =

y

2
− sin(6y)

12
.

Using this in our formula for f(x, y) gives the desired function,

f(x, y) = x2y +
1

4
x2 +

y

2
− sin(6y)

12

Of course, one can always add a constant.
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(c) Let a = (a, b, c). Then

F = a× r = det

i j k
a b c
x y z

 = (bz − cy)i− (az − cx)j + (ay − bx)k.

As in (a), we need to check if the curl vanishes. For this vector field,
we have

∇× F = det

 i j k
∂/∂x ∂/∂y ∂/∂z
bz − cy −az + cx ay − bx

 = 2ai+ 2bj + 2ck.

So the curl of this vector field F is constant, and indeed is given by
∇× F = 2a. Since this is non-zero, F is not conservative .

Problem 6. (10 points) Let C be the unit circle

C =
{
(x, y) : x2 + y2 = 1

}
oriented in a counter-clockwise direction. Let f(t) and g(t) be functions
of one variable with continuous derivatives. Evaluate∫

C

(
f(x) + g(y)

)
dx+

(
xg′(y) + 3x− 7

)
dy.

Solution. The easiest way to do this problem is to let D be the unit
disk, so C = ∂D, and use Green’s theorem. Thus∫

C

(
f(x) + g(y)

)
dx+

(
xg′(y) + 3x− 7

)
dy

=

∫
∂D

(
f(x) + g(y)

)
dx+

(
xg′(y) + 3x− 7

)
dy

=

∫ ∫
D

∂

∂x

(
xg′(y) + 3x− 7

)
− ∂

∂y

(
f(x) + g(y)

)
dx dy

using Green’s theorem,

=

∫ ∫
D

(
g′(y) + 3

)
− g′(y) dx dy

=

∫ ∫
D

3 dx dy

= 3Area(D)

= 3π
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Problem 7. (10 points) Let S be a surface in R3, and let ∂S be the
boundary of S. Let F be a vector field on S with continuous par-
tial derivatives. Suppose that you are given the following information
about S and F :

(i) S lies in the plane y = 3

(ii) Area(S) = 17

(iii) Length(∂S) = 25

(iv) div(F ) = x2 + y2 − z

(v) curl(F ) = 3xi− yj − 2zk

Using this information, evaluate the absolute value of the line integral∫
∂S

F · ds.

Solution. Here we will use Stokes’ theorem. Note that since S lies
in the plane y = 3, the unit normal vector n at every point of S is
the vector n = j (or −j if we want to point the other direction). We
compute∫

∂S

F · ds =

∫ ∫
S

curl(F ) · dS Stokes’ theorem,

=

∫ ∫
S

curl(F ) · j dS since n = j,

=

∫ ∫
S

−y dS from the given formula for curl(F ),

=

∫ ∫
S

−3 dS since y = 3 for every point of S,

= −3

∫ ∫
S

1 dS

= −3Area(S)

= −51 since we are told that S has area 17.

If we used the other normal, we’d get 51, but in any case, the absolute
value of the integral is 51 .

Problem 8. (10 points) Let f(x, y) =
√
x4 + y4 + 7. For any a > 0,

let Ra be the rectangle

Ra = [−a, a]× [−a, a].

Calculate

lim
a→0

1

a2

∫ ∫
Ra

f(x, y) dx dy.
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Be sure to explain how you got your answer.

Solution. When a is very small, the value of the integral
∫∫

Ra
f dA is

very close to f(0, 0) multiplied by the area of Ra. So

lim
a→0

1

a2

∫ ∫
Ra

f dA = lim
a→0

1

a2
· f(0, 0) · Area(Ra)

= lim
a→0

1

a2
·
√
7 · 4a2

= 4
√
7 .

If you want to be more formal, you can quote the mean value theorem
for integrals, which says that∫ ∫

Ra

f dA = f(xa, ya) · Area(Ra)

for some point (xa, ya) in Ra. Hence

lim
a→0

1

a2

∫ ∫
Ra

f dA = lim
a→0

1

a2
· f(xa, ya) · 4a2 = 4 lim

a→0
f(xa, ya) = 4f(0, 0),

where the last equality comes from the fact that f is continuous and
the fact that as a → 0, the square Ra shrinks down to the point (0, 0).

Problem 9. (10 points) Let SR be the sphere of radius R centered at
the origin, taken with outward pointing normal. Let F be the vector
field

F (x, y, z) = x3i+ z3j + y3k.

Use the Divergence Theorem to compute∫ ∫
SR

F · dS.

Solution. Let ΩR be the solid ball of radius R centered at the origin,
so SR is its boundary. Then∫ ∫

SR

F · dS =

∫ ∫
∂ΩR

F · dS

=

∫ ∫ ∫
ΩR

div(F ) dV by the Divergence Theoerm,

=

∫ ∫ ∫
ΩR

3x2 dV since div(F ) = 3x2.
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Clearly the way to compute this integral is using spherical coordi-
nates. So∫ ∫ ∫

ΩR

3x2 dV =

∫ π

0

∫ 2π

0

∫ R

0

3(ρ cos θ sinϕ)2 · ρ2 sinϕ dρ dθ dϕ

=

∫ π

0

∫ 2π

0

∫ R

0

3ρ4(cos2 θ)(sin3 ϕ) dρ dθ dϕ.

So we have three integrals to do.∫ R

0

ρ4 dρ =
1

5
R5.

∫ 2π

0

cos2 θ dθ =

∫ 2π

0

1 + cos(2θ)

2
dθ =

θ

2
+

sin(2θ)

4

∣∣∣∣2π
0

= π.∫ π

0

sin3 ϕ dϕ =

∫ π

0

(1− cos2 ϕ) sinϕ dϕ = cosϕ− 1

3
cos3 ϕ

∣∣∣∣π
0

=
4

3
.

This gives the value∫ ∫ ∫
ΩR

3x2 dV = 3 · 1
5
R5 · π · 4

3
=

4πR5

5

Here’s a cleverer way to do the integral using an idea that was de-
scribed in one of the problem sets. By symmetry, we have∫ ∫ ∫

ΩR

3x2 dV =

∫ ∫ ∫
ΩR

3y2 dV =

∫ ∫ ∫
ΩR

3z2 dV.

But adding them gives an integral that’s easy to compute using spher-
ical coordinates,∫ ∫ ∫

ΩR

3x2 + 3y2 + 3z2 dV =

∫ π

0

∫ 2π

0

∫ R

0

3ρ2 · ρ2 sinϕ dρ dθ dϕ

since x2 + y2 + z2 = ρ2,

=

∫ π

0

∫ 2π

0

∫ R

0

3ρ4 sinϕ dρ dθ dϕ

= 3 · 1
5
ρ5
∣∣∣∣R
0

· θ
∣∣∣2π
0

· (− cosϕ)
∣∣∣π
0

= 3 · R
5

5
· 2π · 2

=
12πR5

5
.
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Hence ∫ ∫ ∫
ΩR

3x2 dV =
1

3

∫ ∫ ∫
ΩR

3x2 + 3y2 + 3z2 dV =
4πR5

5
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